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Abstract 

The long-standing issue of non-pre-emption in ‘multi-period’ production/maintenance (P/M) scheduling has always 
been a challenge and this has been the focus of many researchers. Recently, the Contiguous-Cells Transportation Model 
(CCTM) was proposed to address this problem. However, the CCTM is limited to non-pre-emptive P/M scheduling 
decision situations where only one objective is of concern. The multiple objective non-pre-emptive P/M scheduling are 
encountered more frequently in the real world than the single objective case. This study proposed the Multi-Objective 
Contiguous-Cells Transportation Model (MOCCTM) and the solution procedure for handling multi-objective cases of 
non-pre-emptive production/maintenance scheduling. The variables and parameters of the CCTM were adopted with 
modifications to cater for the multi-objective requirements. A composite multiple-objective function was formulated by 
employing multi-objective optimisation techniques of assigning weights to objectives and normalisation of objectives. 
An algorithm similar to the conventional least cost method was developed for the solution of the MOCCTM. A bi-
objective non-pre-emptive maintenance scheduling problem of 5 production machines across an operation and 
maintenance planning horizon of 10 periods was used to demonstrate the application of the MOCCTM. The MOCCTM is 
a good approach to solving multi-objective P/M scheduling problems in a non-pre-emptive environment.  

Keywords: Non-pre-emption; Multi-objective Contiguous-Cells Transportation Model; Production Scheduling; 
Maintenance Scheduling 

1. Introduction

One of the earliest problems faced by man is the problem of allocation of limited resources. This problem exists in 
different forms, ranging from production of goods (where there is need to adequately schedule jobs to machines), 
inventory control, product mix and employment scheduling to rendering of services such as transportation of items 
from warehouses to customers. Researchers have invested efforts to address this long-standing issue with several 
models and approaches developed to handle the problem. The model that best describes this multi-dimensional 
problem is the well-known Transportation model (TM). The Transportation Problem is a special class of linear 
programs that has to do with shipping of commodities from sources to destination, with the objective of determining 
the shipping schedule that minimize the total shipping cost while satisfying supply and demand limits [1, 2]. The TM is 
not limited to shipment of commodities due to the fact that the nature of some real-life problems can be described 
within the context of the TM. As a result, the flexibility of the model has prompted researchers to extend the application 
of the TM to solve problems of transshipment, inventory control, personnel assignment, production scheduling, etc. 
Several extensions of the TM are given in [2-6]. 
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One area of application of the TM which is of interest is in Production/Maintenance (P/M) scheduling. The P/M 
scheduling poses the problem of allocation of periods of time to execute multiple tasks which can either be pre-
emptive or non-pre-emptive. Pre-emption means to temporarily suspend an on-going task for another task of more 
importance, with the intention of resuming the suspended task later. Non-pre-emptive scheduling on the other hand 
has to do with completing series of activities without any form of interruption (i.e once the activity begins, it must run 
to completion without interruption) [7]. Pre-emptive scheduling can occur for reasons such as unavailability of 
materials and P/M facility breakdown among others. While pre-emption of tasks is the case in many real-life 
scenarios, there exist situations of P/M scheduling where it is not favourable to pre-empt tasks. A practical case such 
as petroleum refining is a production situation where pre-emption is not feasible as interrupting any of the production 
processes might impact greatly on factors such as; set-up cost, set-up time and product quality. Maintenance of a fleet 
of vehicles (such as; aircrafts, buses, etc.) and maintenance of certain facilities (e.g. steam turbine maintenance) are 
activities carried out without pre-emption due to the high set-up cost and set-up time associated with them.  

While researchers have focused on developing models to handle cases of pre-emption in P/M scheduling, not much 
is known about cases where pre-emption of tasks is not favourable. This issue of non-pre-emption in P/M scheduling 
was addressed by the proposition of the Contiguous-Cells Transportation Model (CCTM) [7]. The CCTM was 
formulated with the aim of determining the set of contiguous periods for preventive maintenance that minimizes total 
maintenance cost. The CCTM has so far been applied to solve a non-pre-emptive maintenance scheduling problem of a 
fleet of ships and aircrafts, yielding feasible results. Charles-Owaba et al [7] modelled situations where cost 
minimisation was the sole objective.  Multiple objective decision situations are more common in many real-life 
scenarios [5, 8-11]. A practical case is with the maintenance of a fleet of aircrafts. Asides being interested in minimizing 
the total maintenance cost of the aircrafts, it is also important to ensure that the aircrafts are ready as at when due, in 
order to reduce the contract penalty associated with tardiness of any aircraft, which imparts negatively on meeting 
customer demands. A similar situation is the maintenance of a fleet of ambulances in which availability of the 
ambulances is an important objective to be considered in order to have them available to respond to cases of emergency. 
These practical situations draw attention to the existence of a multiple-objective case in non-pre-emptive maintenance 
scheduling which is yet to be addressed by the CCTM. The focus of this study is the development of Multi-Objective 
Contiguous-Cells Transportation Model (MOCCTM) and solution procedure for non-pre-emptive decision situations in 
production and maintenance scheduling. The review of literature is presented in the next section followed by model 
development. Next, numerical example is given followed by the results and discussion and finally, the conclusion is 
presented.  

2. Literature review 

The TM, being a special class of linear program associated with resource allocation has been the interest of many 
researchers because the model has been found useful in solving real-life problems. Although the TM was initially 
formulated and applied to finding an optimal schedule for transportation of items with the aim of minimizing cost, 
researchers have explored the extent to which the model can be applied including practical cases that involve multiple 
and conflicting objectives as reported in [12, 13]. The existence of such problems led to the development of the Multi-
Objective Transportation Problem (MOTM). The MOTM is given by [14-16] and described as follows: 

𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒 𝐹(𝑍𝛼(𝑥𝑔𝑙))∑∑𝐶𝑔𝑙
𝛼𝑥𝑔𝑙 ;   𝑤ℎ𝑒𝑟𝑒, 𝛼 = 1, 2, 3, ……𝐾

𝐿

𝑙=1

𝐺

𝑔=1

 

Subject to;                                                                                                                                              (1) 

∑𝑥𝑔𝑙 = 𝑎𝑔

𝐺

𝑔=1

;       ( 𝑙 = 1, 2, 3, … . . 𝐿) 

∑𝑥𝑔𝑙 = 𝑏𝑙

𝐿

𝑙=1

;    ( 𝑔 = 1, 2, 3, … . . 𝐺) 

𝑥𝑖𝑗  ≥ 0;   
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Where; 

Agl = supply amount at source g  

bgl = demand at destination Z1, Z2, Z3…. Zk = Objectives of interest to Decision Maker. Scheduling has a wide range of 
definitions depending on the context in which it is used. In [7], the scheduling problem was defined from a production 
perspective to be the case of finding the feasible and optimal sequence in which jobs pass through machines. 
Maintenance scheduling was explained in [16] as the process of developing the sequence in which items are to be 
maintained as well as defining the methods and procedures to accomplish maintenance tasks. One underlying fact 
behind scheduling is that it has to do with the allocation of one form of resource or the other. Scheduling is associated 
with allocation of maintenance resources, plan production processes, etc. which in many practical cases, are just a few 
of many issues that have to be addressed. With the TM associated with the systematic allocation of resources, the 
scheduling problem situation can be modelled within the framework of the TM making the TM a useful decision-making 
tool for P/M scheduling.  

In many practical situations of P/M scheduling, two or more objectives are relevant as a broad class of P/M scheduling 
objectives were identified in [7, 8]. In these cases of multi-objective P/M scheduling, the problem is that of minimizing, 
maximizing, or a combination of minimizing and maximizing all the objectives simultaneously. The solution to such 
problems relies on multi-objective optimisation techniques which can only provide “compromise solutions” as against 
“optimal solutions” due to the conflict associated with the objectives. In most cases, the objectives in question are of 
different dimensions which cannot be evaluated over different scales. This inconsistency in dimensions of objectives 
also brings about the issue of skewness in computations which calls for scaling of the objectives by the process of 
normalisation. Various normalisation techniques and the effect of these various techniques in a multi-criteria decision 
making (MCDM) environment were studied by [2, 17-19]. Mathematical models for expressing the multi-objective 
scheduling problem are presented in [4, 20]. The approach presented in [20] follows multi-objective optimisation 
principles which has to do with assignment of relative weights to each objective and aggregating all the objectives into 
a single function called the Linear Composite Objective Function (LCOF). The LCOF is as in equation (1) 

Over the years, it has been the concern of researchers to apply different optimisation approaches to solve P/M 
scheduling problems. Some of the approaches adopted to solve the problems are presented in [21, 22, 23].   

The first attempt at formulating the scheduling problem as a TM was proposed in [24] by identifying the problems of 
balancing production overtime and inventory storage costs associated with production scheduling, so as to yield the 
least cost of production. An extension of the TM to maintenance scheduling is presented in [25]. By defining a gantt 
charting problem of scheduling machines on periods, Charles-Owaba [25] developed an extension of the TM for 
preventive maintenance scheduling of mass transit vehicles, with the objective of minimizing total preventive 
maintenance cost. Advanced works on the approach in [25] focused on optimisation of preventive maintenance cost 
and operational activities using fuzzy linguistic approach [26] and evaluation methods for preventive maintenance 
cost [27]. Although the situations in [25-27] expressed and solved the maintenance scheduling problem as a TM, the 
models developed were based on the assumption of pre-emption. The existing extensions of the TM also depict 
structures that can only handle pre-emption which renders them unfit to solve the long-standing issue of non-pre-
emption of tasks in P/M scheduling. To address this issue, the contiguous-cells transportation model (CCTM) was 
proposed in [7]. However, the CCTM considers a single objective, as against multiple and conflicting objectives which 
is obtainable in many practical cases. This limitation of the CCTM is addressed by the development of the MOCCTM 

3. Model formulation 

3.1. Problem definition 

3.1.1. Problem definition 

The Multi-Objective Contiguous-Cells Transportation Problem is stated mathematically as follows: 

Given Q objectives to be considered, with a relative weight of importance assigned to a specific objective; M distinct 
items for processing; T periods available for alternate operations and processing, (in which processing is carried out 
without pre-emption); determine the set of contiguous periods yij (i.e. contiguous-cells) required for processing each 
item, which provides a compromise solution for the Q objectives. 
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3.1.2. Notations 

Notations of parameters and variables of the MOCCTM are similar to those from the contiguous-cells transportation 
model, as presented by Charles-Owaba et al [7]. However, considerations are given to cater for the multi-objective 
situation of the problem. Notations used in the model formulation are as follows; 

i : Index indicating the item to be processed 

j : Index indicating the time period of contiguous-cells  

α: Index indicating a particular objective 

M : Total number of items to be processed 

T : Total number of periods in planning horizon 

Bi : Number of periods required to process item i 

ti : Number of periods item i stays in the system 

Hi : Period in which processing was completed on item i 

ki : Period in which item i is ready for processing 

si : Period at which activities commence on item i 

Ii : Number of periods item i waited before being attended to 

Aj : Available processing capacity at period j 

Q: Total number of decision objectives of interest  

w: Weight representing the relative importance of a particular objective 

Observe that si = ki if activities or processing commence in item i as soon as it is ready or arrives and si ≥ ki if activities 
commence on i at a later period. 

yij : A contiguous variable defined as; 

𝑦𝑖𝑗 = 

{
 
 

 
 
𝐵𝑖  ,   𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑡𝑖𝑔𝑢𝑜𝑢𝑠 − 𝑐𝑒𝑙𝑙𝑠 𝑐𝑜𝑚𝑚𝑒𝑛𝑐𝑖𝑛𝑔 𝑓𝑟𝑜𝑚 

 (𝑗 − 𝐵𝑖 + 1)𝑡ℎ,    𝑖𝑓 𝑐𝑒𝑙𝑙 𝑗 𝑖𝑠 𝑡ℎ𝑒 𝑙𝑎𝑠𝑡 𝑐𝑒𝑙𝑙 𝑎𝑚𝑜𝑛𝑔 
𝑐𝑜𝑛𝑡𝑖𝑔𝑢𝑜𝑢𝑠 − 𝑐𝑒𝑙𝑙𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑡𝑎𝑠𝑘

 
 0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                                 

(1)  

3.1.3. Model Assumptions 

Assumptions for the MOCCTM general formulation for preventive maintenance scheduling are adopted from the 
contiguous-cells transportation model, as presented in [7], with inclusions to cater for multi-objective situation of the 
problem. The assumptions of the model are as stated below: 

The total numbers of periods (T) are fixed and contiguous. 

An item is either on queue or in for processing at any moment. 

The time (period) in which an item is ready for processing is known. 

An item visits the processing facility only once within a planning horizon. 
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An item that is ready for processing has its activities commencing only when resources are available. Otherwise, it 
waits. 

The problem parameters are known. 

Many objectives are considered and span over the contiguous period. 

The length of a period may be in any unit of time (i.e. seconds, minutes, hours, days, weeks, month etc.). 

When an item is ready, activities commence at the beginning of the period while completion is at the end of the period. 

Pre-emption is not allowed (i.e. once processing begins on an item, it remains until completion without interruption). 

A member in the set of objectives considered has to be independent. 

3.1.4. General MOCCTM formulation 

Let Q be the set of objectives considered; α be a decision objective and Uijα be the expression for objective α, with 
known dimensions. {where α = 1, 2, 3, 4…. Q}  

For any specific situation, the expression for Uijα must be known. Let Vijα be the dimensionless equivalent of Uijα. 

Then: 

𝑉𝑖𝑗𝛼  =   𝑓𝛼(𝑈𝑖𝑗𝛼 , 𝑟𝛼)                                                                                                                                     (2)  

Where rα connotes normalisation factor of αth objective. Adopting the Linear Min-Max normalisation method in [20], 
Vijα in equation (2) is defined as:  

𝑉𝑖𝑗𝛼 = 

{
 
 

 
 

𝑈𝑖𝑗𝛼(𝑚𝑎𝑥)− 𝑈𝑖𝑗𝛼

𝑈𝑖𝑗𝛼(𝑚𝑎𝑥)− 𝑈𝑖𝑗𝛼(𝑚𝑖𝑛)
 ;  𝑖𝑓  𝛼 𝑖𝑠 𝑡𝑜 𝑏𝑒 𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒𝑑

 
 

 𝑈𝑖𝑗𝛼− 𝑈𝑖𝑗𝛼(𝑚𝑖𝑛)

𝑈𝑖𝑗𝛼(𝑚𝑎𝑥)− 𝑈𝑖𝑗𝛼(𝑚𝑖𝑛)
 ; 𝑖𝑓 𝛼 𝑖𝑠 𝑡𝑜 𝑏𝑒 𝑚𝑎𝑥𝑖𝑚𝑖𝑠𝑒𝑑

                                                                      (3)  

Also, let wα be the relative weight of importance of objective α, as decided by the model user and Vij● be the total value 
of all the K objectives considered. 

Then: 

𝑉𝑖𝑗● = ∑𝑤𝛼𝑓𝛼(𝑈𝑖𝑗𝛼

𝑄

𝛼=1

, 𝑟𝛼) =  ∑𝑤𝛼𝑉𝑖𝑗𝛼                                                                                       (4)    

𝑄

𝛼=1

 

Where; 

∑𝑤𝛼

𝑄

𝛼=1

= 1                                                                                                                                                  (5) 

Since the contiguous-cells concept is that of completing the processing of items without pre-emption, then the 
objectives are evaluated as ‘cumulative’ over the set of contiguous periods. For contiguity, if ki is the period item i is 
ready for processing and H is any period in which processing is completed on item i (where ki and H are members of 
T); and Ṽij● is the cumulative value of all Q objectives, from the beginning of period ki to the end of period H. 

Then: 
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Ṽ𝑖𝑗● =

{
  
 

  
 ∑𝑉𝑖𝑗●    ;     𝑖𝑓  𝑗  ≥   𝐻

𝐻

𝑗=𝑘  
 
 

−    ;     𝑖𝑓  𝑗 <   𝐻         

                                                                                                       (6) 

‘-’ in the equation implies that the period is not contiguous with other periods. 

Table 1 Transportation Tableau for Multi-Objective Contiguous-Cells Case 

     J 

      

I 

1 2 3 

 

4  T Supply 

1  Ṽ12● Ṽ13● Ṽ14●  Ṽ1T●  

2    Ṽ24●  Ṽ2T●  

3   Ṽ33● Ṽ34●  Ṽ3T●  

        

        

M      ṼMT●  

Demand        

From Transportation Tableau (1), the items i (where i = 1, 2, 3…M) are represented vertically while periods j (i.e. the 
periods for contiguous-cells), (where j = 1, 2, 3…T) are represented horizontally. Ṽij● is the cumulative value of all Q 
objectives across the contiguous periods (i.e, the summation of the weighted normalised values of all objectives from 
the ‘beginning of start period’ to the ‘end of finish period’). By applying equation 5 to Table 1 above, expressions for 
Ṽ13●, Ṽ24●, Ṽ33● and ṼMT●, as illustrations for obtaining values of cumulative dimensionless objectives are as follows: 

Ṽ13● = ∑𝑉1𝑗●

3

𝑗=1

 ;   Ṽ24●  =   ∑𝑉2𝑗●   ;    Ṽ𝑀𝑇● = ∑ Ṽ𝑀𝑗●

𝑇

𝑗=1

4

𝑗=1

                                                             (7) 

3.1.5. Development of objective function and constraints 

For the objective function, the actual period for processing item i is considered since processing of the item may not 
start at the beginning of the arrival period.  

Now let Ɣij be the value of the combined objectives for item i from the beginning of the start period (i.e ki or si) to the 
end of finish period H. Then Ɣij is defined as follows: 

Ɣij =

{
 
 
 

 
 
 ∑ 𝑉𝑖𝑗●    ;     𝑖𝑓  𝑠𝑖 > 𝑘𝑖

𝐻

𝑗=𝑠𝑖  
 

 ∑ 𝑉𝑖𝑗●    ;     𝑖𝑓  𝑠𝑖 = 𝑘𝑖

𝐻

𝑗=𝑘𝑖          

                                                                                                                    (8) 

Note that Ѵij represent the value of the combined Q objectives for processing item i in any period j within the set of 
contiguous periods for item i. Since Ɣij is for all Bi contiguous-cells, then Ѵij is given by the expression: 
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Ѵ𝑖𝑗   =    
Ɣ𝑖𝑗

𝐵𝑖
    =     

1

𝐵𝑖
(∑𝑉𝑖𝑗●

𝐻

𝑗=𝑠

)                                                                                                        (9) 

For item i across T periods, the ‘actual’ cumulative value of the objectives becomes: 

𝑍(𝑇, 𝑦𝑖𝑗) =  ∑Ѵ𝑖𝑗  𝑦𝑖𝑗

𝑇

𝑗=1

                                                                                                                                 (10) 

For all M items, the cumulative value of the objectives across T periods (i.e. the objective function) is given by: 

𝑍(𝑇,𝑀, 𝑦𝑖𝑗) =  ∑∑Ѵ𝑖𝑗  𝑦𝑖𝑗

𝑇

𝑗=1

                                                                                                             (11)

𝑀

𝑖=1

 

The demand and supply constraints are given in equations (12) and (13) respectively as expressed by [10]: 

∑
𝑦𝑖𝑗

𝐵𝑖

𝑀

𝑖=1

 ≤ 𝐴𝑗                                                                                                                                              (12) 

The supply constraint which caters for pre-emption is given by: 

∑𝑦𝑖𝑗  = 𝐵𝑖

𝑇

𝑗=1

                                                                                                                                            (13) 

Re-writing equation (11) from equations (8) and (9); and combining equations (4), (5), (12) and (13), the general 
MOCCTM is given by: 

𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒   𝑍(𝑤𝛼 , 𝑇,𝑀, 𝑦𝑖𝑗) =  ∑∑
𝑦𝑖𝑗

𝐵𝑖

𝑇

𝑗=1

𝑀

𝑖=1

(∑𝑉𝑖𝑗●

𝐻

𝑗=𝑠

) 

Subject to:                                                                                                                                    (14) 

∑
𝑦𝑖𝑗

𝐵𝑖

𝑀

𝑖=1

 ≤ 𝐴𝑗;       𝑎𝑛𝑑      ∑𝑦𝑖𝑗  = 𝐵𝑖

𝑇

𝑗=1

    

where; 

𝑉𝑖𝑗∝, 𝑉𝑖𝑗● 𝑎𝑛𝑑 𝑤∝ 𝑎𝑟𝑒 𝑎𝑠 𝑔𝑖𝑣𝑒𝑛 𝑖𝑛 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 (3), (4) 𝑎𝑛𝑑 (5) and Uijα, rα, M, wα, T are as earlier defined. 

3.2. The Multi-Objective Contiguous-Cells Transportation Algorithm (MOCCTA) 

The algorithm to be employed for solving the MOCCTM is similar to the conventional ‘least cost’ method of solving 
transportation problems. This algorithm will make use of allocation by maximum/minimum combined objectives (Ṽij●) 
and is stated as follows: 

Step 1 For each item, select the Ṽij● value in the last (Tth) period on the contiguous-cells transportation tableau, and 
divide the Ṽij● value by the total number of contiguous cells to obtain the average Ṽij● value. 

Step 2 Start with the item having the lowest/highest average Ṽij● for maximize/minimize cases respectively.   

Step 3 Allocate all the supply in that row (to satisfy the contiguity condition) whilst simultaneously meeting the 
demand constraint. 
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Step 4 Repeat the procedure from step 1 if the duration in the row and capacity in the column are satisfied for the 
scheduled item. But in case there is no capacity to accommodate the duration for the item, move to the next available 
period that can accommodate he capacity constraint for the duration on that row and schedule the item. (Note that 
moving to the next period for any item connotes re-scheduling of the item, thereby changing the start period from ki to 

si).   

3.3. Solution procedure for the MOCCTM 

Step 1 Obtain the values of the parameters of the problem (Q, T, M, , Bi, Aj, ki,). 

Step 2 Convert the values of all Q objectives into dimensionless (i.e. normalised) values, using the linear min-max 
normalisation method in equation (3). 

Step 3 Assign relative weights of importance to all Q objectives (as perceived by the model user), such that the sum of 
weights for all objectives must be equal to 1. 

Step 4 Compute Vij● (i.e the total value of all the Q objectives) to be the value in each cell using equation (4), and by 
computing Ṽij● using equation (6), develop the MOCCTM transportation tableau as depicted in Table (1). 

Step 5 Apply the MOCCTA to the tableau to determine the optimal yij for the contiguous perio, d. The optimal yij gives 
the optimal schedule considering all the Q objectives. 

Step 6 Using the optimal yij obtained from the MOCCTM transportation tableau, determine the compromise solution 
to the Q objectives independently. 

4. Numerical example 

The proposed MOCCTM approach is illustrated with a hypothetical bi-objective non-pre-emptive maintenance 
scheduling problem of 5 production machines, across an operation and maintenance planning horizon of 10 periods 
with the objective of minimizing the total preventive maintenance cost and total production losses. The capacity of the 
maintenance facility is 2 machines per period.  

4.1. Step1 Identify all Problem Parameters 

The problem parameters are given in Tables 2, 3 and 4 below. 

Number of objectives (Q) = 2; 

 Table 2 Machine arrival period and maintenance duration 

Machine Arrival period Periods required for maintenance 

1 3 3 

2 1 4 

3 4 3 

4 7 2 

5 5  3 

Note that the ‘demand per period’ is taken as ‘available maintenance capacity per period’, and the ‘supply per machine’ 

is taken as ‘maintenance duration per machine.  

The preventive maintenance cost (Uij1) and units produced (Uij2) per machine for each period respectively, are given 

in Tables 3 and 4.      
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Table 3 Maintenance cost for each machine for each period (in million) 

 1 2 3 4 5 6 7 8 9 10 

1   15 21 9 13 25 15 10 18 

2 17 20 11 8 10 14 22 15 9 13 

3    12 16 13 14 9 24 10 

4       12 16 21 14 

5     10 12 8 19 10 9 

 

Table 4 Units produced per period for each machine 

 1 2 3 4 5 6 7 8 9 10 

1   70 159 110 98 196 147 50 87 

2 68 120 145 200 185 136 85 153 94 130 

3    106 95 174 158 90 124 100 

4       75 200 175 140 

5     95 185 88 102 100 90 

 

4.2. Step 2 Normalization of the objectives 

 The normalized maintenance cost for machine 1 in period 9 (U191) is given by equation (3). From Table 3 Uij1(max) = 
25, Uij1(min) = 9 and Uijα = 10. Using equation (3), the normalized = 0.94. Similarly, the normalized value for the second 
objective which production quantity for machine 3 for period 7 is 0.19. The normalized value of the maintenance cost 
and production for all the machines and periods are shown in Tables 5 and 6 as follows: 

Table 5 Normalized maintenance cost for all machines and period 

 1 2 3 4 5 6 7 8 9 10 

1   0.63 0.25 1 0.75 0 0.63 0.94 0.44 

2 0.36 0.14 0.79 1 0.86 0.57 0 0.5 0.93 0.64 

3    0.8 0.53 0.73 0.67 1 0 0.93 

4       1 0.56 0 0.78 

5     0.82 0.64 1 0 0.82 0.91 

 

Table 6 Normalized production loss for all machines and period 

 1 2 3 4 5 6 7 8 9 10 

1   0.86 0.25 0.59 0.67 0 0.34 1 0.75 

2 1 0.61 0.42 0 0.11 0.48 0.87 0.36 0.8 0.53 

3    0.81 0.94 0 0.19 1 0.6 0.88 

4       1 0 0.2 0.48 
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4.3. Step 3 Assign Weights Objectives For the purpose of illustration 

A weight of 0.6 is assigned to maintenance cost and 0.4 is assigned to production loss and each entry in Tables 5 and 
6 were multiplied by 0.6 and 0.4 respectively, as shown in Tables 7 and 8. Observe that weights may be elicited from 
the Decision Maker or use any of methods mentioned in [20]. 

Table 7 Weighted maintenance cost per period 

 1 2 3 4 5 6 7 8 9 10 

1   0.38 0.15 0.6 0.45 0 0.38 0.56 0.26 

2 0.21 0.09 0.47 0.6 0.51 0.34 0 0.3 0.56 0.39 

3    0.48 0.32 0.44 0.4 0.6 0 0.56 

4       0.6 0.33 0 0.47 

5     0.49 0.38 0.6 0 0.49 0.55 

Table 8 Weighted production loss per period 

 1 2 3 4 5 6 7 8 9 10 

1   0.35 0.1 0.24 0.27 0 0.13 0.4 0.3 

2 0.4 0.24 0.17 0 0.05 0.19 0.35 0.14 0.32 0.21 

3    0.32 0.38 0 0.08 0.4 0.24 0.35 

4       0.4 0 0.08 0.19 

5     0.37 0 0.4 0.34 0.35 0.39 

4.4. Step 4 (Computation of Vij●, Ṽij● and the MOCCT Tableau) 

 Vij● is computed using equation (4), by adding the corresponding entries in Tables 7 and 8. The Vij● values are 

computed and shown in Table 9.    

Table 9 Sum of weighted objectives (Vij●) 

 1 2 3 4 5 6 7 8  9 10 

1   0.72 0.25 0.84 0.72 0 0.51  0.96 0.56 

2 0.61 0.33 0.64 0.6 0.56 0.54 0.35 0.44  0.88 0.6 

3    0.8 0.7 0.44 0.48 1  0.24 0.91 

4       1 0.33  0.08 0.66 

5     0.86 0.38 1 0.34  0.84 0.94 

 
The value for Ṽij● is obtained using equation (6). For illustration, the first Ṽij● entry for machine 1 = (0.72 + 0.25 + 0.84) 

= 1.81. The Ṽij● entries are as shown in MOCCT Tableau 10. 
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Table 10 MOCCT tableau 

 1 2 3 4 5 6 7 8 9 10 Bi 

1   --- --- 1.81 2.53 2.53 3.03 4 4.56 3 

2 --- --- --- 2.18 2.74 3.28 3.63 4.07 4.95 5.54 4 

3    --- --- 1.94 2.42 3.42 3.65 4.57 3 

4       --- 1.33 1.41 2.07 2 

5     --- --- 2.24 2.59 3.43 4.36 3 

Aj 2 2 2 2 2 2 2 2 2 2  

 

4.5. Step 5 Application of MOCCTA 

On applying the MOCCTA to Table 10, the order of schedule from the first machine to the last machine is obtained as 
follows: 

Machine 1 = (4.56÷8) = 0.57 

Machine 2 = (5.54÷10) = 0.554 

Machine 3 = (4.57÷7) = 0.653 

Machine 4 = (2.07÷4) = 0.518 

Machine 5 = (4.36÷6) = 0.727 

Since the case under study is a minimisation problem, we start allocation of cells with the machine with the highest 
average Ṽij● value and continue in descending order (i.e. machine, 5 – 3 – 1 – 2 – 4) as shown in Table 11:  

Table 11 Final Schedule 

 

4.6. Step 6 Determination of compromise values of maintenance cost and production loss 

 Given the final schedule in Table 11, the respective values of maintenance cost and production loss are obtained from 
Tables 3 and 4 as presented in Table 12. The relevant parameters are defined as follows; 

MCi: Maintenance cost of ith machine over the Bi periods 

PLi:  Production loss of ith over the Bi periods when it was under maintenance  

PLIi:   Production loss of ith machine due to idleness. While waiting for maintenance work to   commence on it. 
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OPi:  Number of periods ith machine spent in operation producing units of products. Note that OPi = T - Bi. 

IPi: Number of periods, the ith machine stayed in the maintenance facility while waiting for maintenance to 
commence.  Observe that IPi = si - ki 

TPLi: Total production loss due to waiting time on queue and maintenance (i.e. total time in the maintenance 
system). That is, TPLi= PLi + PLIi 

5. Results and discussion 

The maintenance costs, production losses due to waiting time before maintenance, production losses due to time 
taken to actually carry out the maintenance and their respective durations are presented in Table 12. 

Table 12 Costs and Production Losses Associated with Maintenance schedule 

Machine  

(i) 

MCi 

in (million) 

PLi  

(units) 

PLIi  

(units) 

OPi  

(periods) 

IPi  

(periods) 

TPLi 

(units) 

1 50 393 437 3 4 830 

2 56 533 - 6 0 533 

3 41 375 - 7 0 375 

4 37 375 75 7 1 450 

5 30 368 - 7 0 368 

Total 

for all 

machines 

214 2,044 512 30 5 2,556 

Table 12 shows that the algorithm gives total operations period {3, 6, 7, 7, 7} with idle periods {4, 0, 0, 1, 0} for 
machines {1, 2, 3, 4, 5} respectively. The production loss for machines 2, 3 and 5 are losses accrued across the 
contiguous periods of maintenance. However, there is an additional production loss of 437 units for machine 1; and 
75 units for machine 4 due to the idleness across periods 3 to 6; and 7 respectively on Table 11. The idleness is as a 
result of unavailable maintenance capacity on arrival of machine 1 and 4, leading to a re-scheduling. This takes the 
total production loss of machine 1 and 4 to 830 and 450 units respectively. The total preventive maintenance cost 
and production loss over the planning horizon are 214 million and 2,556 units respectively.  

The merit of the proposed approach is the ability to give the best compromise preventive maintenance schedule in a 
multiple objective decision situation under the existing conditions. The computed values provide insight for 
management on areas requiring improvement for the system to be more efficient. For instance, in real world 
situations, attention of management would be how to reduce production loss due to time spent on queue at the 
maintenance facility. 

6. Conclusion 

This study proposed the Multi-Objective Contiguous-Cells Transportation Model as an extension of the Contiguous-Cells 
Transportation Model, to cater for cases where more than one objective is of interest in non-pre-emptive scheduling. 
The model was developed by adequately identifying and defining the variables and parameters of the problem. An 
efficient solution procedure of was also proposed, with a numerical example to illustrate the application of the model. 
The results obtained from the numerical example show that the model is a good approach that researchers can employ 
to solve multi-objective preventive maintenance scheduling problems in a non-pre-emptive environment. A proposition 
for further research is to apply the model to a real-life problem and to study the behaviour of the model in response to 

varying the parameters of the model.  
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