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Abstract 

Ethanol production via the batch fermentation of sugarcane juice using immobilized yeast has been studied. The 
influence of glucose concentration, ethanol concentration, and cell concentration (biomass) on the process rate 
throughout the period of fermentation has been investigated.  Initial cell concentration was found to be 4.60 g/L 
saccharomyces cerevisiae. Biomass, ethanol and glucose concentrations were measured at different time interval during 
fermentation. The experimental data obtained were fitted using a variety of models for yeast growth. The logistic model 
gave the best fitting and was the basis for the development of the overall kinetic model. For ethanol formation, different 
model based on the logistic model for yeast growth were used to fit the experimental data and the leudeking – piret 
model was adopted because of its good fit. The leudeking – piret model was also adopted for substrate consumption. 
The estimated values of the kinetic parameters in the developed model were μm=0.04216hr-1, Xm = 6.2652g/L, α = 
24.87149g/g.hr, Yx/s = 0.18292g/g and m = 0.008171g/g.hr. Therefore, a model based on the logistic equation of yeast 
growth, growth associated production of ethanol, and consumption of glucose for biomass and maintenance was found 
to accurately fit the production of ethanol from sugarcane.  
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1. Introduction

The ever increasing demand for ethanol and ethanol-based products over the years has necessitated an imminent 
requirement for high yielding production strains and search for alternative economically viable production processes. 
This is aggravated by the concerns about the various economic and environmental effects of depletion of nonrenewable fossil 

fuel sources, which places bioethanol as a suitable alternative to petroleum [1, 2, 3].  

Ethanol is gradually and increasingly gaining importance in our society and the world at large. Ethanol is a very 
important component used in the pharmaceuticals. It is also used in some part of the world (Brazil) as a major 
component in the production of gasohol (alcohol and gasoline).  In Nigeria, ethanol is used in the production of perfumes 
and vinegar. It is also used as beverage in occasions like burial ceremonies, marriages and other traditional events 
[4,5,6]. 

Sugarcane is normally used for sugar production. Sugarcane juice is a preferred drink in India, especially in summer. 
However, disease and insect infested canes or shriveled and rotten canes have to be separated from the healthy canes 
for processing. Thus, the juice from such unwanted canes could be used for ethanol production, which could be used as 
bio-fuel to supplement the energy needs of the country. Sugarcane ethanol is an alcohol-based fuel produced by the 
fermentation of sugarcane juice and molasses. Because it is a clean, affordable and low-carbon biofuel, sugarcane 
ethanol has emerged as a leading renewable fuel for the transportation sector [7].   
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Rum is defined as any alcoholic distillate from the fermented juice of cane syrup, sugarcane molasses or other sugarcane 
derivative, distilled at less than 190º proof (whether or not such proof is further reduced prior to bottling to no less 
than 80º proof) in such a manner that the distillate possesses the taste, aroma and characteristics generally attributed 
to rum and includes mixtures solely of such distillates [8]. Rum production is centered in the West Indies. Traditional 
rum making countries are Jamaica, Martinique, Puerto Rico, Cuba, Barbados, Trinidad, Haiti, Guadeloupe, the Virgin 
Islands, the Dominican Republic, and Guyana. Other rum producing countries include Brazil, Peru, Mexico and parts of 
Asia and Africa [9]. Rum can be used for direct consumption in a pure form or as mixed drinks [8]. It can also be used as 
a flavoring agent in chocolates, liquors and in tobacco (cigars) and bakery products. 

Literature has shown that the sugarcane is the basic raw material for rum production. The types of raw material used, 
the method of clarification, fermentation conditions (rum yeast), distillation conditions, and aging conditions will affect 
the aroma of the final rum product. Different breeding and selection techniques have been applied to sugarcane to 
improve sugar yield. Selections have been made based upon cane yield, sugar content, fiber content, habit, disease 
resistance, insect resistance, and other characteristics such as flowering, spines, brittleness, and herbicide tolerance 
Sugarcane is a perennial tropical grass that produces unbranched stalks. It consists of root, stalk (with nodes), flower, 
and leaves [10]. Its stalks can be 3-4 m tall and 5 cm in diameter. Sugar is extracted from these stalks of cane, and it is 
contained in the fibro-vascular bundles. The composition of sugarcane (Saccharum officinarum L.) varies depending on 
such factors as variety, soil condition, climate, and use of fertilizers [7, 8]. Sugar extraction is achieved after crushing 
the mat of sugarcane in a mill tandem of multiples stages. Addition of water during milling improves the efficiency of 
the sugar extraction. The extraction efficiency of modern mills is about 92-96%. Higher extractions will result in the 
extraction of more non-sugar components that will have to be removed later on. 

Fermentation is a chemical process involving the use of microbial metabolic process in which carbohydrates and other 
nutrients are oxidized partially to a variety of breakdown products such as alcohol, acids, amino acids, other metabolites 
and antibiotics and a small amount of energy. Fermentation is carried out for so many reasons which production of 
alcohol is one of them. Fermentation is carried out in fermenters using micro-organisms such as yeast in the case of 
beer fermentation and wine production. 

Yeast belong to the family of “Sacchoromyce” and there are three prominent species in the yeast family , they are; 
Sacchoromyces Uvanum, Sacchoromyces Carsbergensis and Sacchoromyces Cervisae [11]. By fermentation, the yeast 
species Saccharomyces cerevisiae converts carbohydrates to carbon dioxide and alcohols – for thousands of years the 
carbon dioxide has been used in baking and the alcohol in alcoholic beverages [12]. To propagate the yeast, certain mass 
of yeast say 4.5Kg is added to some quantity of the fermentable filtrate at very low temperature or moderately low 
temperature say 20-100°C.  

The yeast regenerates by budding process which is an asexual reproductive method [13]. During budding the 
carbohydrate and proteinous nutrient found in the filtrate are utilized such that the yeast grows and enable in size by 
cell growth. This involves the mother cell of the yeast growing an offspring and this offspring protrude from the side of 
the mother yeast cell body which could be unilateral or multilateral. Once budding takes place in a point. A scar will 
remain on the cell wall and so further repeat the process on other points; therefore about 28-30 scars can occur on the 
mother yeast body. Thus the process of regeneration of yeas continues so long as the medium of propagation is 
nourished with the nutrients as well as temperature being maintained. 

Fermentation is affected by several factors including the temperature, salt concentration, pH, oxygen availability and 
nutrient availability. The rate of fermentation can be controlled by manipulating any of the factors. Despite its 
complexity, the rate of fermentation is largely dependent upon three basic parameters namely wort composition (i.e. 
fermentable filtrates normally nutrients for the yeast), the yeast and processing conditions such as time, temperature,  
volume, vessel shape and size –pH and degree of reaction are also very important variables.  

However, these conditions are in general applied to all classes of fermentation, be it batch process or the continuous 
processes. In this process, fermentation can exist as lager (bottom) and Ale (top) fermentation. A viable yeast species is 
recommend for fermentation processes and yeast viability of not less than 80% is acceptable on the utilization of a less 
viable yeast, the rate of fermentation would be grossly affected and reduced. The reaction is that less viable yeast or 
unhealthy yeast normally undergoes an incomplete biochemical metabolism leading to the production of undesirable 
substances such as methanol, acetone and acetaldehydes etc. [12]. 

Another important factor in fermentation process is the process temperature, being that the activation of yeast is 
enhanced with the temperature levels. For bottom (lager) fermentation, yeast fermentation normally takes place at 
temperature of about 8 – 11°C. But Ale (top) fermentation normally takes place at about 15 – 18°C. Also fermentation 
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could also take place at temperatures of about 25 – 28°C and this is normally referred to as accelerated fermentation 
processes. Different bacteria tolerate different temperatures. Most have an optimum of between 20-30oC although some 
prefer higher temperatures (50-55°C) and others colder (15-20°C). Most lactic acid bacteria work best at temperatures 
of 18-22oC. The Leuconostoc species which initiate fermentation have an optimum of 18-22°C. The Lactobacillus species 
have temperature optima above 22°C. The optimum temperature for pickle fermentation is around 21°C [14].  

The acidity and alkalinity levels of the fermentation extract (the pH factor) is another factor worthy of note. A pH of 3.0 
to 3.5 is recommended for a fermentable extract and when it is higher than this; organic acids (i.e. lactice acids) needed 
to be added. Also the yeast solution needs to be acidic and a pH of 4.5 to 5.0 is also recommended. The optimum pH for 
most bacteria is near the neutral point (pH 7.0). Certain bacteria are acid tolerant and will survive at reduced pH levels. 
Both Lactobacillus and Streptococcus species are acid tolerant. The essence of keeping the yeast solution or the 
fermentable extract in acid medium is to keep the process devoid of harmful bacteria and undesirable microbes that 
could lead to offensive odor and taste [14]. 

Some of the fermenters are anaerobes while others require oxygen. Some of the lactobacilli are microaerophilic which 
means they grow in the presence of reduced amounts of oxygen. All bacteria however require a source of nutrients for 
metabolism. The fermenters require carbohydrates, either simple sugars such as glucose and fructose or complex ones 
such as starch or cellulose. The energy requirements of microbes are very high. Limiting the amount of substrate 
available can reduce the rate of fermentation [15] 

Lactic acid bacteria tolerate high salt concentrations, which gives them an advantage over other less tolerant species. 
This allows the lactic acid fermenters to begin metabolism, which produces acid, which then further inhibits the growth 
of non-desirable organisms. Leuconostoc species tolerate high salt concentrations, which makes them ideal to start the 
lactic acid fermentation [14]. 

Salt plays an important role in initiating the fermentation and also in the quality of the product. The addition of too 
much salt may inhibit the desirable bacteria and also affect the hardness of the product. The principle function of salt is 
to withdraw juice from the vegetables and make a favorable environment for fermentation. Salt is generally added to 
give a final concentration of 2.0-2.5%. At this concentration the Lactobacilli are slightly inhibited but the Leuconostoc 
are not affected [14]. Industries that specifically carry out fermentation are the food processing and pharmaceutical 
industries [16].  

The attachment /adsorption of the cells is believed to be time dependent due to the interaction between long-range 
attractive forces (van der Waals and electrostatic forces). Mauricio et al [5] have revealed that the ethanol fermentation 
was faster with cells immobilized in Ca-alginate compared to the fermentation with cells immobilized in PVA (polyvinyl 
alcohol) gel. Under the same experimental conditions, higher cell densities and ethanol concentrations were attained in 
the fermentation performed by alginate immobilized yeast relative to the fermentation by PVA immobilized yeast. 

Amenaghawon et al [3] upon investigating the ‘Kinetic Modelling of Ethanol Inhibition during Alcohol fermentation of 
Corn Stover using Saccharomyces Cerevisiae’, discovered that a linear relationship exists between relative specific 
growth rate and ethanol concentration. A linear relationship also exists between specific ethanol productivity rate and 
ethanol concentration. Zeynep Balci et al. [17] used yeast cells as a model for whole cell immobilization in several 
conducting polymer matrices and the invertase activity of the immobilized cells were investigated. The immobilized cell 
system showed comparable kinetic data with that of the immobilized enzyme. The study also showed that it is worth 
using immobilized yeast cells instead of immobilized invertase. Mayuri et al. [18] studied the growth kinetics of 
Sacchoromyce.cerevisiae (brewer’s yeast) for sugar cane wine production. The specific growth rate and generation time 
for fermentation on sugar cane juice were found to be 0.772 h-1 and 0.89 h-1. The study proved that Sacchoromyce 
cerevisiae can be used effectively for production of sugar cane wine.  

 According to the work on immobilized microbial cells by Durand and Navano [19], immobilized cells can be effectively 
used in continuous processes when compared to free cells. Based on the advantages of immobilized cells over 
immobilized enzymes, redox reactions are possible. 

This study is therefore centered on the fermentation of the sugarcane juice which should cover the sugar content, 
amount of oxygen, nature and taste of product at the various stages of the fermentation process. This shows that this 
study is not just for the fermentation process only, but the use of immobilized yeast cell in the fermentation process 
which in turn increases the yield.  
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2. Methodology  

2.1 Experimental Procedures 

 The experimental procedures are divided into three basic stages. They include: 

1. Immobilization stage 
2. Extraction stage 
3. Fermentation stage 

The major precaution to be taken in the course of carrying this experiment is the maintenance of 100% sterility, to 
ensure that, all equipment must be sterilized by subjecting them to high temperature over a period of time (121oC for 
15mins). This will eliminate any external microbe on any of the equipment. 

2.1.1. Immobilization Stage 

This is the first stage of the experiment. Here, the yeast cells are immobilized using sodium alginate. Below are the steps 
involved in this stage: 

 Mix the dried yeast with 25 mL of sugar solution in a small beaker. Cover and leave to rehydrate for 10 minutes at 
room temperature. 

 Add 25 ml of sodium alginate solution to the yeast suspension. Stir well. 
 Draw up some of the yeast/alginate mixture into a syringe. Add it, a drop at a time, to the calcium chloride solution. 
 Leave the immobilized yeast cell beads to harden in the calcium chloride solution for 5–10 minutes. The alginate 

will be ionically cross-linked by the calcium ions. 
 Separate the beads from the solution using the tea strainer. 
 Place the beads in a sugar solution in a conical flask. 

At the end of this first stage, the yeast has been immobilized waiting to be charged into the fermentation vessel/tank to 
aid fermentation. 

2.1.2. Extraction Stage 

This stage of the experiment deals with the extraction of sugarcane juice from sugarcane. For the purpose of the third 
or final stage of this practical work, 700ml of sugarcane juice is to be extracted from the sugarcane stems. Below are the 
steps involved in this stage: 

 Harvest fresh sugarcane stems (one can also buy newly harvested sugarcane stems from farmers). 
 Wash thoroughly with warm water (at 80oC). 
 Peel the sugarcane stems to remove the hard cover and expose the main cane. 
 Wash again using warm water to avoid contamination. 
 Cut the washed stems into smaller pieces for easy grinding. 
 Grind the sugarcane pieces to get a mixture of the juice and the fibres. 
 Add warm water (at 80oC) into the mixture and allow for 2hrs.  
 Using the white handkerchiefs as the sieve, sieve out the sugarcane fibres, the resulting liquid is known as the 

sugarcane juice. 
 The juice is subjected to a temperature of 60oC, this temperature is maintained for 60mins to attain full 

pasteurization, this is to eliminate any foreign microbe that must have been introduced during the extraction 
process 

The final stage starts immediately the extraction process has been completed to avoid microbial actions on the juice 
before fermentation. 

2.1.3. Fermentation Stage 

This is the final stage of the practical work which lasted for 4days. Below are the steps involved in this stage: 

 The extracted sugarcane juice and the immobilized yeast are charged into the fermenter, this marks the beginning 
of the fermentation process. This culture will be maintained at a temperature range of 25oC-30oC for the 4days 
(96hrs) 
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 At t=0, the initial biomass concentration, ethanol concentration and glucose concentration were recorded. 
 Samples were withdrawn at 12hrs interval to analyze the biomass concentration, ethanol concentration and glucose 

concentration. The bricks meter is used to check the sugar content of the culture. The values at each point should 
be recorded, this will continue till the end of the 4 days after which the sugarcane juice must have turned into 
alcohol. 

For accuracy, these samples were analyzed using a sophisticated laboratory using the gas liquid chromatographic 
method.  

 

Figure 1 Diagrammatic Illustration of the Fermentation Process 

2.2. Kinetic models for the fermentation process 

In the design of any chemical, or biochemical, process one must consider two more or less distinct aspects. First, there 
are the chemical reactions themselves and secondly, the numerous physical processes which accompany and follow 
them. Some of these physical processes are quite clearly separate, like the purification of raw materials and products. 
Others, like the transport of materials to and from the surface of a solid catalyst, are intimately bound up with the 
reactions themselves (Elmer L. Gaden, 2000). 

Fermentation process consists of the following biochemical reactions;   

C6 H12 O6   2 CH3 COOH + NADH2             (1) 

   glucose      Pyruvic acid    

2CH3 COCOOH                      2 CO2 + 2CH3CHO                       (2) 

    Acetaldehyde  

2CH3 CHO   2CH3 CH2 OH + 2NAD             (3) 

    Ethanol  

The overall chemical reaction for the fermentation process is given as  

C6 H12 O6 + 2ADP + 2PO43-                   2C2H5OH + 2CO2 + 2 ATP           (4)  

K1 

K2 

2NADH2 

K3 

K4 
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The above biochemical reaction is however a shortcut of the original glycolytic pathway which may be complex as has 
been given earlier. Therefore the summary of the biochemical reaction for fermentation is the case of the glucose being 
converted to pyruvic acid and from pyruvic acid to acetaldehyale and finally to ethanol. 

The rate equation for any chemical reaction depends on the concentration of the reactants and products of the reactions. 
It is also a factor of the rate constant as well as the reactants and products. The overall reaction for the ethanol 
fermentation from simple sugars may be written as 

C6H12O6            2 C2 H5 OH + 2CO2             (5)  

Since it is not known that this reaction is elementary, the rate can be written in the power law rate form as; 

r  = K [C6H12O6]n or  r = K [C2 H5OH] n     (6) 

Where:  

n is the order of reaction;  r the rate of fermentation;  k is rate constant ; and [C6H12O6], [C2 H5OH] is the concentration 
of glucose or ethanol product respectively.   

 The use of kinetic models to describe the behaviour of biological systems has been acknowledged to be important 
because it can reduce the number of experiments needed to eliminate extreme possibilities and provide mathematical 
expressions that can quantitatively describe the mechanism of the process as required for optimization and control.  

These are mathematical expressions or empirical relations formulated based on the principles of basic science and 
engineering concept. And can be found to validate experimental determined results. Some of these rate expressions are 
too complex to be very useful for reactor design volume.  

2.2.1. Logistic model  

Under optimal growth conditions and when the substrate and product inhibition play no role (not effective), the rate of 
biomass concentration is given by 

𝑑𝑋

𝑑𝑡
= 𝜇𝑚𝑋                                                                              (7) 

Where 𝜇𝑚 is the maximum specific growth with respect to the fermentation conditions. The above equation also known 
as unstructured Malthus model equation implies that X increases with time regardless of the substrate availability. The 
Riccati equation form of the model is given as  

𝑑𝑋

𝑑𝑡
= 𝜇𝑚𝑋 [1 −

𝑋

𝑋𝑚
]                                                         (8) 

Where 𝑋𝑚 is the maximum biomass concentration in g/l. with the initial condition, X=X0 at t=0, equation (8) can be 
integrated to give the logistic equation which may represent both exponential and stationary phase. The resulting 
logistic equation is given below 

𝑋 =
𝑋0𝑋𝑚𝑒𝜇𝑚𝑡

𝑋𝑚 − 𝑋0 + 𝑋0𝑒𝜇𝑚𝑡
                                                     (9) 

Since the batch culture is a closed system, it maintains cell viability for a short while. 

2.2.2.  Leudeking-Piret model 

The Leudeking-Piret model [20] states that the product formation rate varies linearly with both the instantaneous cell 

mass concentration (X) and growth rate (
𝑑𝑋

𝑑𝑡
) as: 

𝑑𝑝

𝑑𝑡
= 𝛼

𝑑𝑋

𝑑𝑡
+ 𝛽𝑋                                                                       (10) 

    K 
Yeast 
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Where 𝛼 and 𝛽 are empirical constants that may vary with fermentation conditions. The simplified form of this model 
is given as 

𝑃 = 𝐾 + 𝛼 [
𝑋0𝑋𝑚𝑒𝜇𝑚𝑡

𝑋𝑚 − 𝑋0 + 𝑋0𝑒𝜇𝑚𝑡
]                                                (11) 

2.2.3.  Models for substrate consumption 

In the substrate consumption rate, the equation below represents the substrate consumption in the formation of 
biomass and biomass maintenance. 

−
𝑑𝑆

𝑑𝑡
=

1

𝑌𝑥
𝑠

.
𝑑𝑋

𝑑𝑡
+ 𝑚. 𝑋                                                                       (12)               

Where 𝑌𝑥

𝑠
 the yield coefficient of biomass on substrate and m is is the maintenanace. For simplification purposes 

equations (10) and (11) were combined to give 

𝑆 = 𝑆0 −
1

𝑌𝑥
𝑠

[
𝑋0𝑋𝑚𝑒𝜇𝑚𝑡

𝑋𝑚 − 𝑋0 + 𝑋0𝑒𝜇𝑚𝑡
− 𝑋0] − 𝑋𝑚mln [

𝑋𝑚 − 𝑋0 + 𝑋0𝑒𝜇𝑚𝑡

𝑋𝑚
]   (13) 

The equation above is known as leudeking-piret substrate consumption 

2.3.4.  Michaelis – Menten rate equation and the Lineweaver – Burk Plot 

The Michaelis – Menten rate equation and the lineweaver – Burk plot have been proposed rate expressions for ethanol 
fermentation [21]. For the Michaelis – Menten proposition for ethanol fermentation, we have  

𝑉 =
𝑉𝑚𝑎𝑥𝑆

𝐾𝑚 + 𝑆
      (14) 

Here, Vmax represents the maximum rate achieved by the system, at maximum (saturating) substrate concentrations. 
The Michaelis constant Km is the substrate concentration at which the reaction rate is half of Vmax. Biochemical reactions 
involving a single substrate are often assumed to follow Michaelis–Menten kinetics, without regard to the model's 
underlying assumptions [22]. The Michealis – Menten equation is not well suited for estimation of the Kinetic 
Parameters Vmax and Km. It is quite difficult to obtain Vmax accurately from a plot of V against S. By the following 
rearrangement of equation (14) the following options for data plotting and graphical parameters evaluation to accurate 
estimation of Vmax and Km are possible; which is known as the lineweaver-burk model plot [23]:  

Sv

K

vv
M 1

.
11

maxmax

       (15) 

An expression used to describe the dependence of growth rate on the concentration of the carbon source is the Monod 
relationship [3]. This is presented as  

µ =  
𝜇𝑚  𝑆

𝑘𝑠+𝑆
                              (16) 

Where:  µ and µm are the specific growth rates and maximum value respectively, (hr -1); S is substrate concentration (g 
/ I) and Ks is the value of the substrate concentration at µ = 0.5 µm and is called the saturation constant.  

The Monod Model relating limiting substrate to the specific growth rate of the yeast is only applicable where the 
presence of toxic metabolic products plays no role. During the course of an alcohol fermentation process, ethanol 
accumulates in the broth to such an extent that the metabolic activity of microorganisms is suppressed [24]. Since the 
presence of ethanol decreases the value of the specific growth rate, the Monod equation must be extended to include 
the ethanol concentration, P:  
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i.e.  µ = F(S, P)            (17) 

Experimental works show that the inhibition of ethanol affects only µm and not Ks which means that the inhibition is 
not competitive.  This modifies the specific growth rate to  

µ = µ1 S/Ks + S     (18) 

Where µ1 = is the value of the maximum specific growth rate in the presence of ethanol. When ethanol plays no role µ1 
approaches µ0. Four types of dependence of µi on the ethanol concentration have been reported in literature [24]. 

3. Results and discussion 

The data obtained from the experiment were analyzed different models. The biomass versus time data were analyzed 
using logistic model, the glucose versus time data were analyzed using leudeking-piret model for substrate consumption 
and the ethanol versus time data were analyzed using the product formation model proposed by leudeking and piret. 
The root mean square values derived from this analysis using datafit was compared the ones obtained from Microsoft 
excel regression analysis. Following the comparison, useful conclusions have been drawn. 

3.1. Yeast growth kinetics 

In the kinetics of yeast, the biomass concentration values against time values were considered. The initial cell 
concentration was 4.60g/l and the maximum cell concentration was 6.2652g/l. by fitting the experimental data for cell 
growth into the logistic equation, the correlation coefficients (root mean square value) obtained was 0.9743 (Table 1). 
The regression analysis of the same data was also analyzed using Microsoft excel data analysis and the root mean square 
value was estimated to be 0.8270. Therefore, both equations perfectly fitted the yeast growth but the logistic equation 
was the best because of the closeness of its value to unity when compared to the excel analysis. Since the logistic model 
gave the best fitting, it was adopted as the developed model for yeast growth. Based on the logistic model, the maximum 
specific growth rate (µ) =0.04216hr-1 for yeast growth.  

Table 1 Regression data summary on the data fitting of biomass against time using logistic equation  

 

 

 

 

 

 

 

 

3.2. Ethanol Production Kinetics 

The experimental data for ethanol production was fitted with growth associated product model and product with Lag 
Time Model for Ethanol Formation. The correlation coefficients (R-square) were, 0.98349 and 0.91125 for the fits 
respectively. Growth associated product model gave the best fit for the production of ethanol Based on the adopted 
model, the values of the estimated parameter was α = 24.87149 g/g hr and k=-105.80134hr-1. The correlation 
coefficients R-square and adjusted R-square are 0.98349 and 0.98113 respectively (Table 2). This means that the 
growth associated product model fitted the production of ethanol very well. The value of 24.87149 g/g.hr compares 
well with the value of a = 23.64 g/g.hr obtained by Oghome and Kamalu [25]. 

 

Model Identity Logistic Model    

Observations 9   

Model equation 
𝑋 =

𝑋0𝑋𝑚𝑒𝜇𝑚𝑡

𝑋𝑚 − 𝑋0 + 𝑋0𝑒𝜇𝑚𝑡
 

  

Coefficient of multiple 
determination (R-squared 
value) 

0.974286 (estimated) Regression 
Statistics 

  

Adjusted (R-squared value) 0.971072 (estimated) Multiple R 0.909414629 

Xo (initial cell concentration) 4.6g/l (experimental) R Square 0.827034968 

Standard error 0.09907 (estimated) Adjusted R Square 0.802325678 

Xm (maximum cell 
concentration) 

6.2652g/l (experimental) Standard Error 0.274685994 

Maximum specific gravity, µm 0.04216hr-1   
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Figure 2 Variation of biomass concentration (g/l) with time (hr). 

 

 

Figure 3 Variation of ethanol concentration (g/l) with time (hr). 

3.3. Substrate consumption kinetics 

Luedeking Piret model for substrate consumption was used for substrate consumption. The experimental data for 
glucose consumption was fitted into it, the values of the estimated parameters are Yx/s = 0.18292 g/g and m = 0.008171 
g/g.hr. The correlation coefficients, R-square and adjusted R-square, are 0.98617 and 0.98420 respectively which 
indicates that this model fits the experimental data very well. There was a close agreement between the experiment 
concentration and simulated concentration for biomass, glucose and product based on Logistic, Leudeking-Piret and 
growth associated model respectively.  

 

Figure 4 Variation of glucose concentration (g/l) with time (hr). 
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Figure 5 Variation of sucrose concentration (g/l) with time (hr). 

 
Table 2 Parameters for growth associated product formation model – for ethanol formation 

Model equation 

 

 R2 0.98349(ESTIMATED) 

adjusted R2  0.98113 (ESTIMATED) 

α (g/ghr) 24.87149 

k(hr-1) -105.80934 

 
 

 
Figure 6 Plot of experimented and simulated data for the decrease of glucose with time using Leudeking-Piret model 
for substrate consumption. 
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Figure 7 Plot of experimented and simulated data for the decrease of glucose with time using Leudeking-Piret model 
for substrate consumption. 
 

Table 3 Parameters for product with Lag time model – for ethanol formation and substrate consumption 

Model Id 
 

Leudiking-Piret Model For Ethanol 
Formation 

Leudeking-Piret Model For 
Substrate Consumption 

Model Equation Y = 
Y*((4.6*6.2652*exp(0.04216*(x - 

t))/(6.2652 - 4.6 + 
4.6*exp(0.04216*(x - t)))-

(4.6*6.2652*exp(-
0.04216*t)/(6.2652 - 4.6 + 

4.6*exp(-0.04216*t))))) 

Y = 99.71604 - 
(4.6/Ys)*((exp(0.04216*x)/(1-

(4.6/6.2652)*(1-exp(0.04216*x)))-
1))-(m*6.2652/0.04216)*Ln(1-

(5/6.2652)*(1-exp(0.04216*x))) 

R2 Value 0.91125(ESTIMATED) 0.98617(ESTIMATED) 

Adjusted R2 Value 0.89857 (ESTIMATED) 0.9842 (ESTIMATED) 

Model coefficients Y = 45.72092 Yx/s (g/g) =0.18292 
T=  -35.38716 M (g/ghr) = 0.008171 

 

4. Conclusion 

The processes involved in the production of ethanol from sugarcane juice are not complex ones when compared to other 
methods of alcohol production. The production is feasible due to the availability of the basic raw material which is 
sugarcane stem. Sugar cane stem contains an appreciable amount of sugar which makes the conversion into alcohol a 
success. The kinetic parameters necessary for its production through fermentation have been obtained in the developed 
mode. This study has also shown that immobilization of cell increases the yield. Sugarcane juice has thus been proven 
to be a viable best raw material for the production of ethanol.  
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