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Abstract 

This project work presents a comprehensive review of the Adams-Bashforth method for the numerical solution of 
explicit first-order ordinary differential equations (ODEs). The study begins with a historical overview of the 
development of ordinary differential equations (ODEs), tracing back to the seminal works of Newton, Leibniz, and their 
contemporaries. The evolution of differential equations as a distinct mathematical discipline and their wide-ranging 
applications across various fields are discussed. Furthermore, the paper provides an in-depth analysis of the Adams-
Bashforth method, a prominent numerical technique for solving ODEs. The method is derived and analyzed using 
Mathematica Software, demonstrating its efficacy and accuracy in approximating solutions to ODEs. A comparison with 
existing methods such as the Euler method and the Runge-Kutta method highlights the advantages of the Adams-
Bashforth method, particularly in terms of computational efficiency and accuracy. Moreover, fundamental concepts 
related to ODEs, including the initial value problem, existence, and uniqueness of solutions, are explored in the context 
of numerical solution methods. The properties of linear multistep methods and their relevance to solving ODEs 
efficiently are also discussed. In conclusion, this project work provides valuable insights into the Adams-Bashforth 
method as a powerful tool for the numerical solution of first-order ODEs. By leveraging modern computational tools 
such as Mathematica Software, the method offers a practical and efficient approach to solving complex differential 
equations encountered in various scientific and engineering applications. 
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1. Introduction

1.1. Brief history on differential equation 

Differential Equation was a term introduced by G.W. Leibniz in 1676. Leibniz and Newton, specifically, published and 
disseminated their differential equation solutions for the first time in 1693, marking the beginning of the differential 
equation as a separate branch of mathematics. 

The study of differential equations, according to British mathematician Edward Ince, and other mathematics historians 
is said to have begun in 1675, when German mathematician Gottfried Wilhem Leibniz wrote the following equation: 

∫ 𝑥𝑑𝑥 =  
1

2
𝑥2 

In the latter part of the 17th century, these equations were studied as mechanical and geometrical mathematics. The 
description of the motion of solid bodies or mass points can now be reduced to solving an Ordinary Differential Equation 
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(ODE) thanks to the Newton's law of mechanics. The radio-technological or satellite trajectory investigates the stability 
of a plane in flight and uses differential equation to describe the progression of a chemical process. 

It has been required in many disciplines, including engineering, physics, chemistry, and even biology and economics, to 
construct abstract symbolic mathematical models that could best describe a real-world problem or system. Equations 
that often contain an unknown function known as the "dependent variable" and one or more derivatives are examples 
of such derived abstract symbolic models. 

Differential equations are created through the modeling of actual systems using symbolic mathematical 
representations. 

A differential equation can naturally describe a wide variety of occurrences in science and applied mathematics. Even 
electrical circuits abide by the current and derivative principles outlined by Differential Equation as time and 
acceleration are coupled in the dynamics. 

1.2. Types of differential equations 

There are basically six types of Differential Equations, which are; 

 The Ordinary Differential Equation 
 The Partial Differential Equation 
 The Linear Differential Equation 
 The Non-Linear Differential Equation 
 Homogeneous Differential Equation 
 Non-Homogeneous Differential Equation 

But prior to this research we shall be focusing on the Ordinary Differential Equations. 

1.3. History of ordinary differential equation 

The attempt to solve physical problems led gradually to mathematical models involving an equation in which a function 
and its derivatives play important roles. However, the theoretical development of this new branch of mathematics – 
Ordinary Differential Equations – has its origins rooted in a small number of mathematical problems. These problems 
and their solutions led to an independent discipline with the solution of such equations an end in itself. In circa 1671, 
English physicist Isaac Newton wrote his then-unpublished The Method of Fluxions and Infinite Series (which was later 
published in 1736), in which he classified first order differential equations, known to him as fluxional equation, into 
three classes: 

𝑑𝑦

𝑑𝑥
= 𝑓(𝑥)…………….CLASS 1 

𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦) …………………………CLASS 2 

𝑥
𝜕𝑢

𝜕𝑥
 + 𝑦

𝜕𝑢

𝜕𝑦
= 𝑢 …………..CLASS 3 

Where Classes 1 and 2 contains only ordinary derivatives of one or more dependent variables, with respect to a single 
independent variable, which are currently known as ordinary differential equations; the third class involves the partial 
derivatives of one dependent variable that we call partial differential equations this day. 

In 1676, Newton solved his first differential equation. That same year, Leibniz introduced the term “differential 
equation” (aequatio differentialis, which is a Latin word) or to denote a relationship between the differentials 𝑑𝑥 𝑎𝑛𝑑 𝑑𝑦 
of two variables x and y.  

In 1693, Leibniz solved his first differential equation, and later that year Newton published the results of previous 
differential equation solution methods – a year that is said to mark the inception for the differential equations as a 
distant field in mathematics. Swiss mathematicians, Jacob Bernoulli (1654-1705) and Johann Bernoulli (1667-1748) 
they were known as the Bernoulli brothers, in Basel, Switzerland, were among the first interpreters of Leibniz’ version 
of differential calculus. They were both critical of Newton’s theories and maintained that Newton’s theory of fluxions 
was plagiarized from Leibniz’ original theories, and went to great lengths, using differential calculus, to disprove 
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Newton’s Principia, on account that the brothers could not accept the theory, which Newton had proven, that the earth 
and the planets rotate around the sun in elliptical orbits. The first book on the subject of differential equations, 
supposedly, was an Italian Mathematician Gabriele Manfredi’s 1707 On the Construction of First Degree Differential 
Equations, the book was written between 1701 and 1704, published in Latin. The book was solely based on the views of 
the Leibniz and Bernoulli brothers. Most of the publications on differential equations and partial differential equations, 
in the years to follow, in the 18th century, seemed to expand on the version developed by Leibniz, a methodology, 
employed by those as Leonhard Euler, Daniel Bernoulli, Joseph Lagrange and Pierre Laplace. In 1739, Swiss 
mathematician Leonhard Euler began using the integrating factor as an aid to derive differential equations that were 
integrable in finite form. 

1.3.1. Applications of ordinary differential equations 

ODEs has surprising applications and it has the ability to foresee our general surroundings. It is used in different 
disciplines like science, financial aspects, physical science, science and designing. It assists with foreseeing the 
outstanding development and rot, populace and species development. A portion of the purposes of ODEs are: 

 Modelling the growth of diseases 
 Describes the movement of electricity 
 Describes the motion of the pendulum, waves 
 Used in Newton’s second law of motion and Law of cooling 

1.4. Some basic definition on differential equation 

 An equation including a connection between an unknown function and it's derivative(s) is known as a 

Differential Equation (DE). On the off chance that the independent variable in the equation is one, the 

differential equation (DE) is called an Ordinary Differential Equation (ODE), for instance, y' = x2 where y = f(x) 

is an ODE where y' represents 
𝑑𝑦

𝑑𝑥
. 

 A differential equation is an equation that uses derivatives or differentials to relate two or more variables. thus, 
𝑑𝑦

𝑑𝑥
 = h(x), where h(x) is a known function of the independent variable x, can be used to express a differential 

equation in its simplest form. 

 In place of the continuous interval [a, b] of x, discrete points {𝑥𝑛} defined by  

 𝑥𝑛 = 𝑎 + 𝑛ℎ, 𝑛 = 0, 1, 2, … , 𝑁 =
(𝑏−𝑎)

ℎ
  

 The parameter h is called the step length. 

 A computation error known as a truncation error happens when a value is not as accurate as it should be and 

results in an imprecise or wrong final response. Truncated data values might still be correct but they might not 

be precise. It is denoted by 0(hp+1). 

1.5. Statement of the problem 

Numerous fields of science, engineering, and the economics regularly use Ordinary Differential Equation (ODE) as 
mathematically models. Unfortunately, closed-form solutions to the equations are rarely found, so approximate 
solutions are frequently sought using numerical methods. These days, this can typically be done very cheaply, with high 
accuracy, and with a reliable bound on the error between the analytical solution and its numerical approximation. A 
first order differential equation is of the form: 

𝑦′ = 𝑓(𝑥, 𝑦) ………………..(1.4.1) 

for the real-valued function y of the real variable x, 

where 𝑦′ =  
𝑑𝑦

𝑑𝑥
 

the differential equation will be considered together with an initial condition: given two real numbers 𝑥0 𝑎𝑛𝑑 𝑦0, we 
find a solution to (1.4.1) 

for 𝑥 > 𝑥0 such that 

𝑦(𝑥0) = 𝑦0……………….(1.4.2) 
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The differential equation (1.4.1) together with the initial condition (1.4.2) is called an initial value problem.  

1.6. The initial value problem (IVP) 

An initial value problem (IVP) is an ordinary differential equation with an underlying condition (also known as the 
initial condition (1.4.2)) which determines the value of the unknown function at a given point in the space (or domain). 
An initial value problem (IVP) is an ODE and an initial condition that describes the value of the unknown function at a 
certain location or a given point in the domain. The general non-linear initial value problem; 

𝑦′ = 𝑓(𝑥, 𝑦), 𝑓: ℛ × ℛ𝑚 → ℛ𝑚, 𝑦(𝑎) = 𝜂 ……………………….(1.5.1) 

An example of an IVP is: 
𝑑𝑦

𝑑𝑥
= 10 − 𝑥, 𝑦(0) = −1  

Solution:  

𝑑𝑦

𝑑𝑥
= 10 − 𝑥 → 𝑑𝑦 = (10 − 𝑥)𝑑𝑥 

∫ 𝑑𝑦 = 10𝑥 −
𝑥2

2
+ 𝑐, 𝑤ℎ𝑒𝑛 𝑥 = 0, 𝑦 = −1 

−1 = 10(0) −
0

2
+ 𝑐 ∴ 𝑐 = −1 

𝑦 = 10𝑥 −
𝑥2

2
− 1 

1.7. Existence and uniqueness of solutions 

We consider the first order differential equation of the form 

𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦) ……………………(1.6.1) 

with initial condition; 

y(𝑥0) =  𝑦0……………………………..(1.6.2) 

The theorem below is to prove the existence and uniqueness of a solution. 

1.8. Theorem of Existence and Uniqueness 

Suppose 𝑓(𝑥, 𝑦) is a continuous function in a rectangle of the form {(𝑥, 𝑦)|𝑎 < 𝑥 < 𝑏, 𝑐 < 𝑦 < 𝑑} in the 𝑥𝑦-plane. If (x0, 
y0) is a point in this rectangle, then there exists an ε > 0 and a function y(x) defined for 

𝑥0 −  𝜀 < 𝑥 < 𝑥0 +  𝜀 

that solves the IVP (1.6.1) with initial condition (1.6.2). 

Suppose f(x, y) and 
𝜕𝑓

𝜕𝑦
 are both continuous functions in a rectangle of the form  

{(𝑥, 𝑦)|𝑎 < 𝑥 < 𝑏, 𝑐 < 𝑦 < 𝑑} 

in the 𝑥𝑦-plane. If (𝑥0, 𝑦0) is a point in this rectangle, then there is a unique solution y(x), defined on an interval 

𝑥0 −  𝜀 < 𝑥 < 𝑥0 +  𝑒0 

for some 𝜀 > 0. 
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1.9. Aims and objectives of the study 

The main aim of this project is to generate the Adams Bashforth method using the first order ordinary differential 
equation. Other specific objectives of this project are: 

 Giving brief description on the One Step Euler method and the Runge Kutta method, 

 To introduce the families of the Linear multistep method, 

 The advantages of the Adams Bashforth method over the 4th Order Runge kutta method, and 

 The major disadvantage of the Linear multistep method. 

1.10. The Adams-Bashforth method 

The Adams-Bashforth method is a numerical technique used for solving ordinary differential equations (ODEs), 
particularly initial value problems (IVPs). This method belongs to a class of explicit methods for numerical integration 
of ODEs and is particularly useful when the ODEs cannot be solved analytically or when analytic solutions are difficult 
to obtain. 

1.11. Real-life applications of the Adams-Bashforth Method 

a. Engineering Simulations: In engineering, many systems are modeled using differential equations, such as those 
governing the behavior of electrical circuits, mechanical systems, chemical reactions, and fluid dynamics. The 
Adams-Bashforth method can be used to numerically simulate the behavior of these systems over time. 

b. Climate Modeling: Climate models simulate the Earth's climate system, which involves a complex set of 
differential equations representing interactions between the atmosphere, oceans, land surface, and ice. The 
Adams-Bashforth method can be employed to numerically solve these equations and predict climate patterns and 
changes over time. 

c. Aerospace and Flight Dynamics: Aerospace engineers use differential equations to model the motion of aircraft 
and spacecraft. The Adams-Bashforth method can help in numerically simulating the trajectory of a spacecraft or 
an aircraft under various conditions, aiding in design and analysis. 

d. Biological Systems: Differential equations are frequently used to model biological systems such as population 
dynamics, biochemical reactions, and physiological processes. The Adams-Bashforth method can be applied to 
simulate the behavior of these systems over time, helping researchers understand biological phenomena and 
develop treatments for diseases. 

e. Economic Modeling: Economic models often involve differential equations to describe the dynamics of markets, 
supply and demand, and macroeconomic variables. The Adams-Bashforth method can be used to numerically 
solve these equations and analyze the behavior of economic systems over time. 

f. Computer Graphics and Animation: Differential equations are used in computer graphics and animation to 
model physical phenomena like fluid flow, particle motion, and deformation of objects. The Adams-Bashforth 
method can be applied to simulate these phenomena and create realistic animations in video games, movies, and 
virtual reality environments. 

g. Automotive Engineering: Automotive engineers use differential equations to model vehicle dynamics, engine 
performance, and control systems. The Adams-Bashforth method is applied for simulating vehicle behavior under 
different driving conditions and optimizing performance. 

h. Energy Sector: The energy industry employs differential equations to model the behavior of power generation 
systems, including nuclear reactors, wind turbines, and electrical grids. The Adams-Bashforth method is used for 
simulating the transient response of these systems and optimizing their operation. 

i. Environmental Engineering: Environmental engineers use differential equations to model the dispersion of 
pollutants, groundwater flow, and ecological systems. The Adams-Bashforth method helps in simulating 
environmental processes and assessing the impact of human activities on the environment. 

j. Chemical and Process Engineering: Chemical engineers use differential equations to model chemical reactions, 
heat transfer, and fluid flow in industrial processes. The Adams-Bashforth method is applied for simulating 
process dynamics, optimizing production, and designing control strategies. 

k. Biomedical Engineering: Biomedical engineers use differential equations to model physiological systems, drug 
kinetics, and medical imaging techniques. The Adams-Bashforth method is used for simulating biological 
processes, designing medical devices, and developing treatment strategies. 

l. Financial Services: Financial analysts use differential equations to model financial markets, interest rates, and 
investment portfolios. The Adams-Bashforth method is applied for simulating market dynamics, pricing 
derivatives, and managing risk in financial institutions. 



Global Journal of Engineering and Technology Advances, 2024, 19(01), 037–061 

42 

m. Telecommunications: Telecommunication engineers use differential equations to model signal propagation, 
network traffic, and communication protocols. The Adams-Bashforth method is applied for simulating network 
behavior, optimizing performance, and designing protocols for wireless and wired communication systems. 

1.12. Shortcomings of the Adams-Bashforth Method 

While the Adams-Bashforth method is a widely used numerical technique for solving ordinary differential equations 
(ODEs), it does have some shortcomings: 

a. Stability: The Adams-Bashforth method can suffer from stability issues, particularly for stiff ODEs or when the step 

size is too large. If the step size is not chosen appropriately, the method may produce inaccurate or oscillatory 

solutions, leading to numerical instability. 

b. Accuracy: Although the Adams-Bashforth method is known for its simplicity and efficiency, it may not provide 

accurate solutions for certain types of ODEs, especially if the function being integrated is highly nonlinear or 

contains rapid changes. Higher-order Adams-Bashforth methods can improve accuracy but may introduce 

additional computational complexity. 

c. Initial Condition Sensitivity: The accuracy of the Adams-Bashforth method can be sensitive to the initial 

conditions. Small errors in the initial values or in the numerical integration process can propagate over time, leading 

to significant deviations from the true solution. 

d. Limited to Explicit Formulation: The Adams-Bashforth method is an explicit method, meaning that the solution 

at each time step depends only on previous time steps. While this makes the method computationally efficient, it 

also limits its applicability to certain types of ODEs. Implicit methods, which consider future time steps in addition 

to past ones, may be more stable for stiff equations. 

e. Inability to Handle Adaptive Step Sizes: Unlike some other numerical methods, such as the Runge-Kutta methods, 

the Adams-Bashforth method does not naturally support adaptive step size control. Adaptive step size algorithms 

are useful for efficiently integrating ODEs with varying levels of stiffness or rapidly changing dynamics. 

f. Limited Order of Accuracy: The order of accuracy of the Adams-Bashforth method is limited by its construction. 

While higher-order Adams-Bashforth methods exist, achieving higher orders of accuracy can be challenging due to 

the explicit nature of the method and the need to compute coefficients for the method. 

2. Literature review 

2.1. Introduction 

An approximate computer method known as a Numerical Method is used to solve mathematical problems, many of 
which lack an analytical solution. We really want estimation since we either can’t settle the system systematically or in 
light of the fact that the scientific technique is immovable. We shall briefly discuss the Existing Method and the Linear 
Multistep Method.  

2.2. The existing method 

There are two existing methods we will be discussing, which are; 

 The One Step method and 

 The Linear Multistep Method 

2.3. The One Step Method 

The One Step method general formula is written as: 

𝑦𝑛+1 =  𝑦𝑛 + ℎ𝑛𝛷(𝑥𝑛 , 𝑦𝑛; ℎ𝑛) ………………………(2.2.1) 

where 𝛷(𝑥𝑛 , 𝑦𝑛; ℎ𝑛) is the increment function and hn is the step length adopted in a sub-interval {𝑥𝑛 , 𝑥𝑛+1}. For the sake 
of convenience and easy computation, ℎ𝑛  will be fixed i.e. ℎ𝑛 = ℎ, 𝑛 ≥ 0. The One Step method is divided into two 
methods namely; 

 The Euler Method and 

 The Runge Kutta Method 
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2.3.1. The Euler Method  

Euler’s method is the most straightforward one stage method with increment function 𝛷(𝑥, 𝑦; ℎ) specified as 

𝛷(𝑥, 𝑦; ℎ) = 𝑓(𝑥, 𝑦) …………………..(2.2.2) 

so that (2.2.1) becomes 

𝑦𝑛+1 =  𝑦𝑛 + ℎ𝑓(𝑥𝑛, 𝑦𝑛) ……………………(2.2.3) 

Moreover, the Euler scheme (2.2.3) can be derived easily using the Taylor expansion of 𝑦(𝑥𝑛+1) about 𝑥 = 𝑥𝑛 . It is the 
fundamental explicit method for mathematical integration for Ordinary Differential Equations. Euler proposed his 
technique for initial value problem in 1768. It is for solving initial value problem (IVP), and it is a productive 
mathematical (numerical) method however not exact or accurate, yet a significant number of the thoughts associated 
with the mathematical (numerical) solution of differential equations are presented most basically with it.  

Although, the Euler’s method is only first order accurate, it is straightforward and simple to apply because it only 
requires one evaluation of the function. The one disadvantage with Euler method is that it has a lower order of p = 1 
which then brought about the Runge Kutta Method. 

2.3.2. The Runge Kutta Method 

In a mathematical examination (numerical analysis), the Runge Kutta methods are a group of explicit and implicit 
iterative method. These methods were created around 1900 by the German Mathematicians Carl Runge and Wilhelm 
Kutta. The general formula for Runge Kutta method is: 

𝑦𝑛+1 =  𝑦𝑛 + ℎ𝛷𝑅𝐾(𝑥𝑛 , 𝑦𝑛 , ℎ)……………………..(2.2.4) 

with the increment function 𝛷𝑅𝐾  given as a weighted mean of the slopes at specific points {𝑍𝑟|𝑍𝑟 =  𝑥𝑛 + 𝑐𝑟 , 0 ≤ 𝑐𝑟 ≤
1}. 

𝛷𝑅𝐾 = ∑ 𝑏𝑗𝑌𝑗 ,𝑠
𝑗=1  𝑠 ≥ 1………………………………..(2.2.5) 

with the constraint  

∑ 𝑏𝑗 = 1𝑠
𝑗=1 ………………..(2.2.6) 

Here, s is the number of stages of the process, and condition (2.2.6) makes sure that the integration scheme is consistent.  

The Runge Kutta method can be thought as an extension of the Taylor series expansion scheme, with the evaluation of 
the first and higher order derivative of 𝑓(𝑥, 𝑦) is being replaced by an evaluation of a function inside each interval of 
integration. The RKM being categorized into the three classes are; 

 The explicit Runge Kutta if 𝑎𝑟𝑗 = 0, for all j ≥ 𝑟, 

 The semi implicit Runge Kutta if 𝑎𝑟𝑗 = 0 for all j> 𝑟, and also, 

 The implicit Runge Kutta if 𝑎𝑟𝑗 ≠ 0, for at least one j > r 

while the orders of the Runge Kutta method are as follow: 

 Runge Kutta of order 1 

 Runge Kutta of order 2 

 Runge Kutta of order 3 

 Runge Kutta of order 4 

The members of the explicit Runge-Kutta method is a generalization of the RK4 method and it’s given as; 

𝑦𝑛+1 = 𝑦𝑛 + ℎ ∑ 𝑏𝑖𝑘𝑖
𝑠
𝑖=1  ………………(2.2.5) 

where, 
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𝑘1 = 𝑓(𝑥𝑛 , 𝑦𝑛)  

𝑘2 = 𝑓(𝑥𝑛 + 𝑐2ℎ, 𝑦𝑛 + ℎ(𝑎21𝑘1)),  

𝑘3 = 𝑓(𝑥𝑛 + 𝑐3ℎ, 𝑦𝑛 + ℎ(𝑎31𝑘1 + 𝑎32𝑘2))  

𝑘1 = 𝑓(𝑥𝑛 + 𝑐𝑠ℎ, 𝑦𝑛 + ℎ(𝑎𝑠1𝑘1 + 𝑎𝑠2𝑘2 + ⋯ 

to determine a specific method, one necessities to give the whole number s (the number of stages), and the coefficients 
𝑎𝑖𝑗  (for 1≤ 𝑗 < 𝑖 ≤ 𝑠), 𝑏𝑖  (for i = 1, 2,…, s) and 𝑐𝑖  (for i = 2, 3, …, s). The matrix [𝑎𝑖𝑗] is called the Runge-Kutta matrix, 

while the bi and ci are known as the loads and nodes. These information are normally organized in a memory helper, 
known as the Butcher Tableau 

Table 1 The Butcher’s Tableaux 

 

 

 

               = 

 

 

 

 

The Runge Kutta Method take some intermediate step to get a higher order method and then discard all previous 
information before taking a second step. This is a major disadvantage which led to the Linear Multistep method.  

2.4. The linear multistep method 

The Linear Multistep Method (LMM) are used for mathematical solution of Ordinary Differential Equation (ODE). 
Thoughtfully, a mathematical method begins from an initial point and afterward moves forward so as to find the 
following solution points. The Linear Multistep Method formula is stated below: 

∑ 𝛼𝑗𝑦𝑛+𝑗 = ℎ ∑ 𝛽𝑗𝑓𝑛+𝑗
𝑘
𝑗=0

𝑘
𝑗=0 …………………. (2.3.1) 

where, 

|𝛼0| +  |𝛽0| ≠ 0 and 𝛼𝑘 ≠ 0,  𝛼𝑘 = 1…………………. (2.3.2) 

2.4.1. Properties of linear multispep method 

 Definition of Absolute Stability: the linear multistep method (2.3.1) is said to be absolutely stable for a given 
Z, if for that Z, all the roots of the stability polynomial satisfies |𝑟𝑡| < 1, 𝑡 = 1,2, … , 𝑘 and absolutely unstable for 
that Z otherwise. 

 Definition of Region of Absolute Stability: the LMM is said to have a region of absolute stability 𝑅𝐴, where 
𝑅𝐴, is a region of complex – Z-plane, if it is absolute stable for all Z in 𝑅𝐴, (i.e. 𝑍 𝜖 𝑅𝐴) the intersection of 𝑅𝐴 with 
the real 𝑅𝑒(𝑍) 𝑎𝑥𝑖𝑠 is called the region of absolute stability. 

 Definition of A-stability: a numerical method for the integration of IVP, is said to be A-stable, if its region of 
absolute 𝑅𝐴 contains the entire left of the complex plane. 

 Definition of Zero Stability: a LMM is said to be zero stable if it satisfies the root condition i.e. if |𝑟𝑗| ≤ 1. 

 Definition of Consistency: the LMM is said to be consistent if the increment function 𝜑(𝑥, 𝑦, 0) = 𝑓(𝑥, 𝑦). 

0      

c2 a21     

c3 a31 a32    

. . .    

. . … ..   

cS as1 as2 … as,s -1  

 b1 b2 … bs,s -1 bs 

C A 

0 bT 
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 Definition of Convergence: it is said to be convergent if for any arbitrary initial solution method 𝑦𝑜 and an 
arbitrary point 𝑥 𝜖 [𝑎, 𝑏], the global error satisfies 

lim
𝑛→0

|𝑒𝑛|  → 0 

The most commonly used Linear Multistep Method is the Backward Differentiation Formulas (BDF) 

2.4.2. The backward differentiation formulas (BDF) 

The BDF methods are implicit methods with bk-1 = … = b0 and the different coefficients picked to such an extent that the 
method achieves order k (the greatest possible). These methods are mainly used for the solution of stiff/solid 
differential equations. The BDF general formula is given as: 

∑ 𝛼𝑗𝑦𝑛+𝑗 = ℎ𝛽𝑘𝑓𝑛+𝑘 ,𝑘
𝑗=0  𝛽𝑘 = 1 …………………….(2.3.4) 

The BDF is 𝐴 − 𝑠𝑡𝑎𝑏𝑙𝑒 𝑓𝑜𝑟 𝑘 = 1 𝑎𝑛𝑑 𝑘 = 2 𝑎𝑛𝑑 𝐴(𝛼) − 𝑠𝑡𝑎𝑏𝑙𝑒 𝑓𝑜𝑟 𝑘 = 3 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑘 = 6 𝑏𝑢𝑡 𝑖𝑡 𝑖𝑠 𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒 𝑓𝑜𝑟 𝑘 =
7 𝑎𝑛𝑑 𝑏𝑒𝑦𝑜𝑛𝑑, below is the BDF plots for k=1 to k=7; 

For k=1 the plot is given as; 

 

Figure 1 The Stability Plot of BDF for k=1 

For k=2 the plot is given as; 
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5 

Figure 2 The Stability Plot of BDF for k=2 

For the plot k=3, we have; 

 

Figure 3 The Stability Plot for k=3 

To plot for k=4, we have; 
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Figure 4 The Stability Plot of BDF for k=4 

Plotting for k=5, we are to have, 

 

Figure 5 The Stability Plot of BDF for k=5 

For k=6 the plot is; 
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Figure 6 The Stability Plot of BDF for k=6 

Plotting for k=7, we are to have, 

 

Figure 7 The Stability Plot of BDF for k=7 

Other classes of the Linear Multistep Method are; 

2.4.3. The adams moulton method 

The Adams-Moulton methods are implicit methods in that they have ak-1 = -1 and ak-2 = … = a0 = 0. And also, the b 
coefficients are preferred to get in the highest order possible. The Adams Moulton formula is: 
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𝛼𝑘𝑦𝑛+𝑘 + 𝛼𝑘−1𝑦𝑛+𝑘−1 = ℎ ∑ 𝛽𝑗𝑓𝑛+𝑗
𝑘
𝑗=0 …………………(2.3.5) 

Nevertheless, the Adams-Moulton method being an implicit method, by removing the restriction that 𝑏𝑘  = 0, a k-step 
Adams Moulton get to order k + 1. 

The Adams Moulton methods with k = 0, 1, 2, 3, 4 are (Hairer et al 1993) 

𝑦𝑛 = 𝑦𝑛−1 + ℎ𝑓(𝑥𝑛 , 𝑦𝑛)  its known as the backward Euler method, and  

𝑦𝑛+1 = 𝑦𝑛 +
1

2
ℎ(𝑓(𝑥𝑛+1,𝑦𝑛+1) + 𝑓(𝑥𝑛 + 𝑦𝑛)),  known as the trapezoidal rule 

2.4.4. The adams bashforth method  

The Adams Bashforth method is an explicit linear multistep method. 

3. Methodology 

3.1. Introduction 

3.1.1. The adams bashforth method 

The Adams Bashforth method were designed by John Couch Adams to solve a differential equation modelling capillary 
action due to Francis Bashforth in 1883 published his theory and Adams’ numerical method (Goldstine 1997). The 
Adams Bashforth method is given as: 

𝛼𝑘𝑦𝑛+𝑘 + 𝛼𝑘−1𝑦𝑛+𝑘−1 = ℎ ∑ 𝛽𝑗𝑓𝑛+𝑗
𝑘−1
𝑗=0  …………………….(3.0) 

The Adams Bashforth method is an explicit method with coefficients 𝑎𝑘−1 = −1 and 𝑎𝑘−2 =… = a0 = 0, while the 𝑏𝑗  are 

selected so that the procedures have an order of k (this determines the methods uniquely).  

3.2. Derivation of the Adams Bashforth method 

In this section we shall be deriving the Adams Bashforth method using the Taylor’s series expansion with a Software 
Application called Mathematica. 

3.2.1. Deriving the Adams Bashforth method/scheme  

𝑦𝑛+𝑘 − 𝛼0𝑦𝑛+𝑘−1 = ℎ ∑ 𝛽𝑗𝑓𝑛+𝑗
𝑘−1
𝑗=0  ………………….(3.1) 

for k=1 in (3.1) gives, 

𝑦𝑛+1 − 𝛼0𝑦𝑛 = ℎ ∑ 𝛽𝑗
1−1
𝑗=0 𝑓𝑛+𝑗      

𝑦𝑛+1 − 𝛼0𝑦𝑛 = ℎ(𝛽0𝑓𝑛)………………….(3.2) 

By expanding (3.2) using the Taylor’s series results into the following 

𝑦𝑛+1 = 𝑦[𝑥 + ℎ] = 𝑦(𝑥) + ℎ𝑦′(𝑥) +
ℎ2

2!
𝑦′′(𝑥) +

ℎ3

3!
𝑦′′′(𝑥) + ⋯…………..(3.3) 

𝛼0𝑦𝑛 = 𝑦(𝑥) = 𝛼0𝑦(𝑥) ……………………..(3.4) 

ℎ𝛽0𝑓𝑛 = 𝑦′(𝑥) = ℎ𝛽0…………………….(3.5) 

By substituting (3.2), (3.3), and (3.4) into (3.1) we have, 

𝑦(𝑥) + ℎ𝑦′(𝑥) +
ℎ2

2!
𝑦′′(𝑥) − 𝛼0𝑦(𝑥) − ℎ𝛽0𝑦′(𝑥) = 0 ………………(3.6) 
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we obtained the coefficients of (3.6) in terms of power of h; 

ℎ0 = 1 − 𝛼0 = 0  𝛼0 = 1 

ℎ1 = 1 − 𝛽0 = 0   𝛽0 = 1 

ℎ2 =
1

2
≠ 0 

The coefficient 𝛼0=1 and 𝛽0=1 is substituted into (3.2) to give 

𝑦𝑛+1 − 𝑦𝑛 = ℎ𝑓𝑛 

For k=2 

𝑦𝑛+2 − 𝛼0𝑦𝑛+1 = ℎ ∑ 𝛽𝑗𝑓𝑛+𝑗

1

𝑗=0

 

𝑦𝑛+2 − 𝛼0𝑦𝑛+1 = ℎ(𝛽0𝑓𝑛 + 𝛽1𝑓𝑛+1) ………………..(3.7) 

The coefficients 𝛽0 𝑎𝑛𝑑 𝛽1 is determined through the use of Taylor’s series expansion of (3.7) 

𝑦𝑛+2 = 𝑦(𝑥 + 2ℎ) = 𝑦(𝑥) + 2ℎ𝑦′(𝑥) +
(2ℎ)2

2!
𝑦′′(𝑥) +

(2ℎ)3

3!
𝑦′′′(𝑥) ………….(3.8) 

𝑦𝑛+1 = 𝑦(𝑥 + ℎ) = 𝑦(𝑥) + ℎ𝑦′(𝑥) +
ℎ2

2!
𝑦′′(𝑥) +

ℎ3

3!
𝑦′′′(𝑥)………………….(3.9) 

𝛼0𝑦𝑛+1 = 𝑦(𝑥) = 𝛼0𝑦(𝑥) + 𝛼0ℎ𝑦′(𝑥) + 𝛼0
ℎ2

2!
𝑦′′(𝑥) ……………………(3.10) 

ℎ𝛽0𝑓𝑛 = 𝑦′(𝑥) = ℎ𝛽0𝑦′(𝑥) …………………(3.11) 

ℎ𝛽1𝑓𝑛+1 = 𝑦′(𝑥 + ℎ) = ℎ𝛽1𝑦′(𝑥) + ℎ2𝛽1𝑦′′(𝑥) +
ℎ3

2!
𝑦′′′(𝑥) +

ℎ4

3!
𝑦′𝑣(𝑥) ………………..(3.12) 

from equations (3.7-3.11) we collect the power of h 

ℎ0 = 1 − 𝛼0   𝛼0 = 1 

ℎ1 = 2 − 1 − 𝛽0 − 𝛽1 = 0 ⟹ 1 − 𝛽0 − 𝛽1 = 0 

1 − 𝛽0 −
3

2
 

−
1

2
− 𝛽0 = 0, 𝛽0 = −

1

2
 

ℎ2 = 2 −
1

2
− 𝛽1 = 0    𝛽1 =

3

2
 

∴ 𝛼0 = 1, 𝛽0 = −
1

2
, 𝛽1 =

3

2
 

The coefficients 𝛼0 = 1, 𝛽0 = −
1

2
, 𝛽1 =

3

2
 is substituted into (3.7) to give 

𝑦𝑛+2 − 𝑦𝑛+1 = ℎ(−
1

2
𝑓𝑛 +

3

2
𝑓𝑛+1) 

For k=3 
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𝑦𝑛+3 − 𝛼0𝑦𝑛+2 = ℎ ∑ 𝛽𝑗𝑓𝑛+𝑗

2

𝑗=0

 

𝑦𝑛+3 − 𝛼0𝑦𝑛+2 = ℎ(𝛽0𝑓𝑛 + 𝛽1𝑓𝑛+1 + 𝛽2𝑓𝑛+2) …………….(3.13) 

The coefficients 𝛽0, 𝛽1 𝑎𝑛𝑑 𝛽2 is determined through the use of Taylor’s series expansion of (3.13) we have 

𝑦𝑛+3 = 𝑦(𝑥 + 3ℎ) = 𝑦(𝑥) + 3ℎ𝑦′(𝑥) +
(3ℎ)2

2!
𝑦′′(𝑥) +

(3ℎ)3

3!
𝑦′′′(𝑥) +

(3ℎ)4

4!
𝑦′𝑣(𝑥) ……… (3.14) 

𝑦𝑛+2 = 𝑦(𝑥 + 2ℎ) = 𝑦(𝑥) + 2ℎ𝑦′(𝑥) +
(2ℎ)2

2!
𝑦′′(𝑥) +

(2ℎ)3

3!
𝑦′′′(𝑥) +

(2ℎ)4

4!
𝑦′𝑣(𝑥) ….. (3.15) 

𝑦𝑛+1 = 𝑦(𝑥 + ℎ) = 𝑦(𝑥) + ℎ𝑦′(𝑥) +
ℎ2

2!
𝑦′′(𝑥) +

ℎ3

3!
𝑦′′′(𝑥) +

ℎ4

4
𝑦′𝑣(𝑥) ………….. (3.16) 

𝛼0𝑦𝑛+2 = 𝛼0𝑦(𝑥 + 2ℎ) = 𝛼0𝑦(𝑥) + 𝛼02ℎ𝑦′(𝑥) + 𝛼0
(2ℎ)2

2!
𝑦′′(𝑥) + 𝛼0

(2ℎ)3

3!
𝑦′′′(𝑥) + 𝛼0

(2ℎ)4

4!
𝑦′𝑣(𝑥)    

        (3.17) 

ℎ𝛽0𝑓𝑛 = 𝑦′(𝑥) = ℎ𝛽0𝑦′(𝑥) ……………………(3.18) 

ℎ𝛽1𝑓𝑛+1 = 𝑦′(𝑥 + ℎ) = ℎ𝛽1𝑦′(𝑥) + ℎ2𝛽1𝑦′′(𝑥) +
ℎ3

2!
𝛽1𝑦′′′(𝑥) +

ℎ4

3!
𝛽1𝑦𝑖𝑣(𝑥) +

ℎ5

4!
𝛽1𝑦𝑣(𝑥)………….(3.19) 

ℎ𝛽2 + 𝑓𝑛+2 = 𝑦′(𝑥 + 2ℎ) = 2ℎ𝛽2𝑦′(𝑥) + (2ℎ)2𝛽2𝑦′′ 

from equations (3.14-3.19) we have for power of h 

ℎ0 = 1 − 𝛼0 = 0  𝛼0 = 1 

ℎ1 = 3 − 2𝛼0 − 𝛽0 − 𝛽1 − 𝛽2 = 0 

ℎ2 =
9

2
− 2𝛼0 − 𝛽1 − 2𝛽2 = 0 

ℎ3 =
9

2
−

4

3
𝛼0 −

1

2
𝛽1 −

2

3
𝛽2 

The coefficients 𝛼0 = 1, 𝛽0 =
5

12
, 𝛽1 = −

4

3
 𝑎𝑛𝑑 𝛽2 =

23

12
 is substituted to give: 

𝑦𝑛+3 − 𝑦𝑛+2 = ℎ(
5

12
𝑓𝑛 −

4

3
𝑓𝑛+1 +

23

12
𝑓𝑛+2)  

For k=4 

𝑦𝑛+4 − 𝛼0𝑦𝑛+3 = ℎ ∑ 𝛽𝑗𝑓𝑛+𝑗

3

𝑗=0

 

𝑦𝑛+4 − 𝛼0𝑦𝑛+3 = ℎ(𝛽0𝑓𝑛 + 𝛽1𝑓𝑛+1 + 𝛽2𝑓𝑛+2 + 𝛽3𝑓𝑛+3) ………………(3.20) 

The coefficients 𝛽0, 𝛽1, 𝛽2𝑎𝑛𝑑 𝛽3 is determined through the use of Taylor’s series expansion of (3.20), we have 

𝑦𝑛+4 = 𝑦(𝑥 + 4ℎ) = 𝑦(𝑥) + 4ℎ𝑦′(𝑥) +
(4ℎ)2

2!
𝑦′′(𝑥) +

(4ℎ)3

3!
𝑦′′′(𝑥) +

(4ℎ)4

4!
𝑦𝑖𝑣(𝑥) +

(4ℎ)5

5!
𝑦𝑣(𝑥) …………….(3.21) 

𝑦𝑛+3 = 𝑦(𝑥 + 3ℎ) = 𝑦(𝑥) + 3ℎ𝑦′(𝑥) +
(3ℎ)2

2!
𝑦′′(𝑥) +

(3ℎ)3

3!
𝑦′′′(𝑥) +

(3ℎ)4

4!
𝑦′𝑣(𝑥) +

(3ℎ)5

5!
𝑦𝑣(𝑥)  ………..(3.22) 
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𝑦𝑛+2 = 𝑦(𝑥 + 2ℎ) = 𝑦(𝑥) + 2ℎ𝑦′(𝑥) +
(2ℎ)2

2!
𝑦′′(𝑥) +

(2ℎ)3

3!
𝑦′′′(𝑥) +

(2ℎ)4

4!
𝑦′𝑣(𝑥) +

(2ℎ)5

5!
𝑦𝑣(𝑥) …………(3.23) 

𝑦𝑛+1 = 𝑦(𝑥 + ℎ) = 𝑦(𝑥) + ℎ𝑦′(𝑥) +
ℎ2

2!
𝑦′′(𝑥) +

ℎ3

3!
𝑦′′′(𝑥) +

ℎ4

4!
𝑦′𝑣(𝑥) +

ℎ5

5!
𝑦𝑣(𝑥) ………..(3.24) 

𝛼0𝑦𝑛+3 = 𝛼0𝑦(𝑥 + 3ℎ) = 𝛼0𝑦(𝑥) + 𝛼03ℎ𝑦′(𝑥) + 𝛼0
(3ℎ)2

2!
𝑦′′(𝑥) + 𝛼0

(3ℎ)3

3!
𝑦′′′(𝑥) + 𝛼0

(3ℎ)4

4!
𝑦′𝑣(𝑥) +

(3ℎ)5

5!
𝑦𝑣(𝑥)  …(3.25) 

ℎ𝛽0𝑓𝑛 = 𝑦′(𝑥) = ℎ𝛽0𝑦′(𝑥) …………………(3.26) 

ℎ𝛽1𝑓𝑛+1 = 𝑦′(𝑥 + ℎ) = ℎ𝛽1𝑦′(𝑥) + ℎ2𝛽1𝑦′′(𝑥) +
ℎ3

2!
𝛽1𝑦′′′(𝑥) +

ℎ4

3!
𝛽1𝑦′𝑣(𝑥) +

ℎ5

4!
𝛽1𝑦𝑣(𝑥)……………..(3.27) 

ℎ𝛽2𝑓𝑛+2 = 𝑦′(𝑥 + 2ℎ) = 2ℎ𝛽2𝑦′(𝑥) + (2ℎ)2𝛽2𝑦′(𝑥) +
(2ℎ)3

2!
𝛽2𝑦′′(𝑥) +

(2ℎ)4

3!
𝑦′′′(𝑥) +

(2ℎ)5

4!
𝑦′𝑣(𝑥)………(3.28) 

ℎ𝛽3𝑓𝑛+3 = 𝑦′(𝑥 + 3ℎ) = 3ℎ𝛽3𝑦′(𝑥) + (3ℎ)2𝛽3𝑦′′(𝑥) +
(3ℎ)3

2!
𝛽3𝑦′′′(𝑥) +

(3ℎ)4

3!
𝛽3𝑦′𝑣(𝑥) +

(3ℎ)5

4!
𝛽3𝑦𝑣(𝑥) ……..(3.29) 

from equations (3.21-3.29) we have for power of h 

ℎ0 = 1 + 𝛼0 = 0   ∴ 𝛼0 = 1 

ℎ1 = 4 − 3𝛼0 − 𝛽0 − 𝛽1−𝛽2 − 𝛽3 

ℎ2 = 8 −
9

2
𝛼0 − 𝛽1 − 2𝛽2 − 3𝛽3 = 0 

ℎ3 =
32

6
−

9

2
𝛼0 −

1

2
𝛽1 − 2𝛽2 − 4𝛽3 = 0 

ℎ4 =
32

3
−

27

8
𝛼0 −

1

6
𝛽1 −

4

3
𝛽2 −

9

2
𝛽3 = 0 

The coefficients 𝛼0 = 1, 𝛽0 = −
3

8
, 𝛽1 =

37

24
, 𝛽2 = −

59

24
 𝑎𝑛𝑑 𝛽3 =

55

24
 is substituted to give: 

𝑦𝑛+4 − 𝑦𝑛+3 = ℎ(−
3

8
𝑓𝑛 +

37

24
𝑓𝑛+1 −

59

24
𝑓𝑛+2 +

55

24
𝑓𝑛+3 

For k=5 

𝑦𝑛+5 − 𝛼0𝑦𝑛+4 = ℎ ∑ 𝛽𝑗𝑓𝑛+𝑗

4

𝑗=0

 

𝑦𝑛+5 − 𝛼0𝑦𝑛+4 = ℎ(𝛽0𝑓𝑛 + 𝛽1𝑓𝑛+1 + 𝛽2𝑓𝑛+2 + 𝛽3𝑓𝑛+3 + 𝛽4𝑓𝑛+4)…………..(3.30) 

The coefficients 𝛽0, 𝛽1, 𝛽2,𝛽3 𝑎𝑛𝑑 𝛽4 is determined through the use of Taylor’s series expansion of (3.30); 

𝑦𝑛+5 = 𝑦(𝑥 + 5ℎ) = 𝑦(𝑥) + 5ℎ𝑦′(𝑥) +
(5ℎ)2

2!
𝑦′′(𝑥) +

(5ℎ)3

3!
𝑦′′′(𝑥) +

(5ℎ)4

4!
𝑦′𝑣(𝑥) +

(5ℎ)5

5!
𝑦𝑣(𝑥) +

(5ℎ)6

6!
𝑦𝑣𝑖(𝑥) ………..(3.31) 

𝑦𝑛+4 = 𝑦(𝑥 + 4ℎ) = 𝑦(𝑥) + 4ℎ𝑦′(𝑥) +
(4ℎ)2

2!
𝑦′′(𝑥) +

(4ℎ)3

3!
𝑦′′′(𝑥) +

(4ℎ)4

4!
𝑦′𝑣(𝑥) +

(4ℎ)5

5!
𝑦𝑣(𝑥) +

(4ℎ)6

6!
𝑦𝑣′

(𝑥) …...(3.32) 

𝑦𝑛+3 = 𝑦(𝑥 + 3ℎ) = 𝑦(𝑥) + 3ℎ𝑦′(𝑥) +
(3ℎ)2

2!
𝑦′′(𝑥) +

(3ℎ)3

3!
𝑦′′′(𝑥) +

(3ℎ)4

4!
𝑦′𝑣(𝑥) +

(3ℎ)5

5!
𝑦𝑣(𝑥) +

(3ℎ)6

6!
𝑦𝑣′(𝑥)……(3.33) 

𝑦𝑛+2 = 𝑦(𝑥 + 2ℎ) = 𝑦(𝑥) + 2ℎ𝑦′(𝑥) +
(2ℎ)2

2!
𝑦′′(𝑥) +

(2ℎ)3

3!
𝑦′′′(𝑥) +

(2ℎ)4

4!
𝑦′𝑣(𝑥) +

(2ℎ)5

5!
𝑦𝑣(𝑥) +

(2ℎ)𝑣′

6!
𝑦𝑣′(𝑥) …….(3.34) 
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𝑦𝑛+1 = 𝑦(𝑥 + ℎ) = 𝑦(𝑥) + ℎ𝑦′(𝑥) +
ℎ2

2!
𝑦′′(𝑥) +

ℎ3

3!
𝑦′′′(𝑥) +

ℎ4

4!
𝑦′𝑣(𝑥) +

ℎ5

5!
𝑦𝑣(𝑥) +

ℎ6

6!
𝑦𝑣′

(𝑥) ……..(3.35) 

𝛼0𝑦𝑛+4 = 𝛼0𝑦(𝑥 + 4ℎ) = 𝛼0𝑦(𝑥) + 𝛼04ℎ𝑦′(𝑥) + 𝛼0
(4ℎ)2

2!
𝑦′′(𝑥) + 𝛼0

(4ℎ)3

3!
𝑦′′′(𝑥) + 𝛼0

(4ℎ)4

4!
𝑦′𝑣(𝑥) + 𝛼0

(4ℎ)5

5!
𝑦𝑣(𝑥) +

𝛼0
(4ℎ)6

6!
𝑦𝑣′(𝑥) …………..(3.36) 

ℎ𝛽0𝑓𝑛 = 𝑦′(𝑥) = ℎ𝛽0𝑦′(𝑥) ……………(3.37) 

ℎ𝛽1𝑓𝑛+1 = 𝑦′(𝑥 + ℎ) = ℎ𝛽1𝑦(𝑥) + ℎ2𝛽1𝑦′(𝑥) +
ℎ3

2!
𝛽1𝑦′′(𝑥) +

ℎ4

3!
𝛽1𝑦′′′(𝑥) +

ℎ5

4!
𝛽1𝑦′𝑣(𝑥) +

ℎ6

5!
𝛽1𝑦𝑣(𝑥) ……..(3.38) 

ℎ𝛽2𝑓𝑛+2 = 𝑦′(𝑥 + 2ℎ) = 2ℎ𝛽2𝑦(𝑥) + (2ℎ)2𝛽2𝑦′(𝑥) +
(2ℎ)3

2!
𝛽2𝑦′′(𝑥) +

(2ℎ)4

3!
𝛽2𝑦′′′(𝑥) +

(2ℎ)5

4!
𝛽2𝑦′𝑣(𝑥) +

(2ℎ)6

5!
𝛽2𝑦𝑣(𝑥) 

….(3.39) 

ℎ𝛽3𝑓𝑛+3 = 𝑦′(𝑥 + 3ℎ) = 3ℎ𝛽3𝑦(𝑥) + (3ℎ)2𝛽3𝑦′(𝑥) +
(3ℎ)3

2!
𝛽3𝑦′′(𝑥) +

(3ℎ)4

3!
𝛽3𝑦′′′(𝑥) +

(3ℎ)5

4!
𝛽3𝑦′𝑣(𝑥) +

(3ℎ)6

5!
𝛽3𝑦𝑣(𝑥) 

………(3.40) 

ℎ𝛽4𝑓𝑛+4 = 𝑦′(𝑥 + 4ℎ) = 4ℎ𝛽4𝑦(𝑥) + (4ℎ)2𝛽4𝑦′(𝑥) +
(4ℎ)3

2!
𝛽4𝑦′′(𝑥) +

(4ℎ)4

3!
𝛽4𝑦′′′(𝑥) +

(4ℎ)5

4!
𝛽4𝑦′𝑣(𝑥) +

(4ℎ)6

5!
𝛽4𝑦𝑣(𝑥) +

⋯ ……………(3.41) 

from equations (3.38-3.41) we collect for power of h   

ℎ0 = 1 − 𝛼0 = 0 

ℎ1 = 5 − 4𝛼0 − 𝛽0 − 𝛽1 − 𝛽2 − 𝛽3 − 𝛽4 = 0 

ℎ2 =
25

2
− 8𝛼0 − 𝛽1 − 2𝛽2 − 3𝛽3 − 4𝛽4 = 0 

ℎ3 =
125

6
−

32

3
𝛼0 −

1

2
𝛽1 − 2𝛽2 −

9

2
𝛽3 − 8𝛽4 = 0 

ℎ4 =
625

24
−

32

3
𝛼0 −

1

6
𝛽1 −

4

3
𝛽2 −

9

2
𝛽3 −

32

3
𝛽4 = 0 

ℎ5 =
625

24
−

128

15
𝛼0 −

1

24
𝛽1 −

2

3
𝛽2 −

27

8
𝛽3 −

32

3
𝛽4 = 0  

The coefficients 𝛼0 = 1, 𝛽0 =
251

720
, 𝛽1 = −

637

360
, 𝛽2 =

109

30
, 𝛽3 = −

1387

360
𝑎𝑛𝑑 𝛽4 =

1901

720
 is then substituted into (3.30) 

𝑦𝑛+5 − 𝑦𝑛+4 = ℎ(
251

720
𝑓𝑛 −

637

360
𝑓𝑛+1 +

109

30
𝑓𝑛+2 −

1387

360
𝑓𝑛+3 +

1901

720
𝑓𝑛+4 

3.3. Stability Analysis for Adams Bashforth  

The application of Adams Bashforth to scalar test equation  

𝑦′ = 𝜆𝑦, 𝑅𝑒(𝜆) < 0 

gives  

𝑦𝑛+𝑘 − 𝛼0𝑦𝑛+𝑘−1 = ℎ𝜆 ∑ 𝛽𝑗𝑦𝑛+𝑗

𝑘−1

𝑗=0

 

Where ℎ𝜆 = 𝑧, the shift operator 𝑟𝑗𝑦𝑛 = 𝑦𝑛+𝑗 . Thus we have  
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 (𝑟𝑘 − 𝛼0𝑟𝑘−1 − 𝑧 ∑ 𝛽𝑗𝑟𝑗

𝑘−1

𝑗=0

) 𝑦𝑛 = 0 

The stability function for the Adams Bashforth is given as  

𝑟𝑘 − 𝛼0𝑟𝑘−1 − 𝑧 ∑ 𝛽𝑗𝑟𝑗

𝑘−1

𝑗=0

 

The plot for the case of k=1(1)5 is given in Figs 3.1 - 3.5. The method is limited in stability region that is the stable region 
is the interior of the closed curve, see Table 3.1 for the interval stability region. 

 

Figure 8 This stability plot for Adams Bashforth’s Method for k=1 
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Figure 9 The stability plot for Adams Bashforth Method for k=2 

 

Figure 10 The Stability Plot for Adams Bashforth Method for k=3 
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Figure 11 The Stability plot for Adams Bashforth Method for k=4 

 

 

Figure 12 The Stability plot for Adams Bashforth Method for k=5 
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Table 2 The Stability Interval and Error Constant of the Adams Bashforth for 𝒌 = 𝟏 (𝟏)𝟓 

𝒔𝒕𝒆𝒑 𝒍𝒆𝒏𝒈𝒉𝒕 𝒌 𝑹𝒆𝒈𝒊𝒐𝒏 𝒐𝒇 𝑺𝒕𝒂𝒃𝒊𝒍𝒊𝒕𝒚 𝑬𝒓𝒓𝒐𝒓 𝑪𝒐𝒏𝒔𝒕𝒂𝒏𝒕 𝒐𝒇 𝑨𝒅𝒂𝒎𝒔 𝑩𝒂𝒔𝒉𝒇𝒐𝒓𝒕𝒉 

1 [−0.20, 0] 1

2
 

2 [−0.10, 0] 5

12
 

3 [−0.54, 0] 3

8
 

4 [−0.32, 0] 251

720
 

5 [−0.18, 0] 95

288
 

3.4. Implementation of the method with example 

In this section, we shall test the Adams Bashforth with a Linear problem of the form 

𝑦′ = 𝑦 − 𝑥,   𝑥0 = 0, 𝑦0 =
1

2
 

Where the exact value is 𝑦(𝑥) = 𝑥 + 1 −
1

2
𝑒𝑥 𝑎𝑛𝑑 ℎ = 0.1 

The past values of Adams Bashforth method are obtained from the lower version of it. 

Using the Adams Bashforth method to solve at k=1  

𝑦𝑛+1 = 𝑦𝑛 + ℎ 𝑓𝑛 ……………(4.1) 

When n=0 in (4.1) 

𝑦1 = 𝑦0 + ℎ 𝑓0  

𝑓0 = 𝑦0 − 𝑥0 =
1

2
− 0 =

1

2
 

𝑦1 =
1

2
+ (0.1 ×

1

2
) =

1

2
+ 0.05 = 0.55 

When n=1 in (4.1) 

𝑦2 = 𝑦1 + ℎ 𝑓1 

𝑓1 = 𝑦1 − 𝑥1 

𝑥1 = 𝑥0 + ℎ = 0 + 0.1 = 0.1 

𝑓1 = 0.55 − 0.1 = 0.45 

𝑦2 = 0.55 + (0.1 × 0.45) = 0.55 + 0.045 = 0.595 

When n=2 in (4.1) 

𝑦3 = 𝑦2 + ℎ 𝑓2 

𝑓2 = 𝑦2 − 𝑥2 
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𝑥2 = 𝑥1 + ℎ = 0.1 + 0.1 = 0.2 

𝑓2 = 0.595 − 0.2 = 0.395 

𝑦3 = 0.595 + (0.1 × 0.395) = 0.595 + 0.0395 = 0.6345 

When n=3 

𝑦4 = 𝑦3 + ℎ 𝑓3 

𝑓3 = 𝑦3 − 𝑥3 

𝑥3 = 𝑥2 + ℎ = 0.2 + 0.1 = 0.3 

𝑓3 = 0.6345 − 0.3 = 0.3345 

𝑦4 = 0.6345 + (0.1 × 0.3345) = 0.6345 + 0.03345 = 0.66795 

When n=4 

𝑦5 = 𝑦4 + ℎ 𝑓4 

𝑓4 = 𝑦4 − 𝑥4 

𝑥4 = 𝑥3 + ℎ = 0.3 + 0.1 = 0.4 

𝑓4 = 0.66795 − 0.4 = 0.26795 

𝑦5 = 0.66795 + (0.1 × 0.26795) = 0.66795 + 0.026795 = 0.694745 

When n=5 

𝑦6 = 𝑦5 + ℎ 𝑓5 

𝑓5 = 𝑦5 − 𝑥5 

𝑥5 = 𝑥4 + ℎ = 0.4 + 0.1 = 0.5  

𝑓5 = 0.694745 − 0.5 = 0.194745 

𝑦6 = 0.694745 + (0.1 × 0.194745) = 0.694745 + 0.0194745 = 0.7142195 

When n=6 

𝑦7 = 𝑦6 + ℎ 𝑓6 

𝑓6 = 𝑦6 − 𝑥6 

𝑥6 = 𝑥5 + ℎ = 0.5 + 0.1 = 0.6 

𝑓6 = 0.7142195 − 0.6 = 0.1142195 

𝑦7 = 0.7142195 + (0.1 × 0.1142195) = 0.7142195 + 0.01142195 = 0.72564145 

When n=7 

𝑦8 = 𝑦7 + ℎ 𝑓7 
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𝑓7 = 𝑦7 − 𝑥7 

𝑥7 = 𝑥6 + ℎ = 0.6 + 0.1 = 0.7 

𝑓7 = 0.72564145 − 0.7 = 0.02564145 

𝑦8 = 0.72564145 + (0.1 × 0.02564145) = 0.72564145 + 0.002564145 = 0.728205595 

 

When n=8 

𝑦9 = 𝑦8 + ℎ 𝑓8 

𝑓8 = 𝑦8 − 𝑥8 

𝑥8 = 𝑥7 + ℎ = 0.7 + 0.1 = 0.8 

𝑓8 = 0.728205595 − 0.8 = −0.071794405 

𝑦9 = 0.728205595 + (0.1 × −0.071794405) = 0.728205595 − 0.0071794405 = 0.721061545 

When n=9 

𝑦10 = 𝑦9 + ℎ 𝑓9 

𝑓9 = 𝑦9 − 𝑥9 

𝑥9 = 𝑥8 + ℎ = 0.8 + 0.1 = 0.9 

𝑓9 = 0.721061545 − 0.9 = −0.178938455 

𝑦10 = 0.721061545 + (0.1 × −0.178938455) = 0.721061545 − 0.0178938455 = 0.7031676995 

When n=10 

𝑦11 = 𝑦10 + ℎ 𝑓10 

𝑓10 = 𝑦10 − 𝑥10 

𝑥10 = 𝑥9 + ℎ = 0.9 + 0.1 = 1.0 

𝑓10 = 0.7031676995 − 1.0 = −0.2968323005 

𝑦11 = 0.7031676995 + (0.1 × −0.2968323005) = 0.7031676995 − 0.02968323005 = 0.67348446945 

Table 3 The comparison between the exact solution and that obtained by the explicit Adams method for step size, h=0.1 
when k=1 

𝒏 𝒙𝒏 𝒇𝒏 𝒚𝒏 𝒆𝒙𝒂𝒄𝒕 𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏 𝒂𝒃𝒔𝒐𝒍𝒖𝒕𝒆 𝒆𝒓𝒓𝒐𝒓 

0 0 0.5000 0.5500000 0.5 0.05 

1 0.1 0.45000 0.5950000 0.547414 0.047586 

2 0.2 0.395000 0.6345000 0.589299 0.045201 

3 0.3 0.334500 0.6679500 0.625070 0.04288 

4 0.4 0.267950 0.6947450 0.654088 0.040657 
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5 0.5 0.194745 0.7142195 0.675639 0.038580 

6 0.6 0.1142195 0.72564145 0.688940 0.036701 

7 0.7 0.02564145 0.728205595 0.693124 0.035132 

8 0.8 −0.071794405 0.721061545 0.687229 0.033832 

9 0.9 −0.178938455 0.7031676995 0.670198 0.032969 

10 1.0 −0.2968323005 0.67348446945 0.640858 0.032625 

To solve for k=2 

𝑦𝑛+2 = 𝑦𝑛+1 + ℎ(𝑓𝑛 + 𝑓𝑛+1) …………………(4.2) 

When n=0 

𝑦2 = 𝑦1 + ℎ(𝑓0 + 𝑓1) 

where  
𝑦1 = 0.55, ℎ = 0.1, 𝑓0 = 0.5, 𝑓1 = 0.45 

𝑦2 = 0.55 + 0.1(0.5 + 0.45) = 0.55 + 0.1(0.95) = 0.55 + 0.095 = 0.645 

When n=1 

𝑦3 = 𝑦2 + ℎ(𝑓1 + 𝑓2) 

where  
𝑦2 = 0.645, 𝑓1 = 0.45, 𝑓2 = 0.395 

𝑦3 = 0.645 + 0.1(0.45 + 0.395) = 0.645 + 0.0845 = 0.7295 

When n=2 

𝑦4 = 𝑦3 + ℎ(𝑓2 + 𝑓3) 

3.5. Advantages of the Adams Bashforth method over the 4th order Runge Kutta method 

 The 4th order Runge Kutta method (4th RKM) requires 4 evaluations of 𝑓 at each step, while the 4th order Adams 
Basforth method (when past the beginning/starting values) requires only one and the predictor-corrector 
method just two. Consequently, for a given step size h, the last two strategies likely could be thought of as 
quicker than Runge Kutta. 

 The basic polynomial estimate in various step method make it simple to rough (approximate) solution at point 
between the lattice/mesh point, should be this desirable (alluring). 

 Linear Multistep Method have become famous generally on the grounds that its somewhat simple to access the 
mistake or the step size to control it. 

3.6. Disadvantages of Adams Bashforth 

A significant disadvantage of the multistep equation is that they are not self-beginning. In any case, the first order Adams 
Bashforth formula is self-beginning since it requires just data accessible from problem itself. Accordingly, in the Adams 
Bashforth, we should have progressive value of 𝑓(𝑥, 𝑦(𝑥)) at equally separated point prior to using the formula. 

A subsequent disadvantage is that the local discretization error is 0(h5), the coefficient in the error term is bigger than 
the equations of the Runge Kutta type of a similar order. 



Global Journal of Engineering and Technology Advances, 2024, 19(01), 037–061 

61 

4. Conclusion 

In conclusion, I have considered the Ordinary Differential equations and the Linear Multistep Method, applied the 
Adams Bashforth scheme to a solving a simple ordinary differential equation. It is also concluded that while solving 
Linear Multistep Method the previous values are gotten before the present values can be solved. 
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