Estimation of the mean effective pressure of a spark ignition internal combustion engine using a neural network, considering the wall-wetting dynamics
1 Department of Computer Science, Azad University of Sari, Mazandaran, Iran.
2 Department of Mechanical Engineering, University of Gilan, Rasht, Gilan, Iran.
3 Department of Mechanical Engineering, Shomal University, Amol, Mazandaran, Iran.
Review Article
Global Journal of Engineering and Technology Advances, 2024, 19(02), 010–018.
Article DOI: 10.30574/gjeta.2024.19.2.0073
Publication history:
Received on 22 March 2024; revised on 28 April 2024; accepted on 01 May 2024
Abstract:
The management and development of internal combustion engines stand as critical pursuits within the automotive and related industries. Utilizing cylinder pressure as feedback, engine controllers rely on intricate systems to regulate performance. However, due to the inherent complexity and nonlinearity of engines, direct measurement of cylinder pressure through pressure sensors is costly and computationally demanding. Consequently, the need for accurate and detailed engine models becomes paramount. Neural networks offer a promising avenue for simulating internal combustion engines, combining speed and precision. By treating the engine as an enigmatic entity, neural networks can construct detailed models. This study aims to employ two types of neural networks—multilayer perceptron and radial basis functions—to train and build a model of an internal combustion engine. These networks will simulate and estimate the engine's mean suitable pressure, allowing for a comparison of their effectiveness. Prior to implementing the neural network architecture, an engine model was constructed in MATLAB to gather necessary training data. This preliminary step ensured a robust foundation for subsequent network design and implementation. In summary, this research focuses on leveraging neural networks to model internal combustion engines, utilizing both multilayer perceptron and radial basis functions to simulate engine behavior and estimate mean suitable pressure.
Keywords:
Internal combustion engines; Neural networks; Cylinder pressure; Engine modeling; Multilayer
Full text article in PDF:
Copyright information:
Copyright © 2024 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution Liscense 4.0