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Abstract 

This paper described the free vibration of a Euler-Bernoulli beam and discovered the first five dimensionless natural 
frequencies and mode shapes of motion for the pin-free beam model with a helical spring and rotating mass on the 
pinned side of the beam. The effect of changing the dimensionless torsional stiffness ratios was investigated, as was the 
effect of changing the dimensionless rotational inertia torque ratios Concerning the vibration properties of the beam. 
The mathematical equations that regulate the pin-free beam model were constructed using the exact analytical solution, 
establishing the Admissible Function and the natural frequency equation for the basic pin-free beam system. The 
approximate Rayleigh-Ritz approach was then used to determine the first five dimensionless natural frequencies, as 
well as the movement pattern for the pin-free beam model with a helical spring and a rotating mass on the side of the 
hinge. The results demonstrated that modifying the beam's natural frequencies is dependent on the ratios of the 
additional torsional spring parameters as well as the ratios rotational moment of inertia. The threshold system 
frequencies increase when the spring parameters are the major factor, and decrease when the inertia moment 
parameters are the main factor. Both play a role in influencing natural frequency to varied degrees. Unifying the final 
distribution of parameters might lead to optimizing the impact of parameters on the natural frequencies of the system. 
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1. Introduction

Because of the relevance of the beam in mechanical, civil, and aeronautical engineering applications, many researchers 
have expanded their interest in investigating the vibrational behavior of the beam in recent decades, as they play a key 
role in engineering structure applications. Structures' vibrations can be studied by representing them in the most basic 
manner imaginable, such as a beam. As a result, precisely establishing the natural frequencies and mode shape of these 
beams has become an essential topic Long and thin beams are created using Euler-Bernoulli beam theory or thin beam 
theory. Transverse vibrations or bending vibrations refer to the movement and vibration of a beam in a direction 
perpendicular to its length. Robot arms and weightlifts used in the construction of multi-story structures, among other 
applications, are two of the most important uses for beams. As beams bend and compress, vibration develops 
throughout their movement due to their flexibility. The beam stores potential energy from bending by virtue of its 
deflection and kinetic energy from the mass's moment of inertia around the longitudinal axis by virtue of its speed, If 
we assume that the  beam is  pin free beam, we will be able to study the effect of the torsional stiffens of the parts 
transmitting the movement between the  beam and the motor, as well as study the effect of the moment of inertia of the 
center of the rotation axis the hup on the natural frequency and mode shapes of the  beam. 

The type of beam boundary conditions can play an essential role in how the beam responds. For example, torsional 
stiffness plays a role in raising the natural frequencies and its effect is evident at low frequencies, and its effect decreases 
at high frequencies, while inertial torque reduces the natural frequencies of the system. Its effect is more noticeable at 
high frequencies. In some studies, the system is considered to be a fixed free beam, which leads to not taking into account 
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the effect of torsion stiffnesses on the beam frequency, and it is used because it can reduce the complexity of the solution. 
Which may lead to any prediction of dynamic response being inaccurate. 

The phenomenon of adding flexible constraints to beams, and a large number of scientists have studied the natural 
properties of this type of beams from different points of view. Maurizi, Rossi et al (1)deal with the free vibration of a 
beam hinged at one end by a rotational spring and subjected to the restraining action of a translational spring at the 
other end. Laura, Grossi et al (2) deals with the exact solution of the transferee vibrations of a beam elastically restrained 
at one end and with a mass and spring at the other subjected to an axial force. Rao and Mirza (3) restrained Bernoulli-
Euler beams with unsymmetrical translations and rotations at either end.to Exact frequency and normal mode shape 
expressions are derived in this note for general. Kim and Kim (4) present a method to find accurate vibration 
frequencies of beams with generally restricted boundary conditions using Fourier series. da Silva, do Nascimento et al 
(5) The analysis of vibrating beams with ends elastically restrained against rotation and translation or with ends 
carrying concentrated masses. Hong, Dodson et al (6) applies the Euler-Bernoulli beam theory to this test bed to develop 
analytical solutions of the system Transverse Vibration of Clamped-Pinned-Free Beam with Mass at Free End. Song, 
Dong et al (7) studied the transverse vibration of Euler Bernoulli beam with mass of ends and springs. AL ghoul, Cabezas 
et al (8) derive an expression to calculate the natural frequencies and plot the mode shapes of a simply-supported beam 
with an overhang with an end overhang point mass by using the Euler Bernoulli theory in the case of free transverse 
vibrations. Kudryavtsev, Malykhina et al (9) Considers the problem of estimating the first eigenfrequency and the first 
critical force of the beam using the so-called support coefficients. The support coefficients are calculated for a variety of 
support stiffness combinations. 

The current study has four sections: introduction, methodology, results, and conclusions. The methodology section 
describes a typical analysis for investigating the transverse vibrations of a Euler-Bernoulli beam that is pinned on one 
side and free on the other. The partial differential problem, admissible function, and frequency equation for the pin-free 
beam were all solved using the precise analytical solution approach. A helical spring and a rotating mass were then 
added on the pinned side of the beam, and the Rayleigh-Ritz method was used to find the natural frequencies and mode 
shapes of the corresponding to each frequency for different stiffness ratios and rotational inertia moment ratios. The 
results section and the article end with the conclusions. 

2. Mathematical procedure  

2.1. Beam pinned at left end and free at right end  

Determining the Eigenvalue and Admissible Function The system is a Euler-Bernoulli type pinned-free beam. As seen 
in Figure (1), it is a pinned beam at x=0 and free at x=L. In it is assumed that the beam is uniform, made of homogeneous 
material, and vibrations in the horizontal plane. 

 

Figure 1 Structural simple system analysis 

The partial differential equation governing the Euler-Bernoulli beam and the exact solution are applied to the uniform 
Bernoulli-Euler beam to determine the free vibration of the beam 

𝐸𝐼(𝑥)  
𝜕4𝑤(𝑥, 𝑡)

𝜕𝑥4
+ 𝜌𝐴

𝜕2𝑤(𝑥, 𝑡)

𝜕𝑡2
= 0               0 < 𝑥 < 𝐿       ⋯ ⋯ ⋯ 1 

where 𝑤 is the lateral deflection, 𝐸𝐼 is the modulus of flexural rigidity of the beam, 𝜌 is its density per unit volume, 𝐴 is 
its cross-sectional area, 𝑥 is the distance along measured from the beam end and 𝑡 is the time. 

To obtain the solution of the beam's free vibration, one uses the method of separation of variables and assumes a 
solution of form 2. 
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𝑤(𝑥, 𝑡) = 𝑊(𝑥) ∗ 𝑇(𝑡)                                          ⋯ ⋯ ⋯ 2 

𝑤(𝑥, 𝑡) represents the product of two functions: the displacement function (W(x)) and the time function (T(t)), and its 
differentiation four times with respect to displacement (x) and twice with respect to time (t). 

Equation 3 represents the general solution of the free transverse vibration equation for a uniform beam 

𝑊(𝑥) = 𝐶1 cos 𝛽𝑥 + 𝐶2 sin 𝛽𝑥 + 𝐶3 cosh 𝛽𝑥 + 𝐶4 sinh 𝛽𝑥    ⋯ ⋯ ⋯ 3 

The values of three constants may be discovered by substituting the four boundary conditions on both sides of the beam, 
since  𝐶1 , 𝐶2, 𝐶3𝑎𝑛𝑑 𝐶4 are constants. The value of the fourth constant can be found by solving the two initial conditions. 

𝛽4 =
𝜌𝐴𝜔2

𝐸𝐼
                        ⋯ ⋯ ⋯ 4 

The boundary conditions of a pin-free beam type, as illustrated in Figure 1, are deflection, bending moment, and shear 
force. 

                𝑊(𝑥)|𝑥=0 = 0            (deflection)                  ⋯ ⋯ ⋯ 5 

          
𝑑𝑊2(𝑥)

𝑑𝑥2
|

𝑥=0

= 0          (bending moment)             ⋯ ⋯ 6 

            
𝑑𝑊2(𝑥)

𝑑𝑥2
|

𝑥=𝐿

= 0        (bending moment)        ⋯ ⋯ ⋯ 7 

          
 𝑑𝑊3(𝑥)

𝑑𝑥3
|

𝑥=𝐿

= 0         (shear force)              ⋯ ⋯ 8 

Equation 9 was generated by applying the boundary condition to Equation 3. This equation represents the accepted 
function or the mode shapes equation for the pin-free beam system. 

𝑊(𝑥) = ∅(𝑥) = 𝐶2 (sin 𝛽𝑥 +
sin 𝛽𝐿

sinh 𝛽𝐿
sinh 𝛽𝑥)           ⋯ ⋯ 9   

where 

∅(𝑥): denotes the Eigen Function or the admissible function, for pin-free beam. 

Equation 01 now represents the pin-free beam system's natural frequency equation 

tan 𝛽𝐿 − tanh 𝛽𝐿 = 0                          ⋯ ⋯ 10 

2.2. pinned-free beam with connected to a torsional spring and point mass at left end and free at right end   

The system consists of a pin free beam with a helical spring at the pin's end and a mass moment of inertia. Similar to 
Figure 2, employ the Rayleigh-Ritz approximation to determine the beams' vibrational characteristics by approximate 
analytical methods. 
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Figure 2 Structural system analysis 

To obtain approximate eigenfunctions, the conservative distributed parameter system is approximated by a discrete 
model. The first step in the Rayleigh-Ritz method is to establish a minimization sequence, which imposes the form of 
equation 11. 

𝑌(𝑛)(𝑥) = ∑ 𝑎𝑖∅𝑖(𝑥)

𝑛

𝑖=1

                           ⋯ ⋯ 11 

where 

∅𝑖 = ∅1, ∅2, ⋯ , ∅𝑛(𝑥) They represent independent empirical functions. 

𝑎𝑖 = 𝑎1, 𝑎2, ⋯ , 𝑎𝑛 symbolizes unidentified transactions.    

The preferred form for the Rayleigh quotient is the energy form, that is, in which the numerator (𝑁)  is a measure of 
potential energy and the denominator (𝐷) is a measure of kinetic energy, and the Rayleigh-Ritz quotient is a function of 
indefinite coefficients, so it is appropriate to write it in a form that can express the quotient of the Rayleigh method in 
general. 

𝑅(𝑎1, 𝑎2, ⋯ , 𝑎𝑛) =
𝑁(𝑎1, 𝑎2, ⋯ , 𝑎𝑛)

𝐷(𝑎1, 𝑎2, ⋯ , 𝑎𝑛)
                ⋯ ⋯ 12 

𝑁 = 𝑉𝑚𝑎𝑥 =
1

2
∫ 𝐸𝐼(𝑥) ∑ 𝑎𝑖

𝑛

𝑖=1

𝐿

0

𝑑2∅𝑖(𝑥)

𝑑𝑥2
∑ 𝑎𝑗

𝑑2∅𝑗(𝑥)

𝑑𝑥2
𝑑𝑥 + 𝑘𝑡 ∑ 𝑎𝑖

𝑑∅𝑖(0)

𝑑𝑥

𝑛

𝑖=1

𝑛

𝑗=1

∑ 𝑎𝑗

𝑑∅𝑗(0)

𝑑𝑥

𝑛

𝑗=1

    

=
1

2
∑ ∑ 𝑎𝑖  𝑎𝑗

𝑛

𝑗=1

[∫ 𝐸𝐼(𝑥)
𝐿

0

𝑑2∅𝑖(𝑥)

𝑑𝑥2
  

𝑑2∅𝑗(𝑥)

𝑑𝑥2
 𝑑𝑥 +   𝑘𝑡  

𝑑∅𝑖(0)

𝑑𝑥
  

𝑑∅𝑗(0)

𝑑𝑥
    ]

𝑛

𝑖=1

 

=
1

2
∑  ∑ 𝑎𝑖  𝑎𝑗

𝑛

𝑗=1

𝑘𝑖𝑗                                        ⋯ ⋯ ⋯ 13 

𝑛

𝑖=1

 

𝐷 = 𝑇∗ =
1

2
∫ 𝜌𝐴 ∑ 𝑎𝑖

𝑛

𝑖=1

∅𝑖(𝑥) ∑ 𝑎𝑗

𝑛

𝑗=1

∅𝑗(𝑥) 𝑑𝑥
𝐿

0

+ 𝐽ℎ ∑ 𝑎𝑖

𝑛

𝑖=1

𝑑∅𝑖(0)

𝑑𝑥
∑ 𝑎𝑗

𝑛

𝑗=1

𝑑∅𝑗(0)

𝑑𝑥
             

=
1

2
∑ ∑ 𝑎𝑖  𝑎𝑗

𝑛

𝑗=1

[∫ 𝜌𝐴 ∅𝑖(𝑥) ∅𝑗(𝑥) 𝑑𝑥
𝐿

0

+ 𝐽ℎ  
𝑑∅𝑖(0)

𝑑𝑥
  

𝑑∅𝑗(0)

𝑑𝑥
]

𝑛

𝑖=1

 

=
1

2
∑ ∑ 𝑎𝑖𝑎𝑗  𝑚𝑖𝑗

𝑛

𝑗=1

                            ⋯ ⋯ ⋯ 14 

𝑛

𝑖=1

 

where 

 𝑉𝑚𝑎𝑥   It is the maximum stress energy or potential energy where. 
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𝑇∗
𝑚𝑎𝑥   Represents the reference kinetic energy.  

𝑘𝑡      Represents the torsional stiffness of the helical spring. 

 𝐽ℎ   The rotational moment of inertia of the hub rotation. 

K=𝑘𝑖𝑗  Stiffness matrix 

M=𝑚𝑖𝑗  mass matrix 

As shown below, if variations of the indefinite coefficients (𝑎𝑖) are performed, we obtain the equation 51. 

𝜕𝑁

𝜕�⃗�
− 𝜆(𝑛)

𝜕𝐷

𝜕�⃗�
= 0                                         ⋯ ⋯ 15 

Equation 15 is a system of algebraic homogeneous linear equations that represents the requirements required for the 

stability of the Rayleigh-Ritz quotient. Since the eigenvalue is represented by  𝜆(𝑛)  and the superscript n indicates that 
the eigenvalue problem corresponds to a series of n terms in equation 15,  

Equations 13 and 14 were substituted into equation 15 to carry out variations for the indeterminate coefficients (𝑎𝑖). 
The following equations are obtained. 

𝜕𝑁

𝜕�⃗�
=

1

2
∑ 𝑎𝑖  𝑘𝑖𝑗

𝑛

𝑖=1

                                                               ⋯ ⋯ ⋯ 16 

𝜕𝐷

𝜕�⃗�
=

1

2
∑ 𝑎𝑖  𝑚𝑖𝑗                                                                  ⋯ ⋯ ⋯ 17

𝑛

𝑖=1

 

1

2
∑ 𝑎𝑖  𝑘𝑖𝑗

𝑛

𝑖=1

− 𝜆(𝑛)
1

2
∑ 𝑎𝑖  𝑚𝑖𝑗 = 0  

𝑛

𝑖=1

    , 𝑖 = 1,2, ⋯ , 𝑛          ⋯ ⋯ 18 

𝐾𝑛𝑎𝑛 = 𝜆𝑛𝑀𝑛𝑎𝑛                                                                  … … .19 

𝜔2 = 𝜆 =

∑ ∑ 𝑎𝑖
𝑛
𝑗=1 [∫ 𝐸𝐼(𝑥)

𝐿

0

𝑑2∅𝑖(𝑥)
𝑑𝑥2   

𝑑2∅𝑗(𝑥)

𝑑𝑥2  𝑑𝑥 +  𝛼1  
𝑑∅𝑖(0)

𝑑𝑥
  

𝑑∅𝑗(0)

𝑑𝑥
    ]𝑛

𝑖=1

∑ ∑ 𝑎𝑖
𝑛
𝑗=1 [∫ 𝜌𝐴 ∅𝑖(𝑥) ∅𝑗(𝑥) 𝑑𝑥

𝐿

0
+ 𝛼2  

𝑑∅𝑖(0)
𝑑𝑥

  
𝑑∅𝑗(0)

𝑑𝑥
]𝑛

𝑖=1  

… … .20 

𝑌𝑖(𝑋) = ∑ 𝑎𝑗
(𝑖)

 ∅𝑗(𝑥) =  𝑎1
(𝑖)

𝑛

𝑗=1

∅1(𝑥) + 𝑎2
(𝑖)

∅2(𝑥) + ⋯ + 𝑎𝑛
(𝑖)

∅𝑛(𝑥)         … … 21 

Equations 01 indicate the solution of the algebraic eigenvalue problem of order 𝑛. To obtain a non-trivial solution of the 
vector (�⃗�), the determinant of the coefficient’s matrix must equal zero. For each natural frequency 𝜔𝑖 , the corresponding 

vector of Ritz coefficients (𝑎𝑛
(𝑖)

) within an arbitrary constant can be determined by solving the simultaneous linear 
homogeneous equations. 

Equation 22 indicates the natural frequency 

𝜔𝑖 = √𝜆 = (𝛽𝑖𝑙)2√
𝐸𝐼

𝜌𝐴𝑙4
                               … …    22 

The torsional stiffness of the helical spring (𝑘𝑡) and the stiffness of the beam in equation 23. expressed as a ratio, are 
represented by the dimensionless torsional stiffness values (𝛼1). 
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𝛼1 =
𝑘𝑡

(𝐸𝐼/𝐿)𝑓𝑜𝑟𝑏𝑒𝑎𝑚
                                                 … … .23 

Finding the values of the dimensionless rotational inertia moment (𝛼2) in equation 24, which is a ratio between the 
torque of the beam mass around the rotation axis and the rotational inertia moment of the hup around the vibration 
axis. 

𝛼2 =
𝐽ℎ

(𝑚(𝑥)𝐿3)𝑓𝑜𝑟𝑏𝑒𝑎𝑚
                                     … … .24 

3. Results  

For the Euler-Bernoulli beam model, which is pinned on one side and free on the other as shown in Figure (1), find the 
dimensionless natural frequencies (β_n l) as shown in Table (0). Similarly, find the mode shapes corresponding to each 
frequency as shown in Figure (3), since the value is from (𝛼1 = 0) and (𝛼2 = 0). 

Table 1 Results for the natural frequencies of the pin-free beam system 

(𝜷𝟓𝒍) (𝜷𝟒𝒍) (𝜷𝟑𝒍) (𝜷𝟐𝒍) (𝜷𝟏𝒍) natural frequencies 

01.150.31 01.1010. ..131511 1.113311 0 

 

 

Figure 3 The five movement patterns of the pin-free beam system 

The pin-free beam's vibrating behavior, which is aided by a helical spring on its pinned side. The dimensionless torsional 
spring values (𝛼1) were used in the range (0,1, 2, 6, 10, 16, 20, and 24) to show the impact of adding the helical spring 
on the values of the natural frequencies and the mode shape. The value of (𝛼2) was assumed to be zero. 
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Table 2 The increase in the amount of dimensionless frequencies as a result of increasing torsional rigidity (𝛂𝟏) 

𝛂𝟏 = 𝟐𝟒 𝛂𝟏 = 𝟐𝟎 𝛂𝟏 = 𝟏𝟔 𝛂𝟏 = 𝟏𝟎 𝛂𝟏 = 𝟔 𝛂𝟏 = 𝟐 𝛂𝟏 = 𝟏 𝛂𝟏 = 𝟎 
𝜶𝟏 =

𝒌𝒕

𝑬𝒃𝑰𝒃 𝑳𝒃⁄
 

1.8767 1.8613 1.8393 1.7801 1.6939 1.4411 1.2589 0.0000 (𝛽1𝑙) 

4.6985 4.6608 4.6104 4.4927 4.3591 4.1240 4.0351 3.9266 (𝛽2𝑙) 

7.8669 7.8042 7.7254 7.5625 7.4087 7.2000 7.1368 7.0686 (𝛽3𝑙) 

11.037 10.946 10.838 10.641 10.484 10.306 10.258 10.210 (𝛽4𝑙) 

14.394 14.209 14.026 13.759 13.589 13.428 13.389 13.351 (𝛽5𝑙) 

 

 

Figure 4 The increase in the natural frequency as a result of the increase in torsional stiffness (𝛂𝟏) 

Table (2) shows the first five dimensionless frequencies and shows the increase in the amount of all-natural 
dimensionless frequencies as a result of the effect of the torsional spring, and its effect is more pronounced at low 
frequencies. It is also observed that when the torsional stiffness (α1) becomes equal to (0), the system becomes a beam 
free of the pin. When the torsional stiffness (α1) increases to (24), the system turns into a free fixed beam. As the graph 
in Figure (4) shows, the dimensionless natural frequencies rise (𝛽n𝑙) as a result of the increase in the dimensionless 
torsional spring (α1). 

A rotating mass on one side pinned to the beam and the other end free supports the pin-free beam's vibrational behavior. 
To clarify the impact of the hup's moment of inertia on the natural frequencies and patterns of movement, the values of 
the dimensionless inertia moment (α2) in the following ranges were used: (2×10^(-3), 4×10^(-3), 8×10^(-3), 2×10^(-
2), 4×10^(-2), 7×10^(-2) and 9×10^(-2) )) and the value of (α1) was forced to equal zero. 
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Table 3 The effect of the dimensionless rotational moment of inertia (𝜶𝟐) on the natural frequencies (𝜷𝐧𝒍). 

𝜶𝟐 =
𝑱𝒉

𝒎(𝒙)𝑳𝟑
 

𝜶𝟐 = 𝟎 𝜶𝟐 = 

0.0002 

𝜶𝟐 = 

0.0004 

𝜶𝟐 = 

0.0008 

𝜶𝟐 = 

0.002 

𝜶𝟐 = 

0.004 

𝜶𝟐 = 

0.007 

𝜶𝟐 = 

0.009 

(𝛽1𝑙) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

(𝛽2𝑙) 3.9266 3.9209 3.9152 3.9038 3.8698 3.8144 3.7347 3.6842 

(𝛽3𝑙) 7.0686 7.0332 6.9980 6.9285 6.7307 6.4508 6.1418 5.9910 

(𝛽4𝑙) 10.2102 10.1063 10.0081 9.8302 9.4351 9.0735 8.8232 8.7340 

(𝛽5𝑙) 13.3518 13.1428 12.9801 12.7465 12.3965 12.1847 12.0695 12.0321 

 

 

Figure 5 A schematic diagram showing the effect of increasing the dimensionless rotational moment of inertia on the 
natural frequency values 

Table (3) illustrates the first five dimensionless natural frequencies as well as how the rotational mass moment of inertia 
causes all dimensionless natural frequencies to decrease in magnitude. The moment of inertia has a less impact at low 
frequencies and a larger influence at high frequencies. The dimensionless natural frequencies ( 𝛽n𝑙 ) drop as the 
dimensionless mass moment of inertia (α2) increases, as the graph in Figure (5) illustrates. 

A study of the impact of torsional stiffness and rotational moment of inertia on the natural frequency and mode shape 
of the beam system presented in Figure (2), which illustrates the vibration behavior of the beam supported by a helical 
spring and a rotating mass at the pinned end and the other end is free. 

As shown in Tables (4), (5), (6), (7) and (8), which show tables for the first five natural frequencies, respectively, and 
show that the natural frequencies of the beam are affected as a result of adding the rotating mass and the helical spring. 
The tables show the rate of frequency change. The symbol (↑) indicates an increase in frequencies, while the symbol (↓) 
indicates a decrease in frequencies. The three-dimensional diagrams accompanying each frequency are shown in the 
following figures (6), (7), (8), (9) and (10) which explains the effect of the values of torsional spring (𝛼1) and rotational 
moment of inertia (𝛼2) together on the dimensionless natural frequency. 
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Table 4 The effect of both torsional stiffness (𝜶𝟏) and rotational moment of inertia (𝜶𝟐) together on the specific value 
of the first natural frequency (𝜷𝑳𝟏) 

𝜷𝑳𝟏 𝜶𝟐 = 

0 

𝜶𝟐 = 

0.0002 

𝜶𝟐 = 

0.0004 

𝜶𝟐 = 

0.0008 

𝜶𝟐 = 

0.002 

𝜶𝟐 = 

0.004 

𝜶𝟐 = 

0.007 

𝜶𝟐 = 

0.009 

𝛼1 = 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

𝛼1 = 1 1.2589 1.2587 1.2586 1.2583 1.2575 1.2562 1.2543 1.2530 

𝛼1 = 2 1.4411 1.4410 1.4409 1.4407 1.4400 1.4389 1.4372 1.4361 

𝛼1 = 4 1.6097 1.6096 1.6095 1.6094 1.6089 1.6082 1.6070 1.6063 

𝛼1 = 6 1.6939 1.6938 1.6938 1.6937 1.6934 1.6928 1.6920 1.6915 

𝛼1 = 10 1.7801 1.7801 1.7800 1.7800 1.7798 1.7795 1.7791 1.7788 

𝛼1 = 12 1.8053 1.8052 1.8052 1.8052 1.8050 1.8048 1.8045 1.8042 

𝛼1 = 16 1.8393 1.8393 1.8393 1.8393 1.8392 1.8390 1.8388 1.8386 

𝛼1 = 18 1.8514 1.8514 1.8514 1.8514 1.8513 1.8511 1.8510 1.8508 

𝛼1 = 20 1.8613 1.8613 1.8613 1.8613 1.8612 1.8611 1.8610 1.8608 

𝛼1 = 22 1.8696 1.8696 1.8696 1.8696 1.8696 1.8695 1.8693 1.8692 

𝛼1 = 24 1.8767 1.8767 1.8767 1.8767 1.8766 1.8766 1.8764 1.8764 

 

 

Figure 6 The effect of the ratios of both the torsional spring (𝜶𝟏) and the rotational inertia moment (𝜶𝟐) together on 
the first natural frequency (𝜷𝑳𝟏) 
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Table 5 Effect of both torsional stiffness (𝜶𝟏) and rotational moment of inertia (𝜶𝟐) together on the specific value of the 
second natural frequency (𝜷𝑳𝟐) 

𝜷𝑳𝟐 𝜶𝟐 = 

0 

𝜶𝟐 = 

0.0002 

𝜶𝟐 = 

0.0004 

𝜶𝟐 = 

0.0008 

𝜶𝟐 = 

0.002 

𝜶𝟐 = 

0.004 

𝜶𝟐 = 

0.007 

𝜶𝟐 = 

0.009 

𝛼1 = 0 3.9266 3.9209↓ 3.9152↓ 3.9038↓ 3.8698↓ 3.8144↓ 3.7347↓ 3.6842↓ 

𝛼1 = 1 4.0351↑ 4.0300↑ 4.0248↑ 4.0144↑ 3.9833↑ 3.9319↓ 3.8564↓ 3.8078↓ 

𝛼1 = 2 4.1240↑ 4.1193↑ 4.1146↑ 4.1053↑ 4.0770↑ 4.0298↑ 3.9593↑ 3.9132↓ 

𝛼1 = 4 4.2601↑ 4.2563↑ 4.2525↑ 4.2449↑ 4.2217↑ 4.1824 4.1223↑ 4.0818↑ 

𝛼1 = 6 4.3591↑ 4.3560↑ 4.3529↑ 4.3467↑ 4.3276↑ 4.2950↑ 4.2442↑ 4.2094↑ 

𝛼1 = 10 4.4927↑ 4.4906↑ 4.4884↑ 4.4841↑ 4.4709↑ 4.4480↑ 4.4117↑ 4.3864↑ 

𝛼1 = 12 4.5398↑ 4.5380↑ 4.5361↑ 4.5325↑ 4.5213↑ 4.5019↑ 4.4710↑ 4.4492↑ 

𝛼1 = 16 4.6104↑ 4.6091↑ 4.6077↑ 4.6050↑ 4.5967↑ 4.5824↑ 4.5595↑ 4.5432↑ 

𝛼1 = 18 4.6375↑ 4.6364↑ 4.6352↑ 4.6329↑ 4.6257↑ 4.6131↑ 4.5932↑ 4.5790↑ 

𝛼1 = 20 4.6608↑ 4.6598↑ 4.6588↑ 4.6567↑ 4.6504↑ 4.6394↑ 4.6219↑ 4.6095↑ 

𝛼1 = 22 4.6809↑ 4.6800↑ 4.6791↑ 4.6773↑ 4.6717↑ 4.6620↑ 4.6465↑ 4.6356↑ 

𝛼1 = 24 4.6985↑ 4.6977↑ 4.6969↑ 4.6953↑ 4.6903↑ 4.6817↑ 4.6679↑ 4.6582↑ 

 

 

Figure . The effect of the ratios of both the torsional spring (𝜶𝟏) and the rotational inertia moment (𝜶𝟐) together on 
the second natural frequency (𝜷𝑳𝟐). 
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Table 6 The effect of both torsional stiffness (𝜶𝟏) and rotational moment of inertia (𝜶𝟐) together on the specific value 
of the thread natural frequency (𝜷𝑳𝟑) 

𝜷𝑳𝟑 𝜶𝟐 = 

0 

𝜶𝟐 = 

0.0002 

𝜶𝟐 = 

0.0004 

𝜶𝟐 = 

0.0008 

𝜶𝟐 = 

0.002 

𝜶𝟐 = 

0.004 

𝜶𝟐 = 

0.007 

𝜶𝟐 = 

0.009 

𝛼1 = 0 7.0686 7.0332↓ 6.9980↓ 6.9285↓ 6.7307↓ 6.4508↓ 6.1418↓ 5.9910↓ 

𝛼1 = 1 7.1368↑ 7.1028↑ 7.0687↑ 7.0009↓ 6.8052↓ 6.5216↓ 6.2016↓ 6.0434↓ 

𝛼1 = 2 7.2000↑ 7.1673↑ 7.1345↑ 7.0688↑ 6.8764↓ 6.5909↓ 6.2616↓ 6.0965↓ 

𝛼1 = 4 7.3125↑ 7.2826↑ 7.2524↑ 7.1915↑ 7.0082↓ 6.7240↓ 6.3807↓ 6.2039↓ 

𝛼1 = 6 7.4087↑ 7.3816↑ 7.3542↑ 7.2983↑ 7.1264↑ 6.8484↓ 6.4972↓ 6.3111↓ 

𝛼1 = 10 7.5625↑ 7.5405↑ 7.5181↑ 7.4720↑ 7.3249↑ 7.0693↓ 6.7171↓ 6.5194↓ 

𝛼1 = 12 7.6242↑ 7.6045↑ 7.5843↑ 7.5425↑ 7.4077↑ 7.1660↑ 6.8190↓ 6.6186↓ 

𝛼1 = 16 7.7254↑ 7.7094↑ 7.6929↑ 7.6587↑ 7.5461↑ 7.3342↑ 7.0056↓ 6.8046↓ 

𝛼1 = 18 7.7672↑ 7.7527↑ 7.7378↑ 7.7067↑ 7.6040↑ 7.4069↑ 7.0903↑ 6.8912↓ 

𝛼1 = 20 7.8042↑ 7.7911↑ 7.7775↑ 7.7493↑ 7.6556↑ 7.4728↑ 7.1694↑ 6.9733↓ 

𝛼1 = 22 7.8373↑ 7.8253↑ 7.8130↑ 7.7873↑ 7.7017↑ 7.5325↑ 7.2432↑ 7.0510↓ 

𝛼1 = 24 7.8669↑ 7.8560↑ 7.8448↑ 7.8213↑ 7.7430↑ 7.5866↑ 7.3120↑ 7.1245↑ 

 

 

Figure 1 The effect of the ratios of both the torsional spring (𝜶𝟏) and the rotational inertia moment (𝜶𝟐) together on 
the thread natural frequency (𝜷𝑳𝟑). 
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Table 7 The effect of both torsional stiffness (𝜶𝟏) and rotational moment of inertia (𝜶𝟐) together on the specific value 
of the fourth natural frequency (𝜷𝑳𝟒) 

𝜷𝑳𝟒 𝜶𝟐 = 

0 

𝜶𝟐 = 

0.0002 

𝜶𝟐 = 

0.0004 

𝜶𝟐 = 

0.0008 

𝜶𝟐 = 

0.002 

𝜶𝟐 = 

0.004 

𝜶𝟐 = 

0.007 

𝜶𝟐 = 

0.009 

𝛼1 = 0 10.2102 10.1063↓ 10.0081↓ 9.8302↓ 9.4351↓ 9.0735↓ 8.8232↓ 8.7340↓ 

𝛼1 = 1 10.258↑ 10.1545↓ 10.0554↓ 9.8745↓ 9.4679↓ 9.0922↓ 8.8324↓ 8.7403↓ 

𝛼1 = 2 10.3061↑ 10.2020↓ 10.1023↓ 9.9189↓ 9.5013↓ 9.1115↓ 8.8419↓ 8.7468↓ 

𝛼1 = 4 10.3976↑ 10.2945↑ 10.1945↓ 10.007↓ 9.5699↓ 9.1519↓ 8.8618↓ 8.7602↓ 

𝛼1 = 6 10.4841↑ 10.3831↑ 10.2838↑ 10.0951↓ 9.6405↓ 9.1946↓ 8.8829↓ 8.7744↓ 

𝛼1 = 10 10.6414↑ 10.5466↑ 10.4513↑ 10.2644 9.7858↓ 9.2866↓ 8.9289↓ 8.8054↓ 

𝛼1 = 12 10.7120↑ 10.6212↑ 10.5289↑ 10.3450↑ 9.8594↓ 9.3356↓ 8.9539↓ 8.8221↓ 

𝛼1 = 16 10.8382↑ 10.7559↑ 10.6707↑ 10.4962↑ 10.0062↓ 9.4391↓ 9.0082↓ 8.8586↓ 

𝛼1 = 18 10.8943↑ 10.8164↑ 10.7351↑ 10.5665↑ 10.0785↓ 9.4931↓ 9.0375↓ 8.8783↓ 

𝛼1 = 20 10.9460↑ 10.8725↑ 10.7953↑ 10.6330↑ 10.1497↓ 9.5483↓ 9.0682↓ 8.8990↓ 

𝛼1 = 22 10.9938↑ 10.9246↑ 10.8513↑ 10.695↑ 10.2193↑ 9.6044↓ 9.1003↓ 8.9209↓ 

𝛼1 = 24 11.0379↑ 10.9728↑ 10.9035↑ 10.7551↑ 10.2873↑ 9.6612↓ 9.1339↓ 8.9438↓ 

 

 

Figure 1 The effect of the ratios of both the torsional spring (𝜶𝟏) and the rotational inertia moment (𝜶𝟐) together on 
the fourth natural frequency (𝜷𝑳𝟒) 
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Table 8 The effect of both torsional stiffness (𝜶𝟏) and rotational moment of inertia (𝜶𝟐) together on the specific value 
of the fifth natural frequency (𝜷𝑳𝟓) 

𝜷𝑳𝟓 𝜶𝟐 = 

0 

𝜶𝟐 = 

0.0002 

𝜶𝟐 = 

0.0004 

𝜶𝟐 = 

0.0008 

𝜶𝟐 = 

0.002 

𝜶𝟐 = 

0.004 

𝜶𝟐 = 

0.007 

𝜶𝟐 = 

0.009 

𝛼1 = 0 13.351 13.142↓ 12.980↓ 12.746↓ 12.396↓ 12.184↓ 12.069↓ 12.032↓ 

𝛼1 = 1 13.389↑ 13.173↓ 13.005↓ 12.764↓ 12.404↓ 12.187↓ 12.070↓ 12.032↓ 

𝛼1 = 2 13.428↑ 13.205↓ 13.032↓ 12.783↓ 12.411↓ 12.190↓ 12.071↓ 12.033↓ 

𝛼1 = 4 13.507↑ 13.271↓ 13.086↓ 12.821↓ 12.428↓ 12.196↓ 12.074↓ 12.035↓ 

𝛼1 = 6 13.589↑ 13.339↓ 13.143↓ 12.862↓ 12.445↓ 12.202↓ 12.076↓ 12.036↓ 

𝛼1 = 10 13.759↑ 13.482↓ 13.264↓ 12.949↓ 12.481↓ 12.215↓ 12.081↓ 12.039↓ 

𝛼1 = 12 13.847↑ 13.557↑ 13.328↓ 12.995↓ 12.501↓ 12.222↓ 12.083↓ 12.041↓ 

𝛼1 = 16 14.026↑ 13.712↑ 13.462↑ 13.093↓ 12.542↓ 12.237↓ 12.089↓ 12.044↓ 

𝛼1 = 18 14.118↑ 13.792↑ 13.531↑ 13.145↓ 12.565↓ 12.244↓ 12.091↓ 12.046↓ 

𝛼1 = 20 14.209↑ 13.873↑ 13.601↑ 13.199↓ 12.588↓ 12.252↓ 12.094↓ 12.047↓ 

𝛼1 = 22 14.302↑ 13.955↑ 13.673↑ 13.254↓ 12.613↓ 12.261↓ 12.097↓ 12.049↓ 

𝛼1 = 24 14.394↑ 14.037↑ 13.746↑ 13.310↓ 12.638↓ 12.269↓ 12.101↓ 12.051↓ 

 

 

 Figure 01 The effect of the ratios of both the torsional spring (𝜶𝟏) and the rotational inertia moment (𝜶𝟐) together on 
the fifth natural frequency (𝜷𝑳𝟓). 

Examining how torsional stiffness and rotational inertia torque affect the modes' shape in a beam system with a helical 
spring supporting it at one end and a spinning mass at the other, which is free, The second, third, and fourth forms of 
shape are depicted in Figures (11) (12) (13) (14) accordingly. These forms display movement patterns for various 
pinned beam support models and exhibit variance in the pattern vectors as a result of the impact of parameters on the 
rotational mass's moment of inertia and the beam's boundary conditions of spring stiffness. 
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Figure 11 The second mode shape for several models of beam systems 

 

Figure 12 The third mode shape for several examples of beam systems 

 

Figure 13 The fourth mode shape for several examples of beam systems 
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Figure 14 The fifth mode shape for several examples of beam systems  

4. Conclusion 

In this paper, the free vibration of the Euler-Bernoulli beam was analyzed for the pin-free beam system, which added to 
the helical spring mechanism and the rotating point mass on the pinned side of the threshold and free from the other 
end. First, the Eigen value and Eigen Function were obtained using the exact solution for the pin-free beam system. Then 
the approximate Rayleigh-Ritz method was used to study the effect of the ratios of the non-dimensional torsional spring 
parameters and the ratios of the rotational inertia moment parameters on the natural frequencies and mode shapes 
corresponding to the beam for the pin-free beam for system added to the helical spring mechanism and the rotating 
point mass on the pinned side. Following up on the results obtained Some conclusions are as follows 

 Adding a helical spring at the end of the installed  beam leads to an increase in the values of natural frequencies, 

and the reason is due to the increase in the equivalent stiffness of the  beam system, as torsional stiffness has 

an effect on increasing of the values of natural frequencies and its effect is greater on the low frequencies and 

its effect decreases on the higher frequencies, Also, when the amount of torsional stiffness increases, the system 

will approach the free fixed  beam system. 

 Adding a helical spring increases the maximum bending amplitude of the mode shape. 

 The addition of rotating mass at the fixed end of the beam leads to an increase in the mass matrix of the system, 

and the increase in the torque of rotational inertia leads to an increase in the kinetic energy of the system, which 

leads to a decrease in all natural frequencies of the system, and its effect is greater at higher frequencies, and 

the rate of change of frequency The  beam is sharp at first, and as the amount of rotational inertia torque 

continues to increase, its effect on the natural frequency decreases while continuing to increase. 

 Adding rotating mass leads to a decrease in the maximum amplitude of the curvature of the mode shape. 

 The change of the natural frequencies of the beam depends on the ratios of the added parameters of the spring 

and the moment of inertia. If spring parameters are the main factor, the beam system frequencies rise. While if 

the moment of inertia parameters is the main factor, the beam system frequencies decrease, and standardizing 

the final distribution of parameters can improve the effect of the parameters on the natural frequencies of the 

system. The amount of torsional stiffness and the amount of rotational inertia moment must first be taken into 

account to create dynamic models with different required accuracy. The natural frequencies of the overall 

mechanical system must be predicted to avoid dangerous resonance. 

 The type of beam boundary conditions determines the natural frequencies and the forms of the accompanying 

mode shape. A uniform distribution can also improve the mode shape, and modifying the final distribution can 

enhance the impact of boundary conditions on frequencies. 
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