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Abstract 

A microfluidic radial diffuser typically comprises a hole in a membrane facing a concentric pillar separated by a small 
gap where the fluid is forced to flow radially between the membrane and the pillar. Such diffusers are notably used to 
make passive flow rectification valves for drug delivery devices, wherein several holes are machined into a flexible 
membrane progressively deflecting against pillars as the pressure increases on top of it. The fluidic modelling of such a 
diffuser is made difficult by the presence of a transition region between the hole and the diffuser itself. An experimental 
investigation has been conducted using SOI wafers to form membranes having only one central hole and Pyrex wafers 
for the substrate and pillars. Both wafers are anodically bonded together after alignment. A simple fluidic model 
accounting for the specific geometry of the diffuser is proposed and compared to experimental results. A good match is 
obtained, for Reynolds number in the range 0.5 to 35, using the analytical formula of a radial diffuser in the laminar 
regime with an effective inner radius 40% smaller than the actual one, in order to correctly simulate the flow 
constriction at the entrance of the diffuser.  

Keywords:  Medical devices; Hydrodynamics; Laminar Flow; Microsystems; Micro Electro Mechanical Systems 
(MEMS); Micromanufacturing 

1. Introduction

Passive flow rectification or flow control microvalves are microfluidic chips that can be used for cerebrospinal fluid 
management or drug delivery [1-2]. A typical application is an implantable pump for pain management. Such devices 
usually comprise a reservoir pressurized with liquefied gas and a flow restrictor. It is well known that these devices are 
sensitive to temperature variations. Flow rate variations up to +/- 13% per °C in body temperature change are reported 
[3]. Those systems will also deliver a different drug amount in environmental conditions of high pressures (scuba 
diving) or after a long exposition to high altitudes (up to +35% of over-delivery) [3]. Therefore, patients are advised to 
avoid these conditions. However, replacing the flow restrictor by a flow control valve makes the device insensitive to 
pressure variations. In addition, to limit under or overdoses, the implantable pump with a flow control valve offers the 
possibility to lower the reservoir pressure so as to limit risks during drug refilling process. Specific flow control valves 
may also comprise a passive compensation of the temperature effect on viscosity [4]. Microfluidic autoregulation 
obtained using the non-Newtonian rheological properties of polymeric solutions was reported by Groisman et al. [5, 6]. 
For the passive flow rectification of Newtonian fluids, different designs were reported, including 3D microfluidic devices 
made of stacks of PDMS layers [7-9], devices comprising spiral-shaped fluidic channels [10-12] or MEMS devices with 
micro-valves associated in parallel [1, 2, 4, 13]. 

Passive flow control can be achieved using a flexible silicon membrane having several through holes, each one being 
coupled with a concentric facing pillar etched in the substrate. The gap between the membrane and the top surface of 
the pillar depends on the reservoir pressure in direct communication with the top surface of the membrane. Increasing 
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this pressure induces a change of the fluidic restriction hereafter referred to as “radial diffuser” or simply “diffuser” (see 
Fig. 1). This diffuser is significantly different from the typical conical diffuser valves described in the literature, which 
are mainly used for micropump applications [14-21]. The design of the device, including the determination of the 
number of hole/pillar pairs and their radial location along the membrane, may be achieved using a genetic algorithm as 
it is a powerful tool to get the configuration exhibiting the lowest sensitivity to machining tolerances [13]. A first fluidic 
model has been provided for devices with gap values (up to 30 µm) in the same order of magnitude as the membrane 
thickness itself. Flow control valves dedicated to the infusion of viscous drugs at high pressure lead to the use of very 
small gaps (typically 10 µm) and thick membranes (up to 130 µm). Such a specific geometry requires an improved fluidic 
model that better takes into account the abrupt change of flow direction as well as the very large flow constriction at 
the diffuser entrance. Microfluidic radial diffusers comprising a single hole at the center of the membrane and a single 
pillar have been produced and characterized. After a brief description of the process flow and the different designs 
investigated, the fluidic characterization of the samples is provided along with the new fluidic modelling of the radial 
diffuser.  

Table 1 Notations  

Symbol Quantity 

  dynamic viscosity 

  fluid volumetric mass 

𝑅ℎ hole radius 

𝐿ℎ hole depth 

𝑅𝑝 pillar radius 

h Distance between the pillar and the membrane 

d valve off-centering 

∆𝑃 = 𝑃𝑖𝑛 − 𝑃𝑜𝑢𝑡 Pressure gradient 

𝑄𝑖 flow rate via the fluidic pathway 𝑖 

𝑤𝑐 channel width 

ℎ𝑐 channel height 

𝐿𝑐 channel length 

𝑅𝑓 𝑜𝑢𝑡 fluidic resistance of the outlet 

𝜅 correction parameter 

2. Fluidic Model 

2.1. Radial Diffuser 

A schematic cross-section of the valve is shown in Fig. 1. The different notations in the text are given in Table I.  

Flow control valve dedicated to high-pressure applications usually exhibits a small gap h: 

ℎ ≪ 𝑅ℎ , 𝑅𝑝 , 𝐿ℎ … (1) 

This specific geometry shall be analyzed further in order to model the different head losses. 
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Figure 1 Schematic cross-section of a valve (top) and top view of the substrate having three pillars and one outlet hole 
inside a channel of width wc (bottom) 

The difference in pressure ∆𝑃 = 𝑃𝑖𝑛 − 𝑃𝑜𝑢𝑡 between the inlet and the outlet of the valve is written as a function of 𝑄𝑖 as 
follows: 

∆𝑃 = 𝛼𝑖𝑄𝑖
2 + 𝛽𝑖𝑄𝑖 . (2) 

where i indicates one fluidic pathway, 𝛽𝑖 = ∑ 𝑅𝑓𝑖𝑖  is the sum of the fluidic resistances of the fluidic pathways i, and αi is 
a function of the surfaces of each singularity. We estimate numerically the function α𝑖𝑄𝑖 for each value of ∆P: 

𝛼𝑖𝑄𝑖 = −
𝛽𝑖

2
+ √𝛼𝑖∆𝑃 +

𝛽𝑖
2

4
. (3) 

The total flow rate is, therefore: 

𝑄 = ∑ 𝑄𝑖𝑖 . (4) 

We consider now a flow regulator that comprises several hole/pillar pairs. 

2.2. Singular Head Losses 

Fig. 2 (a) shows a schematic illustration of a radial diffuser, where the reservoir connected to the hole is at the pressure 
P, the cone represents the flow constriction before the diffuser itself and finally, the channel communicates with the 
outlet. The location of the different sources of singular head losses are noted, respectively: 𝐴 for the contraction from 
the reservoir to the hole, 𝐵 for the progressive contraction between the hole and the diffuser, 𝐶 for the bend at the 
diffuser entrance, 𝐷 for the radial expansion inside the diffuser and 𝐸 for the vertical expansion from the diffuser to the 
channel. We define the cone opening angle 𝛾 as follows (see also Fig. 3): 

𝛾 = 2𝑎𝑟𝑐𝑡𝑎𝑛 (
4𝜅𝑅ℎ𝑖

𝐿ℎ
). (5) 

Before entering into the diffuser, the flow experiences a bend with an angle equal to 
𝜋−𝛾

2
. According to [22], in the bend, 

the expression of the singular coefficient takes the form: 

𝑠𝑖𝑛2 (
𝜋−𝛾

4
) + 2𝑠𝑖𝑛4 (

𝜋−𝛾

4
). (6) 

 

 



Chappel et al. / Global Journal of Engineering and Technology Advances, 2019, 01(01), 010–021 

13 
 

 

Figure 2 Schematic representations of the singular (a) and linear (b) head losses of a radial microfluidic diffuser. Each 
letter corresponds to a specific loss described in the text 

For positive gradients of pressure, i.e. when the fluid flows through the hole, the diffuser, the fluidic channel and finally 
the outlet hole, the parameters 𝛼𝑖 defined in (2) take the form (see [1] for the different expressions used): 

𝛼𝑖 =
𝜌

2𝑆2
(𝐴 + 𝐵 + 𝐶 + 𝐷 + 𝐸) =

𝜌

2
(

1

𝜋2𝑅ℎ𝑖
4 +

0.4

𝜋2
(

1

𝜅2𝑅ℎ𝑖
2 −(𝜅𝑅ℎ𝑖−ℎ𝑖)2

−
1

𝜅2𝑅ℎ𝑖
2 )

2

(1 −
ℎ𝑖

𝜅𝑅ℎ𝑖
)

2
𝑠𝑖𝑛(𝛾)  +

𝑠𝑖𝑛2(
𝜋−𝛾

4
)+2𝑠𝑖𝑛4(

𝜋−𝛾

4
)

4𝜋2𝜅2𝑅ℎ𝑖
2 ℎ𝑖

2 +
1

4𝜋2ℎ𝑖
2 (

1

𝑅𝑝𝑖
−

1

𝜅𝑅ℎ𝑖
)

2

+
(1−

ℎ𝑖
ℎ𝑐

)
2

4𝜋2𝑅𝑝𝑖
2 ℎ𝑖

2). (7) 

where the terms A to E are the contributions of the fluidic elements shown in Fig. 2 (a). 

The parameter 𝜅 has been introduced to better fit the experimental data when the gap is much smaller than the hole 
radius and the channel height, even at zero pressure. In that case, the parameter 𝛼𝑖 can be simplified as follows: 

𝛼𝑖 =
𝜌

2
(

𝑠𝑖𝑛2(
𝜋−𝛾

4
)+2𝑠𝑖𝑛4(

𝜋−𝛾

4
)+0.4 𝑠𝑖𝑛(𝛾)

4𝜋2𝜅2𝑅ℎ𝑖
2 ℎ𝑖

2 +
1

4𝜋2ℎ𝑖
2 (

1

𝑅𝑝𝑖
−

1

𝜅𝑅ℎ𝑖
)

2

+
1

4𝜋2𝑅𝑝𝑖
2 ℎ𝑖

2).    (8) 

2.3. Linear Head Losses 

The linear losses due to the fluid viscosity take place in four different locations as depicted in Fig. 2 (b): A’ is the flow 
through the hole, B’ is the flow constriction between the hole and the radial diffuser entrance (conical shape), C’ is the 
flow through the radial diffuser, and D’ is the flow in the outlet channel. 

The parameters 𝛽𝑖 defined in (2) take the form (see [1] for the different expressions used): 

𝛽𝑖 = 𝐴′ + 𝐵′ + 𝐶′ + 𝐷′ =
8𝜂 (

3
4

𝐿ℎ + ℎ𝑖)

𝜋𝑅ℎ𝑖
4  

+ ∫
8𝜂

𝜋

𝐿ℎ

4

0
(1 (𝜅4𝑅ℎ𝑖

4
− 𝑏(𝑥)4 − (

(𝜅2𝑅ℎ𝑖
2

−𝑏(𝑥)2)
2

𝑙𝑛(
𝜅𝑅ℎ𝑖

𝑏(𝑥)
)

))⁄ ) 𝑑𝑥 +
6𝜂

𝜋ℎ𝑖
3 𝑙𝑛 (

𝑅𝑝𝑖

𝜅𝑅ℎ𝑖
) +

12𝜂𝐿𝑐𝑖

𝑤𝑐𝑖ℎ𝑐𝑖
3 .     (9) 

where the terms A’ to D’ are the contributions of the fluidic elements shown in Fig. 2 (b). Fig. 3 shows a schematic 
representation of the flow through the cone, which is an idealized representation of the transition between the hole and 
the diffuser entrance. 

The parameter 𝑏(𝑥) used in the expression of the term B’ takes the form: 
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𝑏(𝑥) = {

4(𝜅𝑅ℎ𝑖−ℎ𝑖)

𝐿ℎ
 𝑖𝑓 𝜅𝑅ℎ𝑖 − ℎ𝑖 ≥ 0

 
 

0            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. (10) 

We also consider a fluidic resistance at the outlet 𝑅𝑓𝑜𝑢𝑡 (due to the test setup or the connection to the patient for an 
infusion device). In that case, for a given pressure gradient ∆𝑃, we estimate the flow rate Q as shown previously. 

 

Figure 3 Schematic cross-section of the idealized flow transition between the hole and the diffuser entrance. The flow 
direction is indicated by arrows. The dashed line is an idealized representation of the transition between the hole and 

the diffuser entrance. 

The additional pressure drop ∆𝑃𝑜𝑢𝑡 due to 𝑅𝑓𝑜𝑢𝑡 is: 

∆𝑃𝑜𝑢𝑡 = 𝑅𝑓𝑜𝑢𝑡 𝑄.  (11) 

And the effective gradient of pressure necessary to get the flow rate Q is, therefore: 

∆𝑃𝑒𝑓𝑓 = ∆𝑃 + ∆𝑃𝑜𝑢𝑡. (12) 

3. Design and microfabrication 

3.1. Design Description of the Prototypes 

Specific designs of microfluidic radial diffusers have been made to better understand the fluidic behavior of such valves 
and to improve the fluidic modelling by adding a new parameter κ intended to be determined using experimental data. 
This parameter is a means to better simulate the flow constriction at the entrance of the diffuser, in particular, if the gap 
is small compared to other dimensions. 

To prevent any error due to the estimation of the gap as the pressure increases, it has been decided to produce test 
devices having only one central hole/pillar pair. Up to the contact between the membrane and the substrate, the 
analytical formula giving the deflection as a function of the pressure 𝑝 is valid as long as the deflection does not exceed 
0.5𝑡, where 𝑡 is the membrane thickness [23]: 

𝑧𝑚𝑎𝑥 =
3

16

𝑝𝑅4(1−2)

𝐸𝑡3 . (13) 

Where 𝐸 is Young’s modulus,  is Poisson’s ratio, and 𝑅 is the membrane radius. The pillar height is fixed at 50 µm for 
all devices. The average measured dimensions of the samples are provided in Table II. The gap is measured with a 
mechanical profiler (Bruker Dektak XT surface profiler). The membrane thickness is obtained from the certificate of 
conformity of the SOI wafers, while the other dimensions are measured using an optical microscope Nikon Eclipse 
NV150 (software Kappa Metreo). The ratio pillar radius/hole radius is in the range of 1.25 to 2.8. 



Chappel et al. / Global Journal of Engineering and Technology Advances, 2019, 01(01), 010–021 

15 
 

Table 2 Key Dimensions of the Devices D1 to D7 

Device 
# 

Membrane 
thickness 
(µm) 

Membrane 
radius  

(µm) 

Gap 

(µm) 

Hole 
radius 
(µm) 

Pillar 
radius 
(µm) 

D1 30 1879 10.4 48.4 138 

D2 30 1580 10.2 48.4 137 

D3 30 1428 10.3 48.3 137 

D4 30 1329 10.4 48.4 136 

D5 30 1257 10.3 48.3 137 

D6 129.5 2560 10.3 48.4 132 

D7 129.5 2560 10.8 61.5 77.5 

 

A schematic cross-section of a device D6 is provided in Fig. 4a. The chip dimensions in mm are 10 × 10 × 1 (𝐿 × 𝑊 × 𝐻). 
The membrane (top wafer) contains one single inlet hole while the substrate has two outlet holes (to improve the 
priming of the device). A zoom of the radial diffuser at rest (membrane hole and pillar) is shown in Fig. 4b. 

 

Figure 4a Schematic cross-section of the device D6 (membrane = top wafer, substrate = bottom wafer). 

 

 

Figure 4b Zoom of the radial diffuser D6 
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3.2. Manufacturing Process Flow 

The holes and the membrane are made by dry etching (DRIE, Bosch process on Alcatel AMS200) of a 4” SOI wafers (front 
side and backside respectively). Two different SOI device layers have been considered: 30 µm and 129.5 µm. The buried 
oxide is 2 µm thick. Residues are removed with 𝑂2 plasma and the final silicon oxide wet etching is obtained using a BHF 
7:1 solution. The gap and pillars are obtained through isotropic wet etching (HF 10% at room temperature) of a 4” glass 
wafer (Borofloat 33, thickness 500 µm). The metallic hard mask used for the pillar definition was opened by dry etching 
(ion beam Veeco Nexus IBE350). The outlet hole (500 µm in diameter) in the glass substrate is made by sandblasting 
(IcoFlex Sarl, Ecublens, Switzerland). The two wafers are finally aligned at ±10µm and anodically bonded together (Süss 
BA6/SB6). Chip singulation is performed using an automatic dicing saw Disco DAD321. 

4. Fluidic characterization 

The devices have been tested with filtered water at 20 °C. The water tank is pressurized by a pressure controller Druck 
DPI520 connected to high-pressure 𝑁2 bottle (200 bar). A sample holder similar to the one described in [2] has been 
used for the tests. The flow rate is estimated by infusing at constant pressure during 1 minute into a beaker placed onto 
a scale Sartorius AC210P. The pressure ranges are 0 to 400 mbar for the devices D1 to D5 and 0 to 2.5 bar for the devices 
D6 and D7. 

Typical flow rate versus pressure profiles measured using the thin (30 µm - devices D1 to D5) and thick (129.5 µm – 
devices D6 and D7) membranes are provided in Figures 5 and 6 respectively. Considering the different devices, the 
maximum Reynolds number varies within the range 0.5 to 35. 

 

Figure 5 Flow rate versus pressure profiles of the devices D1 to D5 and comparison with numerical simulations using 
𝜅 = 0.6 
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Figure 6 Flow rate versus pressure profiles of the devices D6 and D7 and comparison with numerical simulations 
using 𝜅 = 0.6  

5. Results and discussion 

The 𝑄(∆𝑃) profiles shown in Figures 5 and 6 exhibit an asymmetric dome shape. By contrast to other radial valves 
wherein the fluidic behavior at low pressure is driven by the constant fluidic resistance of the membrane holes [1], we 
observe here that there is no linear regime even at low pressure.  All tested devices exhibit a small value of the initial 
gap between the membrane and the pillar (about 10 µm) and a large membrane hole diameter (> 96 µm). The fluidic 
resistance of the diffuser itself is therefore always dominant. Since the gap ℎ  decreases linearly with the applied 
pressure gradient ∆𝑃 (before contact), the fluidic resistance of this diffuser will increase as ℎ (and therefore 𝑃) to the 
power −3, preventing any linear regime in the fluidic characteristic of the devices. 

Considering in a first and basic approximation that the flow resistance of the valve can be written: 

𝑅𝑓 ≈
𝑎

ℎ3 (14) 

Where 𝑎 is a constant and ℎ is the gap equal to the difference between the gap at rest ℎ0 and the deflection of the center 
of the membrane defined in Eq. (13): 

ℎ = ℎ0 − 𝑧𝑚𝑎𝑥 = ℎ0 − 𝑢∆𝑃 (15) 

𝑢 is a constant that depends on the membrane characteristics (see Eq. (13). 

The flow rate in the valve can be approximated by a function having the following form: 

𝑄 =
∆𝑃

𝑅𝑓
≈

∆𝑃

𝑎
(ℎ0 − 𝑢∆𝑃)3 (16) 

The devices D1 to D5 are similar except the membrane radius 𝑅, therefore the parameter 𝑢 can be written: 

 𝑢 = 𝑐𝑅4 (17) 

Where 𝑐 is a constant. 

By replacing Eq. (17) in Eq. (16) we obtain: 

𝑄 ≈
∆𝑃

𝑎
(ℎ0 − 𝑐𝑅4∆𝑃)3 (18) 
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The derivative of this function with respect to the pressure gradient is: 

𝑑𝑄

𝑑(∆𝑃)
≈

(ℎ0−4𝑐𝑅4∆𝑃)(ℎ0−𝑐𝑅4∆𝑃)
2

𝑎
 (19) 

According to this approximation, the maximum flow rate is observed at a pressure gradient ∆𝑃(𝑄𝑚𝑎𝑥 ) which 
corresponds to the first root of this derivative: 

∆𝑃(𝑄𝑚𝑎𝑥) ≈
ℎ0

4𝑐𝑅4 (20) 

The second root of this derivative corresponds to the pressure ∆𝑃(𝑄𝑣𝑎𝑛𝑖𝑠ℎ) at which the flowrate vanishes: 

∆𝑃(𝑄𝑣𝑎𝑛𝑖𝑠ℎ) ≈
ℎ0

𝑐𝑅4 (21) 

Since both ∆𝑃(𝑄𝑣𝑎𝑛) and ∆𝑃(𝑄𝑚𝑎𝑥) are proportional to the membrane radius 𝑅 at the power −4, the larger the value of 
the membrane radius the smaller the value of the pressure at which the flow rate vanishes and the value of the pressure 
at the top of the dome as observed experimentally. 

The introduction of ∆𝑃(𝑄𝑚𝑎𝑥) (see Eq. 20) in the equation (18) leads to a value of  𝑄𝑚𝑎𝑥 that is also proportional to 
1/𝑅4: 

𝑄𝑚𝑎𝑥 ≈
27ℎ0

4

256𝑎𝑐𝑅4 (22) 

The simplified model introduced at the beginning of this section is, therefore, useful to explain the trend of the 
experimental curves, including the fact that the bigger membranes have the smallest flow rates, in good agreement with 
the experimental observations (see Figure 5). 

However, in order to fit the experimental data, the whole expressions of the singular and linear head losses shall be 
used. The average measured misalignment of 10 µm between the pillars and the membrane holes has also been 
introduced into the model. The gap varies in principle between ℎ0 (at rest) and 0 (at high pressure, when the membrane 
is in contact with the pillar). Since we use a particle filter that exhibits a pore size of 0.2 µm, we fix the minimum gap to 
0.2 instead of 0 µm, assuming that contamination could prevent the total closure of the valve. 

As mentioned in the introduction, the original fluidic modelling (see [1]) is not adapted to a radial diffuser that exhibits 
a gap that is much smaller than all other dimensions of the devices. A parameter 𝜅 has therefore been introduced into 
the model as shown in section II, to better account for the flow constriction at the diffuser entrance. The data analysis 
has been carried out focusing on the central part of the curves, for pressure values centered around ∆𝑃(𝑄𝑚𝑎𝑥), since the 
measurement errors are smaller at high flowrate. Moreover, a flow control valve usually includes several radial 
diffusers, and the behavior of the valve is mainly secured by the radial diffuser that is located near the outer edge of the 
membrane. The flow rate through this diffuser remains large at high pressure while all other radial diffusers located 
nearer to the center of the membrane are almost closed (these other radial diffusers are only used to fine-tune the flow 
profile at low pressure). Therefore the overall fluidic characteristic of the valve is driven by the high flow parts of the 
different radial diffusers (the diffusers located near the membrane centre at low pressure and the outer diffuser at high 
pressure). Considering this limitation, a good match between experiment and simulation (in Matlab) is obtained 
using 𝜅 = 0.6. It should be noted that the use of a single parameter is not sufficient to perfectly fit the tail of the different 
curves at high pressure. 

5.1.  Application to the characterization of the non-linear deformation of a membrane against a rigid 
substrate 

As mentioned in [23], the highly non-linear deflection of a clamped membrane against a rigid substrate has no simple 
analytical solution. FEM simulations can be carried out to determine, at different test pressures, the gap between the 
membrane and the substrate as a function of the radial position, but the experimental validation of the modelling is 
relatively complex, in particular at high pressure. To improve the reliability of the gap estimation as a function of the 
applied pressure, it is proposed to perform the fluidic characterization of chips that exhibit the same radial diffusers 
located at different radial positions. 

We first assume that the correction due to the membrane tilt is small (membrane diameter ≫ gap) [2].  
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Description of the “fluidic” method to derive the non-linear deformation of the membrane: 

A fluidic model for the valve is established by measuring the flow rate versus pressure characteristic of the chip with 
the centered diffuser: the evolution of the fluidic resistance of the valve as a function of the gap 𝑅𝑓(𝑔𝑎𝑝) is derived since 

the deflection of the center of a clamped membrane is well known [23]. 

The fluidic resistance of the same (i.e. same geometry) but off-centered diffuser is measured: for this given radial 
position of the diffuser the function 𝑅𝑓(𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒)  is derived. 

With each value of the fluidic resistance is associated a value of the gap using the interpolation of the function 𝑅𝑓(𝑔𝑎𝑝): 

the function 𝑔𝑎𝑝(𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒)  is therefore derived for a given value of the nominal gap and for a given membrane 
(material, diameter, and thickness).  

This method was applied to the diffuser design D6 (see Table II for the diffuser design). A similar diffuser had previously 
been used in a flow control valve (see reference [2], design A, with a nominal flow rate of 0.5 mL/min at 12 cP). There 
is however a small discrepancy regarding the pillar diameter (-15%) due to over-etch during the processing of the 
samples D6. 

Samples were made according to the process flow described in §3. We consider a diffuser design D6 located at a distance 
of 2.09 mm from the membrane center. The diffuser was characterized by the test setup described in reference [2] up 
to 18 bar. The value of the “fluidic” gap versus the fluidic resistance was derived using the data provided in Figure 6. 
Finally, the interpolated value of the “fluidic” gap between the membrane and the pillar at the radial position 2.09 mm 
was derived using this “fluidic” probe (see Figure 7). Such an indirect estimation of the membrane deflection (“fluidic 
probe”) could be a simple alternative to the development of a specific and complex characterization setup at high 
pressure. This method is indeed a bypass to the direct measurement of the real gap: the function 𝑔𝑎𝑝(𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒) can be 
introduced into the fluidic model described in section 2. By definition, the model is able to reproduce the experimental 
data obtained during the fluidic test of this specific diffuser, but errors due to interpolation and to the approximation 
made in the fluidic model are expected if the diffuser dimensions and/or radial position are modified. If the nominal 
value of the gap is small compared to all other dimensions, its value is usually the critical-to-quality parameter that shall 
be controlled in fabrication. Moreover, to determine the ideal value of the diffuser gap, it is recommended to investigate 
experimentally the effect of small variations of this parameter onto the fluidic characteristic of the microfluidic chips 
having such radial diffusers (the initial nominal gap value being derived from simulations). This method is of course 
only relevant in case of highly non-linear deformation of the membrane. 

 

Figure 7 Interpolated value of the “fluidic” gap between the membrane and the pillar at the radial position 2.09 mm as 
a function of the applied pressure for a diffuser design D6 (see Table II). 
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6. Conclusion 

The numerical modelling of a microfluidic radial diffuser formed of a gap, much smaller than other critical dimensions, 
between a membrane and a pillar has been investigated. We observe, based on the analysis of the experimental data 
provided in Figs. 5 and 6, that the linear losses at the interconnection between the hole and the diffuser are simulated 
considering an increase of the constriction length of the diffuser. A single parameter κ has been used to adjust the model 
accordingly to the experimental data. The expressions of the singular losses account for the specific geometry of the 
problem (especially the bend at the diffuser’s entry and the diffuser itself). A match between modelling and experiments 
better than 15% for a Reynolds number varying from 0.5 to 35 and a ratio pillar radius/hole radius in the range of 1.25 
to 2.8 has been obtained. At very high pressure, when the valve is almost closed, additional corrections to the model are 
necessary to simulate the radial diffuser which becomes really sensitive to particulate contamination and surface 
roughness. The association of several microfluidic diffusers inside a single membrane will allow to obtain a constant 
flow rate over a predefined range of pressure. This analytical model of the radial diffuser is useful to design a 
microfluidic chip without complex 3D FEM simulations and metrology tools. 
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