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Abstract 

Decision Tree (DT) typically splitting criteria using one variable at a time. In this way, the final decision partition has 
boundaries that are parallel to axes. An observation is misclassified when it falls in a region which does not have the 
same class membership. Misclassification rate in classification tree is defined as the proportion of observations 
classified to the wrong class while in the regression tree is defined as a mean squared error. In this paper, we present 
two of the important methods for estimating the misclassification (error) rate in decision trees, as we know that all 
classification procedures, including decision trees, can produce errors. 

Constructed DT model by using a training dataset and tested it based on an independent test dataset. There are several 
procedures for estimating the error rate of decision tree-structured classifiers, as K-fold cross-validation and bootstrap 
estimates. This comparison aimed to characterize the performance of the two methods in terms of test error rates based 
on real datasets. The results indicate that 10-fold cross-validation and bootstrap yield a tree fairly close to the best 
available measured by tree size.  
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1. Introduction

Decision Trees DTs are one of the data mining methods, widely studied and applied to data mining tasks. However, data 
mining contains many methods, and more popular methods of data mining are DTs, artificial neural networks nearest 
neighbor method, and genetic algorithms. In this paper, we consider the classification of learning data which the 
resulting classifier is DT. The main objective of this research is to compare cross-validation and bootstrap techniques 
as two important criteria of choice and assessment of statistical prediction rules and give an objective assessment of 
their strengths and weakness in real-life data, especially misclassification rate for DTs. This article concerns estimating 
the error rate of a DT that has been constructed from a training set of data. The training set consists of a distribution for 

a pair of random variables   ={(𝑥𝑖,𝑦𝑖),𝑖 = 1,2, … , 𝑛}, where 𝑥𝑖 is a vector of predictors and is either class label or

numerical response. For example, 𝑥𝑖 might describe a medical patient's age, weight, sex, previous disease history, and 
so on, and 𝑦𝑖 might indicate whether the patient survived a certain operation (Mclachlan, 1992) [1]. On the basis of the 
training set, a DT 𝑐𝑙(𝑥) is constructed. The intention is to use 𝑐𝑙(𝑥0) to predict a future unobserved response 𝑦0 on the 
basis of its predictor vector 𝑥0, where 𝑥0 

is new observation (Eforn, 1979) [2] and (Hastie, et al, 2017) [3]. 

1.1. How Does Decision Tree Construction? 

This section gives an overview of the procedure of DT construction. In brief, the construction of a DT, classification rule 
centers on the definition of four major elements. These are Splitting Rule, Assignment of each terminal node to a class, 
Choosing Right-Sized Tree, which nodes are terminal nodes (pruning rule), and specifying the criteria for predictive 
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accuracy. The steps in the tree building process involve growing a large tree (a tree with a large number of nodes), 
combining some of the branches of this large tree to generate a series of sub-tree s of different sizes (varying numbers 
of nodes), and selecting an optimal tree via the application of “measures of accuracy of the tree”. 

1.2. Splitting Rule 

The process starts with a training set consisting, which has a known class or label ("male" or "female," for example). The 
goal is to build a tree that distinguishes among the classes. For simplicity, assume that there are only two target classes 
and that each split is binary partitioning. To choose the best splitter at a node, the algorithm considers each independent 
variable in turn. In essence, each variable is sorted. Then, every possible split is tried and considered, the best split is 
the one that produces the largest decrease in diversity (minimum deviance) of the classification label within each 
partition (this is just another way of saying "the increase of homogeneity"). This is repeated for all independent 
variables, and the winner is chosen as the best splitter for that node. The process is continued at the next node and, in 
this manner, a full tree is generated. In general terms, the splits at each node will be found that generate the greatest 
improvement in predictive accuracy (minimal error rate). 

1.3. Assignment Rule 

Basically, the terminal nodes are assigned to the classes that have the highest probabilities. These probabilities are 

usually estimated via the respective sample relative frequency 
𝑛𝑗

𝑛
, where 𝑛𝑗 is the number of observations in class j. This 

is a simple majority membership, i.e. assign to the terminal node (leaf node) the label of the class that has most samples 
at that terminal node. Note that a leaf node is said to be pure if all the training observations are belonging to the same 
class (Breiman et al, 1984) [4]. 

1.4. Pruning Procedure 

Pruning the method most widely used for obtaining right-sized trees, was proposed by (Breiman et al, 1984) [4]. They 
suggested the following procedure: build the complete tree (a tree in which splitting no leaf node further will improve 
the accuracy of the training data) and then remove sub-tree that is not contributing significantly towards generalization 
accuracy. Then a sequence of smaller trees can be created by pruning the initial large tree, wherein the pruning process, 
splits that were made are removed and a tree having a fewer number of nodes is produced. The accuracies of the 
members of this sequence of a sub-tree (really a finite sequence of the nested sub-tree) since the first tree produced by 
pruning, is a sub-tree of the original tree, and a second pruning step creates a sub-tree of the first sub-tree, so on, are 
then compared using good estimates of their misclassification rates (either based on cross-validation or obtained by 
bootstrap). A specific way to create a useful sequence of different sized trees is to use minimum cost-complexity 
pruning. In this process, a nested sequence of a sub-tree of the initial large tree is created by weakest-link cutting. With 
weakest-link cutting (pruning), all of the nodes that arise from a specific nonterminal node are pruned off (leaving that 
specific node as a terminal node). Now, letting be the re-substitution estimate of the misclassification rate of a tree, T, 
and |T | be the number of terminal nodes of the tree, for each 𝛼 ≥ 0  the cost-complexity measure, 𝑅𝛼(𝑇), for a tree, T , is 
given by 𝑅𝛼(𝑇) = 𝑅(𝑇) + 𝛼|𝑇|. 

1.5. Heuristics of Bias-Variance in DTs 

A decision tree imposes a partitioning of the attribute space that can be represented as a collection of regions. When the 
attribute space is split into a small number of partitions, as a result of a small number of terminal nodes, the fit is poor. 
We refer to this lack of fitting of the attribute space as bias. When the attribute space is split into many small partitions, 
as a result of a large number of terminal nodes, the bias is small. In other words, these small partitions are more likely 
to have a majority of the wrong class. This latter type of error is referred to as variance. Thus, the tradeoff between bias 
and variance is an important characteristic of decision trees.  

The concept of the test error, including the training error, is illustrated in Figure 1 (Hast, et al, 2017) [3]. The graph of 
the training error tends to decrease whenever the size of the tree is increased, typically converging to zero. However, a 
model with zero training error has been over-fitted to the training data and in that case, the prediction model will have 
a large variance. Typically, the estimated test error starts high with a small number of terminal nodes, reaches a shallow 
minimum region, and eventually increases with the tree size. Note that the test error rate often follows a U- shaped 
pattern.  
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Figure 1 Typical plot of test and training error as a function of terminal nodes. Few numbers of terminal nodes produce 
high bias & low variance whereas large numbers of terminal nodes produce low bias & high variance. 

1.6. Stable and Unstable algorithms 

Breiman (1996b) [5] argues that many prediction algorithms are unstable, in that small changes in the training set may 
lead to large changes in the resulting partitions. In other words, there is variance due to the instability of the training 
sets themselves, leading to an increase in variance. In several cases, unstable algorithms such as DTs are characterized 
by high variance, while algorithms like linear discriminant analysis are characterized by low variance. As the training 
set changes, the algorithms can differ significantly from each other, but stable algorithms do not change much and will 
tend to be the same, and the variance will be small with possibly large bias. In general, the instability of an algorithm 
depends on many factors, for example, the distribution of data used to construct the classifier and the sensitivity of the 
classifier to the size and the composition of the training dataset. 

2. Estimating the Misclassification (Error) Rate 

The misclassification (error) rate of a decision tree is the probability of incorrectly classifying a randomly selected 
instance, for a randomly selected instance, where the probability distribution over the instance space is the same as the 
distribution that was used to select instances for the training set. 

There are several methods available to estimated test error or (generalization error). The most common statistical 
methods are re-substitution, cross-validation, and bootstrap. A method that is more suitable for intermediate sample 
sizes is cross-validation. A closely related method, which is used for small sample sizes, is the bootstrap procedures, 
which had been considerable work in the literature on cross-validation and bootstrap for error rate estimation. See, for 
example, Stone (1974) [6] and Efron (1979) [2]. A good general discussion can be found in Efron (1983) [7], Efron & 
Tibshirani (1993) [8], and Hastie et al, (2017) [3]. 

It is important to introduce the loss function in this context for measuring errors between the predicted value c and the 

actual response y , which is denoted by L[y, c]. The choice of L plays an important role in defining bias, variance, and the 

prediction error for the model 𝑐𝑙(𝑥) that  represents the predicted value at 𝑥 with respect to all possible values in  . 
Here, we are particularly interested in the categorical response, where both y  and c  are either 0 or 1, i.e. two classes. 

Typical choices are misclassification error as 

𝐿[𝑦, 𝑐] = {
0 𝑖𝑓 𝑐 = 𝑦
1 𝑖𝑓 𝑐 ≠ 𝑦

 

Also, where both y and c are continuous i.e. y and c . Typical choices are Mean Square Error is 

𝐿 = [𝑦, 𝑐] = 𝐸[𝑦 − 𝑐]2,      Here 𝐿 = [𝑦, 𝑐] ∈   

Assume that the observations i = (𝑥𝑖,𝑦𝑖), 𝑖 = 1,2, … , 𝑛 in the training set are a random sample from some distribution

F ,  
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1 2( , ,..., )~
iid

n F                                                                              (1)        

and that 0 =(𝑥0,𝑦0)  is independent draw from F (called test sample).The test error rate (Err) of the decision tree is 

its probability of incorrectly classifying a randomly selected future case 0 =(𝑥0,𝑦0) Hence, we can be define the test 

error rate of the model lc  is  

𝐸𝑟𝑟 = 𝐸𝑟𝑟 (  , 𝐹) = 𝐸 𝐿[𝑦0, 𝑐𝑙(𝑥0)]                                                                                      (2) 

This is the expected prediction error over an independent test sample, also referred to as generalization error or test 

error. The notation 𝐸0𝐹 indicates that only 0 =(𝑥0,𝑦0) is random in Equation (2).  In this section, we discuss the issues 

of error rate estimation through three popular methods that are available for estimating errors of misclassification: re-
substitution, cross-validation, and bootstrap methods. Among the three approaches, we have compared the latter two 
approaches on artificial examples and real datasets. 

2.1. Re-substitution Method 

The re-substitution error rate or training error (or apparent error) has been proposed and used in the past. This error 
is the average loss over the training sample. One approach is to use the entire training data to select our classifier and 
estimate the error rate, this naïve approach has two fundamental problems the final model will normally over fit the 
training data and  the error rate estimate will be overly optimistic (lower than the true error rate), and it is defined as 

     err = ˆ( , )Err F =  


n

i

iii xcyL
n 1

)(,
1

 

The notation 


F  indicates the empirical distribution that puts probability 
1

𝑛
 on each observation i = { ( , )i ix y }, i = 1, 

2…n, err  tends to be biased downward as an estimate of Err , because the error is estimated using the same training 
sample that is used to construct the model. One way of avoiding over-fitting in the apparent error rate as a consequence 
of the classifier being tested on the same data from which it has been trained or constructed is to use a holdout method. 
The available information is divided into disjoint training and test subsets. The classifier is constructed from the training 
subset and then tested on the test subset. Obviously, this method requires large samples. However, techniques of 
estimation, such as cross-validation and bootstrap methods, that eliminate the need for a separate test set. 

2.2. Cross-validation Method 

Cross-Validation (CV) is the traditional method and most commonly used for estimating prediction error, provides a 
nearly unbiased estimating of the future error rate. However, the low bias of cross-validation is often paid for by high 
variability. Cross-validation (Stone, 1974) [6] avoids the over-fitting problem by removing the data point to be predicted 
from the training set. 

The leave-one-out cross-validation estimate of Err  is defined as: 

   

)1(CV

Err


=  


n

i

ili xcyL
n i

1

)(,
1

)(
        

Where )(i = {( 1x , 1y ) … ( 1ix , 1iy ), ( 1ix , 1iy )… ( nx , ny )} is the training set (except point i ) used to build the model 

( )
( )

i il xc  and results are tested on the point i which was left out. 

)1(CV

Err


is leave-one-out cross-validation estimating the error rate of prediction rule (decision trees), that 
approximately unbiased for the true prediction error rate, but can have high variance? "Leave-one-out" is a more 
elaborate and expensive version of cross-validation that involves leaving out all possible subsets of n cases.  
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Also, leave-one-out cross-validation has high variance if the prediction rule is unstable: the reason is the leave-one-out 
training sets are too similar to the full dataset. In general, in K-fold cross-validation, you divide the data into K subsets 
of (approximately) equal size. You train the data K times, each time leaving out one of the subsets from training, but 
using only the omitted subset to compute whatever error criterion interests you. If n = KH, where K = total number of 
subsets and H = total number of observations per subset. This is called "leave-one-out" cross-validation version 

)(kCV

Err


 partitions the training set into K parts, hence (K-1) of these subsets are used to train the model and remains 

to test the model, K-fold version 

)(kCV

Err


is defined as 

)(kCV

Err


= 
( ) ( 1)( 1)

1 1

1
[ , ( )]

v

K V

k V vk V v l
k v

L y c x
n

  

 

  

Where )(v
= {( 1x , 1y ) … (

Vkx )1( 
,

Vky )1( 
), (

1)( Vkx ,
1)( Vky )… ( nx , ny )}  is the training set used to build the model 

( ) ( 1)( )
v k V vlc x    and k indexes the subset left out which used to testing the results. 

2.3. Bootstrap Method 

Bootstrap is a good tool for estimating the true prediction Err. The bootstrap procedure was introduced by Efron (1979) 
[2] and is fully described in Efron and Tibshirani (1993) [8]. The bootstrap, like cross-validation, is a resampling 
technique to create different training sets for each model by resampling the original training set. The bootstrap has 
other important advantages besides providing more accurate point estimates for prediction error. The bootstrap 
replications also provide a direct assessment of variability for estimated parameters in the prediction rule. For example, 
see Efron and Tibshirani (1993) [8]. 

One approach, uses the original training set i = (𝑥𝑖,𝑦𝑖), 𝑖 = 1,2, … , 𝑛 consisting of n observations i
* = (𝑥𝑖

∗, 𝑦𝑖
∗)

 
as the 

training set. The basic idea is to draw datasets randomly with replacement from the training set, each sample has the 

same size as the original training set, where m=n. Let F̂ be the empirical distribution putting mass 
1

𝑛
 on each observed 

case, such that 

* * * *

1 2
ˆ( , ,..., )~

iid

m F                (3)   

Suppose 
*  be a random sample of size m taken iid with replacement from F̂ , where i

* = (𝑥𝑖
∗, 𝑦𝑖

∗) is a single random 

observation. This procedure fits the model in question on a set of bootstrap samples   i
* (b = 1,..., B).  If  *bl

c  is the 

predicted value at ix from the model fitted to the bth bootstrap sample, our estimate is defined as 

    boot
Err1



= *

1 1

1 1
[ , ( )]b

B n

i il
b i

L y c x
B n  

        

However, this procedure does not provide a good estimate in general. The reason is that both the bootstrap samples 
and training set have observations in common. This overlap can make the prediction unrealistically good. Here, in this 

work, another approach is pursued by using an independent test set, 0l = { ),( 00 ii yx , i =1, …, 0n } consists of 0n  

observations il0 = )( 0,0 ii yx  from the training set, so that our estimate is defined as 

boot
Err2



= 
*0 0

1 10

1 1
[ , ( )]b

B n

i il
b i

L y c x
B n  

             

This can be done for the artificial example as the underlying concept is known. In real-world datasets (underlying 

concept is not known), we generated 
* of size m, as in Equation (3), from the original training set  of size n as in 
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Equation (1), where m < n. A tree is grown using
bl*

, (b = 1,..., B) and tested ( \
bl*

)={ , i =1, …,

that an observation in but not in 
bl*

, see for example (El Gimati, 2020) [9]., our estimate is 

boot
Err3



= *

( )

1 1

1 1
[ , ( )]

( )
b

n bB

i il
b i

L y c x
B n b



 

 


 
 

However, bootstrap samples are generated by resampling F̂ with replacement, while cross-validation resamples F̂  
without replacement. Also, a bootstrap sample is created by a sampling of size m uniformly from the original training 

set of size n which gives 









m

n  possible samples, whereas the CV is generated by a random number that depends on the 

division into folds. 

3. An artificial Example 

In this section, both methods of error estimation outlined above are applied to an artificial dataset with random noise. 
The simulated data are derived from three-dimensional concentric spheres, three input features are defined by 

 cos1 rx  ,     cossin2 rx   and     sinsin3 rx   

where   ,0~ u ,   2,0~ u  and  4,0~ ur  

In this case, there are four layers, each layer being defined as the subset of observations labeled by 0 or 1, as class 1 

 ]3,2(]1,0( r  and class 2 if,  ]4,3(]2,1( r  , respectively, as the response variables. So that there are 

approximately equal observations in each layer. 

The dataset of size 600 observations is used with random noise, which can be obtained by exchanging one class label 
with another class label, with a probability of 0.08. An independent test set is drawn of 5000 observations by using the 
same procedure as the training set with the same amount of noise added.  

To see how well the estimation methods perform, we sampled observations from the dataset (uniformly with and 
without replacement) and created a training set with desired fold for cross-validation and several bootstrap sample 
sizes. We then grew the tree using the R tree algorithm rpart. The tree classifier for CV is then trained on all subsets 
except the subset for the test, whereas the bootstrap uses an independent test set for estimating the test error rate. The 
bootstrap procedure uses 75 bootstrap samples of size m. 

3.1. Results from Artificial Dataset 

In our example, V-fold (V=3, 5, 7 and 10) CV is based on the assumption that the training set is randomly divided into V 
equal parts, of which (V-1) are used to grow the tree and one part is used to test the validity of the model. For example, 
a 10-fold cross-validation simple means that 10 trees have to be grown. On the other hand, bootstrap sample sizes 
(m=100, 200, 300, and 400) are used to grow the tree and test it on a test set; for each bootstrap sample size, B=75 trees 
have to be grown. Note that Bayes error rate for this example is 8%.  

Figure (2) shows different folds cross-validation. The four plots (top) show the test error rate as a function of the cost-
complexity criterion, while the four plots (bottom) are a function of the tree size which refers to the number of terminal 
nodes. This figure shows that the test error rate starts high for small cost-complexity or tree size, decreases as the cost-
complexity or tree size increases, reaches a shallow minimum region, and then eventually increases slowly with the 
cost-complexity or the tree size. In both cases, the behavior of the error rate curves is approximately similar, which is 
consistent with Figure (1). 

This scenario gives less accuracy for both V-fold=3 and 5 with low variability, whilst the performance of V -fold=7 and 
10 is much more accurate than V -fold=3 and 5, but has high variability. These results indicate that V -fold=7 and 10 give 
approximately accurate  estimates of the test error with acceptable high variability, which means that it is satisfactory 
for choosing the correct model between 4 and 7 terminal node trees, whereas cost-complexity is between about 0.04 
and 0.06 for choosing the correct tree.  

l ),( ii yx  )(bn

l
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Figure (3) illustrates the results of the bootstrap method for different sample sizes. This figure shows the test error rate 
as a function of the cost-complexity of the four plots (top) and the tree size of the four plots (bottom). The behavior 
observed is similar to that under cross-validation. We observe low variability with reasonable bootstrap sample size, 
which seems to offer considerably improved estimation in sample sizes 300 and 400 observations. From the plots, it is 
acceptable for choosing the correct model between 4 and 6 terminal nodes, while cost-complexity is between about 0.02 
and 0.04, which is satisfactory for choosing the correct tree. To focus on ideas, it will be useful to compare these two 
methods using different datasets. 

 

Figure 2 The top four plots present the test error rates as a function of cost-complexity, while the bottom four plots are 
a function of tree size, by using the CV method for simulated data (10 datasets). Each point corresponds to a V-fold CV. 
The line obtained from scattering smooth. 
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Figure 3 The top four plots present the test error rates as a function of cost-complexity, while the bottom four plots are 
a function of tree size, by using the bootstrap method for simulated data (10 datasets). Each point corresponds to the 
bootstrap sample. The line obtained from scattering smooth. 

3.2. Comparing Cross-Validation and Bootstrap 

Efron (1979) [2] shows an example of the bootstrap method outperforming the cross-validation method, but this is with 
simple linear discriminant analysis. Breiman (1984) [4] conducted experiments using cross-validation for decision tree 
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pruning. They chose 10-fold cross-validation for the CART program and claimed it was satisfactory for choosing the 
correct tree. In this context, the question naturally arises as to which of these two methods, cross-validation or bootstrap, 
is better in estimating the classification error in decision trees which leads to help us in choosing between the classifiers. 

To illustrate this comparison, suppose we have ten datasets of size 1000 generated from the same model which is 
described in Section (2), with the same amount of noise for each dataset, but with different random seed to generate 
different datasets. An independent test set is drawn of 5000 observations by using the same procedure as for training 
set with the same amount of noise added. These experiments are performed based on bias versus the other methods to 
investigate which method is willing to tradeoff bias in order to reduce variance to use for a model selection. 

In this example, we estimate the bias by using V-fold (V=3 and 10) CV and bootstrap methods. We calculate the true 
error rate from the test dataset of size 5000. The V-fold cross-validation estimate of which (V-1) is used to train the 
model, and results are tested on the subset which was left out of the training set.  

For the bootstrap method, we generate B=50 different training sets of size m (=500). A model (classifier) is then learned 
on each training set as well as tested on the test set. We use the predictions made by these models to estimate the true 
error rates. Then we calculate bias, which is the difference between the estimated error rate and the true error rate. 
Figure (4) shows the bias as a function of the methods. From the boxplots of default pruned trees, it is clear that 3-fold 
has a large bias as well as high variability, whereas 10-fold has less bias than 3-fold, with reasonable variance. The 
bootstrap has nearly identical bias with 10-fold and acceptable variance. The tree stump boxplots show 10-fold and 
bootstrap are nearly identical for bias, but with a high variance of 10-fold, while 3-fold has larger bias than 10-fold and 
bootstrap, with acceptable variability. Overall, bias has a statistically significant decrease between 3-fold and bootstrap, 
giving a significant probability of 0.039 and 0.048 at the 5% significance level in both default pruned and tree stumps, 
respectively. We have concluded that the bootstrap method has significantly better results than those with cross-
validation. However, 10-fold cross-validation is comparable to the bootstrap method, especially for default pruned trees. 
Note that significant test results are obtained by ANOVA. 

 

Figure 4 Boxplots of bias-squared over ten datasets with random noise on average for V-fold=3,10 and bootstrap 
sample of size 500 observations. The left panel presents default pruning, whereas the right panel presents two terminal 
nodes (stump). 

4. Real data: Anæmic Libyan infants 

According to population estimates, over one billion people in the world have anæmia. The term anæmia, is generally 
used in clinical medicine, refers to a below-normal concentration of hæmoglobin in the blood. Anæmia may be 
diagnosed with confidence when the hæmoglobin concentration is abnormally low in per unit volume of circulating 
blood as a result of a reduction of oxygen-carrying capacity of the blood. Hæmoglobin is a complex protein of iron-
containing hæme and globin groups. Dynamic interaction between them gives hæmoglobin its unique properties in the 
reversible transfer of oxygen. 
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Hæmatologic examination of the blood is a routine procedure to determine the presence of anæmia in patients with 
major illnesses. The normal range at one year of age is between 11 and 12 g/l. An infant whose value is below 11 g/l can 
be considered to be suffering from anæmia. It is clear that anæmia is a deficiency of hæmoglobin concentration below 
normal. 

Anæmia is still a good health indicator, especially in a developing country like Libya. In developed countries, there has 
been a sharp decline due to better living conditions and medical facilities, but the incidence is still high among neonatal 
infants in the northeastern part of Libya, as observed by El Ojali (1994) [10]. Thus, more research is needed about 
anæmia in infancy and the risk factors in order to lead to more effective control of the disease in the study area. 

The main objective of this analysis is to discriminate between neonatal infants who acquire anæmia and those who do 
not, and hence to identify the factors associated with such discrimination by using decision trees. Here, we would also 
like to construct our model so that it gives a good bias-variance compromise with minimum test error which gives an 
optimal model complexity by using cross-validation and bootstrap techniques. We also compare the performance of the 
two methods for a comparison estimating of classification error rate in decision trees. 

4.1. Source and Limitation of Dataset 

This study is based on the data supplied by El Ojali (1994) [10] of the Department of Laboratory Medicine, University 
of Benghazi. The survey includes 510 anæmic Libyan infants in their first year of life and 135 normal healthy infants of 
the same age group as a control. An infant is considered anæmic when his or her hæmoglobin level is below 11 g/l. Out 
of 510 anæmic infants, 366 (72%)  were from the children's hospital in Benghazi, 50 (9.8%) from Tobruk, 51 (10%) 
from Darana, and 43 (8.4%) from Beyda. The control group includes 135 healthy infants whose hæmoglobin level is 
within the normal range. These infants attend the Medical Child Health Care Centre for each city, and out of 135 healthy 
infants, 60 (44%) were from Benghazi, 25 (19%) from Tobruk, 30 (22%) from Darana, and 20 (15%) from Beyda. The 
supplied data include some information regarding biomedical tests of samples and symptoms of the disease, but we did 
not include this information in the analysis since the variables are considered irrelevant to the objective of our work. 
Thus the total number of the variables that are found appropriate to include in the analysis is 15. These variables, 
measured for each infant and their different categories are briefly discussed below. 

4.1.1. Neonatal infants variable  

The neonatal infants under study have been grouped into two classes: (1) Anæmic class (disease class) which consists 
of 510 anæmic infants, and (2) Healthy class (control class) which consists of 135 normal healthy infants. 

4.1.2. Demographic variables  

The five demographic variables consist of age (in months), sex, family size, birth weight, and present weight. The 
variable sex is categorical and has been included in the analysis by coding as Male and Female. The remaining variables 
are all quantitative and are included directly in the analysis. 

4.1.3. Socio-economic variables 

This group consists of four variables which describe the education of the mother, education of the father, place of 
residence, and family income. Each of the variables education of mother and education of father has been divided into 
five categories and assigned a code for each, such as illiterate (I), primary (P), middle (M), secondary (S), and university 
(U). These categories have been included in the analysis. The place of residence is a categorical variable and is included 
in the analysis as Benghazi (Ben), Tobruk (Tab), Darana (Dar), and Beyda (Bey). The variable income is quantitative and 
was included in the analysis directly. 

4.1.4. Nutrition variables  

This group consists of four variables: duration of breastfeeding, duration of bottle feeding, duration of mixed feeding 
(breast and bottle), and duration of solid feeding. All these variables are quantitative (in months) and are included 
directly in the analysis. Note that the sum of these variables is equal to the present age of the infant. 

4.1.5. Antenatal variable  

A single variable which indicates that the mother was anæmic during pregnancy and has been included in the analysis 
by coding Y for being anæmic and N otherwise. The objective of including this variable in the analysis is to find out 
whether anæmic mother during pregnancy has any effect on anæmia among neonatal infants. 
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4.2. Classification Tree for Anæmic Infants 

In this section, we are interested in constructing decision trees automatically using the R tree algorithm rpart from the 
above data. The dataset consists of 510 anæmic infants (patient) and 135 normal healthy infants (control) with fourteen 
predictor variables.  

A decision tree that could have been constructed is given in Figure(5), with a re-substitution error rate of about 10%. 
Each node of the decision tree consists of either a test that partitions the data or a decision. Once a tree is constructed 
from data, it can be used to classify observations of an unknown category (patient or control). In the figure, each decision 
node is labeled control (C) or patient (P), with the number of observations assigned to each class. 

 

Figure 5 A decision tree using rpart tree with two classes' patient and control of Libyan infants in their first year of life. 
Nodes at the end of the tree (terminal node) are decision nodes and under each decision, the node gives the numbers of 
cases for control (C) and patient (P) respectively. 

4.3. Pruned Tree for Anæmic Infants 

As a rule, a pruned tree may produce a higher misclassification error on the training data than a large tree. A large tree 
may have a low error rate, but it could introduce overfitting to the data. Many researchers have found that judicious 
pruning results in both smaller and more accurate tree classifiers. Figure (6) (top) shows the same tree after pruning 
has taken place, with a re-substitution error rate of about 15.9%, whereas the default error rate is about 21%. Note that 
no further pruning for the sub-tree (birth weight) is possible, as beyond that level all observations go to one class which 
is not a legitimate tree. 

The first split of the pruned tree is based on the mother's education. This variable is most important, in the sense of 
discriminating anæmic neonatal infants between two classes having disease and control. The two branches generated 
at the root relate to mother's education with levels of education, middle (M), secondary (S), and university (U) lead to 
birth weight, whereas education levels illiterate (I) and primary (P) leads to a node at the right, most of the observations 
are classified to class having disease, which means that mother's education levels, illiterate (I) and primary (P), are more 
likely to have anæmic infant.  

The next split relates to birth weight -- infants with birth weight less than 3.22 kg are likely to be anæmic. Infants with 
a birth weight more than or equal to 3.22 kg are further split according to family size. A family with more than (8.5) 9 
members is more likely to have the disease than a smaller family. 

Figure (6) (bottom) shows a partition based on the sub-tree with root node given by node two of a large tree, i.e. children 
of mothers who have levels of education, middle (M), secondary (S), and university (U). The partition between birth 
weight and family size gives three partitions corresponding to three terminal nodes in the sub-tree, and the labels in 
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each partition refer to control (C) and patient (P). Note that displaying the partition is only possible for one or two 
continuous predictors on a 2D plot. If the tree contains one predictor, the predicted value of the first class is plotted 
against the predictor over its range in the dataset. When the tree contains two predictors a plot is made of the space 
covered by those two predictors and the partition made by the tree is superimposed. 

 

Figure 6 A decision tree (top) after pruning of Libyan infants. The double under each terminal node gives the number 
of cases of control (C) and patient (P). the partition (bottom) of birth weight versus family size gives three partitions 
corresponding to three-leaf nodes in the sub-tree and labels in each partition refer to control (C) and patient (P). 

4.4. Results from Anæmic Infants for Comparison Estimating Error Rate 

In this section, we show the results of running the two methods outlined in Section (2) to the anæmic Libyan infants' 
dataset. For analysis of data from patients and healthy, we sampled observations from the training set with and without 
replacement and created a training set of the desired sizes, as well as of the desired folds. We then grew the tree on part 
of the training set and tested on the remaining part of the training set for the bootstrap procedure, as explained in 
Section (2.3). This procedure was repeated for 75 bootstrap samples. Also, we applied the V-fold cross-validation 
technique on the basis of 3,5,7, and 10, as described in Section (2.2). 

Figures (7) and (8) summarize the results of this dataset. The task is the same as before. From these figures, we can 
observe that the test error rates follow the same pattern as shown in Section (1). The result of interest here is that when 
the complexity of trees is measured by cost-complexity, the cross-validation has lower variability than when the 
complexity of trees is measured by tree size. These results indicate that the performance of V-fold=7 and 10 is better 
than V-fold=3 and 5. Here, it looks as if a tree can be selected between 5 and 8 terminal nodes, whereas cost-complexity 
is between about 0.02 and 0.04 for the tree selection. 

As can be observed from Figure (8), the bootstrap method is a better scheme when compared to cross-validation. This 
comes as no surprise since we observed similar results in our experiment with random noisy data in Section (3). 
Moreover, from the same figure, we can note that the performance of bootstrap samples (300 and 400) is better than 
the other sizes (100 and 200). In this case, the tree can be selected between 4 and 6 terminal node trees, while cost-
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complexity is between about 0.02 and 0.05 for the correct tree. Our results demonstrate that cross-validation and 
bootstrap yield a tree fairly close to the best available measured by cost-complexity, whereas the bootstrap method 
seems to be uniformly better than cross-validation measured by tree size. Note that all the plots for both methods are 
consistent with Figure (1) and follow a U-shaped pattern. 

 

Figure 7 The top four plots present the test error rates as a function of cost-complexity, while the bottom four plots are 
a function of tree size, by using the cross-validation method of a real dataset. Each point corresponds to a V-fold CV. Line 
obtained from scattering smooth. 
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Figure 8 The top four plots present the test error rates as a function of cost-complexity, while the bottom four plots are 
a function of tree size, by using the bootstrap method of a real dataset. Each point corresponds to the bootstrap sample. 
The line obtained from scattering smooth.  
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5. Conclusion 

It is always very educational and exciting to apply classification techniques like decision trees in new problems. This is 
because each significant real-world classification problem has its own properties, requirements, and challenges. A study 
of classification trees using resampling methods in real-world datasets may help to identify what kinds of structure 
information are most useful for specific problems. We reviewed resampling techniques for estimating the prediction 
error, including cross-validation and bootstrap, and showed examples, each one involving the complexity of trees when 
the test error rate is measured by cost-complexity and the number of terminal nodes. Breiman (1984) [4] note that, in 
their empirical trials with CART, the test error rates often follow the U-shaped pattern. This is confirmed by our results 
in both the artificial and anæmic infants datasets. Comparison is made between the two approaches for ten artificial 
datasets with random noise from the same model, but with different random seeds to generate different datasets (to 
ensure accurate estimates of error rate). Using the R tree algorithm rpart for large trees and stump (two terminal nodes) 
showed 3-fold cross-validation has larger bias than 10-fold cross-validation and the bootstrap, with a statistically 
significant increase in bias. Thus the bootstrap method seems to be uniformly better than cross-validation, for both bias 
and variance. By examining the two methods on the artificial example and anæmic infants dataset with different folds 
for cross-validation and sample sizes for bootstrap, our results indicate that the bootstrap method is a generally better 
approach in both simulated and anæmic infants datasets than those with cross-validation, especially for sample sizes   
(m=300 and 400). However, V-fold=10 and 7 of anæmic infants dataset are comparable to bootstrap when the 
estimation test error rate is measured by cost-complexity for the correct tree.  

The natural question arises why the bootstrap method is a better approach (in decision trees). One possible explanation 
is because a small change in the training dataset can result in a very different series of splits. It is leading to an increase 
in the variance contribution to the test error rate. We would normally expect that the bootstrap method can 
substantially reduce the variance. 

For analysis of anæmic infants dataset using decision trees as described in Section (5), the decision trees of large and 
pruned trees have re-substitution error rates of about 10% and 15.9%, respectively, whereas the default error rate is 
about 21%. The error rates decrease by about 52% and 33%, respectively. The decision tree shows that the education 
of the mother is the most important factor for discriminating between patients and normal healthy infants. It is followed 
by birth weight -- infants, and the family size, which are the most useful information of the anæmic infants' dataset. 

Potential research directions 

In this paper, the resampling tree-based methods represent a general approach to model assessment and selection. As 
is known in any real experiment, the data do not come without problems. We advocate the use of prediction-based 
resampling approaches in new problems, which is useful to uncover the structure of the data. We feel that continued 
application of existing techniques to new situations is a prerequisite for progress in data exploration technology.  
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