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Abstract 

Energy saving in data centers is increasingly important along with the rapidly developing IT industry. A integrated heat 
pipe air conditioning (AC) system which used chilled water unit and heat pipe heat exchanger (HPHE) was 
proposed.With the meteorological parameter of Changde city (31°53′N and 117°15′E) as the reference. The 
thermodynamic simulation software SIMULINK was employed in build the simulation model of the combined system. 
And it is compared with the traditional air-conditional system. The system include heat pipe evaporator cooling deliver 
unit (CDU) and the cold source. A time integral model for heat transfer of heat pipe evaporator is proposed. A heat pipe 
evaporator of a 12KW in the company was taking as an example. The results show that the time period of working fluid 
passing through the heat exchanger is about 6 seconds. When the dry degree is greater than 0.72, the heat transfer 
efficiency is low. When arranging the IT server, we should concentrate on the location below 1.3 meters. The CDU was 
treated as a condenser. Then, the cooling source is vapor compressor. The finite time thermodynamic and the exergy 
method were employed to analysis the heat exchanger and the compress processes.The results show that the former 
one has saved 26% of the energy. Then the using time and energy saving potential in major cities of China were 
investigated and studied.  

Keywords:  Thermodynamic simulation; Information data center (IDC) room; Heat pipe air-conditioning system; 
Exergy analysis; MATLAB/SIMULINK Software 

1. Introduction

According to the great developing of the information technical, the IDC room is built and expanded. To maintain the 
normal operation of the run, the air-conditioning system is needed. The energy of the air - conditioning take about more 
than 40% of the total energy consumption of the room [1]. The traditional air-cooled method cannot fit the demand, so 
the water-cooled technique is employed in the design of the high efficiency cooling process. But for the safety of the 
room, the water pipe are prohibited to go into the IDC room, some are even not promised to the corridor of the room. 
On the other hand, the heat load of the room has characteristic: there is only heat load in room, the wet load is almost 
zero. And it need refrigerating all the year. The traditional air-conditioning system treat heat and wet load at the same 
time, then to keep the humidity of the room, the reheat component is added after the air-conditioning process. It waste 
a lot of energy. On the other hand, in the air distribution side, the traditional air conditioning system in the room, the 
cooled air is distributed by the wind pipe. The distance is long and there are cooling capacity loss in the process. To 
tackle these problems, the heat pipe air-conditioner is developed. The heat pipe has high heat transfer efficiency. The 
heat pipe system tackle the heat exhaust by the calculator sever locally, and combined the cold and heat channel closed 
technical. The power using efficiency (PUE) of the room can reach about 1.3[2]. 

They energy performance are studied by many scholars. In the heat pipe combined system aspect: A combined cooling 
solution is proposed to improve both thermal and energy performance for data centers with high heat density. 
Multistage heat pipe is introduced to make the internally cooled rack, which helps to illuminate the undesired mixing of 
hot and cold air, and makes a uniform distribution of indoor temperature [3]. An integrated cooling system for data 
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centers which combines a heat pipe cooling cycle and a vapor compression cooling cycle. The operating mode of the 
system changes with the outdoor temperature. Key problems of the integrated system were solved such as the mix of 
the refrigerant and lubricant, the match of heat exchange areas and the durability of valves. A thermal equilibrium test 
was carried out to evaluate the system performance [4].In the measurement of the IDC room: Methodological approach 
to the energy efficiency optimization of high density data center, in a synergy with relevant performance analysis of 
corresponding case study. Related case study goal—to optimize energy efficiency to the level characterized by the 
power usage effectiveness nearly equal 1 (PUE ≈ 1), has been successfully realized, tracing an energy efficiency 
optimization road to a hyper energy efficient data center of the superb IT and energy performance [5]. In the influence 
of the environment aspect: A thermodynamic approach for evaluating energy performance (productivity) of 
information technology (IT) servers and data centers is presented. This approach is based on the first law efficiency to 
deliver energy performance metrics defined as the ratio of the useful work output (server utilization) to the total energy 
expanded to support the corresponding computational work. These energy performance metrics will facilitate proper 
energy evaluation and can be used as indicators to rank and classify IT systems and data centers regardless of their size, 
capacity or physical location [6]. Zou etal focused on the onsite test about self-adaptive capacity of a multi-spilit heat 
pipe system (MSHPS) in a real data center under 25%, 50%, 75% and 100% heating loads and various fan failures. The 
results show that the MSHPS abnormally operated under low heating loads, but it still met the cooling demands due to 
its superior self-adaptive capacity,but the refrigerant distribution characteristics of MSHPS is required to be further 
studied to optimize the structure of liquid pipes.  

They simulation model is hard to be build, and the task of the experiment is large, to build a simple method to evaluate 

the heat-pipe combined system, a thermodynamic simulation software SIMULINK is employed then the energy and 

exergy efficiency will be calculated and compared with the traditional air-conditional system.  

2. The physical model of the water cooled multi-spilit heat pipe system 

2.1. The system model of water cooled multi-spilit heat pipe system 

 

Figure 1 The backboard heat pipe air-conditioning system in the IDC  room 

Atypical heat pipe air-conditioning system can be seen in Fig. 1. The area of the IDC room is 384
2m , the indoor 

temperature demand is 24℃, and the humility is 50%. 72 backboard heat pipe air conditioners were designed in the 

system. The outdoor temperature is 35.4℃. The temperature of the chiller water can improved to 12/17℃. The exergy 
efficiency of the compressor is improved. And the chilling water machine can be shut down when the outdoor 
temperature is below 10℃ in winter, the free cooling mode can be used [7].  

The average outdoor temperature of the room is showed in the Table. 1. 



Feihu and Shuguang / Global Journal of Engineering and Technology Advances, 2020, 03(03), 007–019 

9 
 

Table 1 The average outdoor temperature of the 𝐈𝐃𝐂 room 

Temperature gap ≥30 ≥20, ＜30 ≥10, ＜20 ≥0, ＜10 ＜0 

Temperature 
distribute efficiency 

11.5% 33.3% 27.1% 26.2%        
 

1.9% 

2.2. The Physical model of heat pipe evaporator 

The 12 kW heat pipe heat exchanger is used as the object. The microchannel heat exchanger is used. The height of the 

heat exchanger is 2 m , and the width is 0.6 m . The wind rate of the fan is 2000 sm 3
, and the refrigerant is R134A. 

2.3. The Physical model of CDU 

The parameter of the CDU is show in table 2. 

Table 2 The parameter of the CDU 

Parameter  Side of refrigerant  Water side          

Mass flow (kg/h)  187.6                  1714 

Pressure drop (kPa)  2100   -    

Working pressure( bar)  9.08   0.1  

Temperature(℃)  20    14/19  

Tracheal branch( mm)  19   

Liquid pipe branch( mm)  16   

The heat transfer area(m3)  0.9   

CDU outline size 

(high) ×(wide) ×(thick) 
 0.525 ×0.111×0.12   

 

Installation height( m)  1.8  

 

The Physical model of the cooling source  

The cooling capacity of the compressor is 130KW;the condenser temperate is 35℃;the temperate of the cold water is 

12℃。 

3. The mathematical model of the heat-pipe air-conditioning system 

3.1. The mathematical model of the evaporator of the heat-pipe 

Referring to the micro channel heat exchanger model, based on the new Gungor-Winterton correlation formula[8], the 
hourly simulation model of the heat pipe evaporator is established. 
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In the formula: 



tph : Hourly two current heat transfer coefficient; 1eR : Liquid Reynolds number; rP :Liquid Prandt 

number; 
BL :Boiling number; loWe :Liquid Weber number; l :Liquid thermal conductivity; hD :Heat pipe diameter; 



x :Dry degree; l :Liquid density; g :Gaseous density. 

The total heat exchange: 

                    



1

0
xtpdhmQ                                  (4) 

The efficiency of the system: 

                   
T

Q
                                  (5) 

The T in the formula is a cycle, that is, the heat transfer time of the working fluid in the heat pipe evaporator: 

                     
v

L
T ev                                        (6) 

Medium: V is the velocity of the working fluid: 
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Medium: m is mass flow. 

The formula (1) - (7) constitutes a heat transfer model for heat pipe microchannel heat exchangers[9]. 

3.2. The mathematical model of the CDU 

See in figure 2.The heat exchange of the CDU is equal to the enthalpy drop from the state point 7 to the state point 8[10]. 

                    



 87 HHQcond                                （8） 

In the formula, 



condQ
is the heat transfer for CDU by time. The



7H 、


8H are enthalpy value for the state point 7 and 8. 

According to the designed evaporation and condensation temperature, the state of T-S diagram 2, 7 and 8 points can be 
determined. 

Exergy loss of the CDU: 

                       condrefcond imI


                         (9) 
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And: 

             )()( 8787 0



 ssThhmi refcond                    (10) 

In the formula:



condi
: the hourly loss of refrigerant for unit quality,



condI
: the loss of working hours and refm



:the mass 

flow rate of working medium. 0



T
:The entropy of hourly ambient temperature and 7



s 、 8



s :working hourly entropy. 

The formula (8) - (10) constitutes a finite time thermodynamic model of CDU. 

 

Figure 2 The T-S diagram of the evaporator of the heat pipe 

3.3. The mathematical model of the Cooling source 

3.3.1. The mathmatical model of the compressor 

 

Figure 3 The T-S diagram of the cooling source 
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The mass flow of the refrigerant is 
refm , it comes to the compressor at the state 1. And the state of the outletis state 3. 

Because of the irreversible process of the compress. There are exergy loss and entropy generations. The exergy balance 
equation is as follows[11]: 



 compiewe 21                                 (11) 

The exergy input by the compressor is: 

)( 12,



 hhmwe refcompin                          
(12) 

The entropy generation of the irreversible process is:  



 1212, sssgen                                    (13) 

Then the exergy loss of the compressor is: 
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(14) 

In the ideal reversible process of the compress, the power consumption is : 
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The parameter of the the real outlet state 3 of the compressor can be defined by the formula: 
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In the formula, is the compress efficiency, it is decentralized compressor, suppose it is 0.85. 
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3.3.2. The mathematical model of the condensor 

The heat of condensation is equal to the enthalpy drop from the 2 state to the state point 4. 

42



 HHQcond                                 (18) 

According to the T-S diagram, the state of the 4 point can be determined. 

condrefcond imI


                              (19) 

And:  
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 ssThhmi refcond                           (20) 

3.3.3. The mathematical model of the valve 

As shown in Fig. 2, the throttling process line is 4~5. The exergy loss of throttle valve is from exergy balance equation 
and adiabatic throttling equation. 

                  )( 450exp



 ssmTI ref                          (21) 

3.3.4. The mathematical model of evaporator 

In the evaporator, the circulating refrigerant absorbs heat from the low temperature heat source to transform into 
gaseous state and enter the compressor. For example, the process line 5~1 in Figure 1. When the cooling capacity is 
utilized, the exergy loss is estimated from the exergy balance equation [12]. 

)]()[()]()[( 0,15015


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(22) 

The formula is the flow of cold water, 、  are the enthalpy of cold water for inlet and outlet, and 

、  are the entropy of cold water import and export. 

4.  Simulation model of unit type water cooled multi continuous heat pipe system  

4.1. The simulation model of the evaporator of the heat pipe 

According to formula 3, the formula of F is calculated. A simulation model for solving F is established. The constant 
module 1.12 (constant) is multiplied by X divided by 1 (Constant1) minus the 0.86 th power of X and multiplied by the 
0.41 th power (Math Function1)[13]. 

 

Figure 4 The simulation model of F value in heat transfer coefficient of two phase flow 

Similarly, a simulation model of heat transfer coefficient and heat transfer can be established. 

 

evwm evwih evwoh evwih

evwoh
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4.2. The simulation model of the CDU 

According to the mathematical model of heat exchanger, a simulation model is established. According to the equivalent 
heat transfer between refrigerant and water side, the refrigerant side is a phase change process, and the heat transfer 

tQ


is latent heat of phase change (multiplied by refrigerant mass flow rate refm


. The heat transfer at the water side is 

the difference between the inlet and outlet temperature (


 wiwo TT ) times the specific heat ( wC ) and the flow rate . 

Seen in Fig.5. 

 

Figure 5 The simulation model for solving the flow of refrigerant in CDU 

4.3. The simulation model of the compressor 

According to the evaporating temperature, the entropy of the refrigerant at state 1 can be gotten. Then the entropy of 
the refrigerant at state 2 can be gotten; then according to the Te\Tc and compressor efficiency ƞ, the differ of the (



 12 hh ) can be gotten. Then put the (


 12 hh ) sublet the accumulate of the initial temperature 0



T multi (


 12 ss ), at 

last, let the calculation result multi the mass flow of the refrigerant 
refm . The exergy loss of the compressor can be 

gotten. See in Fig.6[14]. 

 

Figure 6 The simulation model of the condenser 
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4.4. The Simulation model of condenser 

The condensing heat is equal to the enthalpy drop from state 3 to state 4. 

According to the T-S diagram, the state at outlet of the condenser can be defined.  

According to the condensing temperature Tc, the exergy loss of the condenser can be gotten. Then value of the 

simulation model 
)]()[( 42042 ssThhMref 

can be calculated, see in Fig.7. 

 

Figure 7 The simulation model of the condensor 

4.5. The simulation model of expansion valve 

Seen in figure 1, the throttle process is 4-5, due to the exergy balance equation and the adiabatic throttle process, the 

exergy loss of the valve
)( 540 ssmT ref 

 is got. 

According to the condensing temperature the entropy at state 4 ,s4 can be gotten. Then the entropy at state 5 (s5) can 
be calculated by the evaporation temperature. Let s4 sublet s5, the results multi the base point temperature T0 and the 
mass flow of the refrigerant. The exergy loss of the expansion valve can be gotten. Seen in Fig.8. 

 

Figure 8 The simulation model of the valve 

4.6. The simulation model of the evaporator 

According to the inlet temperature and outlet ,the enthalpy and entropy of the inlet and outlet chilled water can be 
calculated. Then put the environment temperature T0 multi the , then let the differ of the enthalpy of inlet and outlet 
sublet, at last, put the result multi the mass flow of the chilled water, the exergy loss of the chilled water side can be 
gotten. Similarly, the exergy loss at refrigerant side can be gotten, then put the two add together, the exergy loss of the 

evaporator is gotten. Seen in Fig .9. 
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Figure 9 The simulation model of the condenser  

5. Results and discussion 

It can be seen from the relationship between the dry degree of the heat exchanger and the height and time of the heat 
exchanger that the heat transfer efficiency of the refrigerant is higher when the liquid refrigerant is many, and the heat 
transfer efficiency is lower when the dry degree is greater than 0.72. When arranging the IT server, it is advisable to 
concentrate on the location below 1.3 meters, seen in Fig.10.  

 

Figure 10 The x vs. the operating time in the evaporator 
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The calculation results show that heat transfer gradually slows down with time. CDU has a heat transfer of about 74KW 
after 6 seconds of heat transfer.Seen in Fig.11. 

 

 

Figure 11 The total heat transfer vs.the heat transfer time of the heat pipe exchanger 

The heat transfer efficiency of CDU is calculated by changing the flow rate of cold water. As shown in the diagram, the 
optimum flow rate of CDU is 0.82, and the corresponding heat transfer efficiency is 0.81.Seen in Fig.12 

 

 

Figure 12 The  of the evaporator vs. the mass flow of the cooling water 

 

The energy saving potential in major city of China is seen in Fig.13 



Feihu and Shuguang / Global Journal of Engineering and Technology Advances, 2020, 03(03), 007–019 

18 
 

 

Figure 13 The energy saving potential in major city of China 

6. Conclusion 

In this paper, a time integration model for heat transfer in heat exchangers is established based on finite time 
thermodynamic analysis. The model can reflect the actual heat transfer process of heat exchanger. The model can be 
used to optimize the charging capacity of heat exchangers. And the model can reflect the relationship between heat 
transfer and heat exchanger height. Provide judgment and reference for the layout of IT equipment. 

The hourly simulation model of CDU is simple and the simulation error is small. Compared with classical 
thermodynamic analysis, it can reflect the actual operation of the system. The simulation precision is high. Moreover, 
the model can provide reference for the design and optimization of CDU parameters. The model provides a new method 
for the simulation of thermal system. 
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