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Abstract 

Minimizing electricity generation cost which includes fuel cost, emission cost, operation/maintenance cost and network 
loss cost of multiple operating units has been a major issue in the power sector. The economic dispatch has the objective 
of allocating different loads to the power generators in such a manner that the total fuel cost is minimized while all 
operating constraints are satisfied. Conventional optimization methods assume generator cost curves to be continuous 
and monotonically increasing, but modern generators have a variety of nonlinearities in their cost curves making this 
assumption inaccurate, and the resulting approximate dispatches cause a lot of revenue loss. Computational intelligence 
optimization like Particle Swarm Optimization performs better for such problems. To know the effectiveness and 
efficiency in solving economic dispatch, this paper proposes the application of particle swarm optimization. The 
mathematical model of economic dispatch is developed and then, Particle Swarm Optimization is developed to solve the 
economic dispatch problem using 3-generator and 6-generator system with multiple fuel option. The test results clearly 
demonstrated that particle swarm optimization which is capable of achieving global solutions is simple, excellent 
computationally efficiency and has better and stable dynamic convergence characteristics with a high probability.  

Keywords: Economic Dispatch, Optimization techniques, Heuristic programming, Particle Swarm Optimization, multi-
fuel option, Non-linear constraint  

1. Introduction

The cost of electricity is increasing globally due to high cost of fossil fuel especially in countries where fossil fuels are 
not vastly deposited. In a competitive electricity market, to meet customers demand at the same time reducing the cost 
of generation becomes a major concern to generating company. To address this problem and save significant revenue, 
Economic dispatch which involves the allocation of power demand among generators in such a manner that will 
minimize the total fuel cost and maintain physical and operational constraint has been a hot area of research in recent 
time. It is one of the major challenge confronting power system operators which before now had been handled by 
conventional optimization algorithms such as Lamda iteration, quadraically constrained programming base point 
participation factor[1] gradient method, Newton method [2]. In the past, the cost function is approximated to be 
monotonically increasing in quadratic or piecewise-linear order[3]. This assumption is not valid because the cost 
functions of modern generators possess higher order of nonlinearities making the equations complex, non-convex with 
multiple minimal points resulting into serious challenge of locating global minimal[4]. The complexities and non-
linearity is as a result of valve point loading[5], prohibited operating zones [6]and ramp rate limits of generators[7]etc. 
Conventional optimization methods are ineffective is to model this complexities introduced due to nonlinearities of the 
modern generators. To achieve a fast and near global optimal solution, meta-heuristic optimization techniques have 
been proposed in literatures. Meta-heuristic optimization such as evolutionary algorithm (e.g Genetic algorithm), 
physical-based algorithm (e.g Gravitational Local Search, Big-Bang Big-Crunch (BBBC) and swarm Intelligence (e.g 
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particle Swarm Optimization, ant colony). Today, swarm intelligence is widely used in the field of optimization because 
of its ability to preserve information, save the best information in the memory, the ease of implementation[8]. These 
algorithms mostly mimic the social behavior of swarms, herds, flocks, or schools of creatures in nature. The commonest 
and widely used one is particle Swarm Optimization (PSO)[8] 

Particle swarm optimization (PSO) is a population- based meta-heuristic optimization and it iteratively optimize a 
problem using the best function or quality. Each particle in the population is moved in the search space influenced by 
its local best known position until the best known position is achieved in the search space. Particle swarm optimization 
has been researched extensively in the area of economic dispatch. Due to its flexibility, robustness, simplicity, fast 
convergence, it has been widely accepted in solving economic dispatch problem.  

The author in [9] proposed the use of PSO to minimize the cost function as a single objective function in 6-generating 
unit system while the author in [10], [11] used PSO to solve non- smooth cost function with equality and inequality 
constraint. Ref deployed the use of PSO to solved economic dispatch problem considering constraint such as such as 
ramp rate limits, prohibited operating zone, and non-smooth cost functions and ref [12] investigated the use of PSO in 
solving economic dispatch with multiple fuel option subject to power balance and operating limit constraints. This 
research consider the use of PSO in solving economic dispatch problem considering power balance limit, operating limit 
constraint and effect of line losses with multiple fuel option resulting into nonsmooth cost function. All the paper 
reviewed only considered nonsmooth cost function with assumption that the line losses are neglected. The practical 
economic dispatch problem does not follow this track but involves transmission line losses and other constraint. The 
rest of the chapter is organized as follow:  

2. Literature review 

2.1. Review of Economic Dispatch 

Economic Dispatch (ED) is defined as the process of allocating total power demand among committed generating unit 
economically at the same time satisfying various constraints distributing available load to the generating units so as 
save cost. In static economic dispatch, the objective of the conventional economic dispatch problem is to minimize the 
total cost of thermal generating units while satisfying various constraints including power balance and generator power 
limits. In the economic dispatch problem with multiple fuel options, the piecewise quadratic function is used to 
represent the multiple fuels which are available for each generating units[13]. There have been many algorithms 
proposed for economic dispatch. These include:  

 Merit Order Loading  

 Range Elimination to save cost 

 Binary Section  

 Secant Section  

 Graphical/Table Look-Up  

 Convex Simplex  

 Dantzig-Wolf Decomposition etc.[8] 

The following are well-known examples of “intelligent” algorithms that use clever simplifications and methods to solve 
computationally complex problems. 

 Swarm Intelligence 

 Tabu Search 

 Simulated Annealing 

 Genetic Algorithms 

 Artificial Neural Networks 

 Support Vector Machines[8] 

2.2. Review of Particle Swarm Optimization 

Kennedy and Eberhart [6] developed a particle swarm optimization algorithm based on the behaviour of individuals 
(i.e., particles or agents) of a swarm. Its roots are in zoologist’s modelling of the movement of individuals within a group. 
It has been noticed that members of the group seem to share information among them, a fact that leads to increased 
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efficiency of the group [9]. The PSO algorithm searches in parallel using a group of particles. Each particle corresponds 
to a candidate solution to the problem. A particle moves toward the optimum based on its present velocity, its previous 
experience, and the experience of its neighbours. In an n -dimensional search space, the position and velocity of particle 
are represented as vectors Xi = (xi1……xin) and Vi = (vi1……vin), where the dimension represents the number of components. 
Let Pbesti= (xPi1…….xPin) and Gbest= (xGi1…….XGin) be the best position of particle and its neighbour’s best position so far, 
respectively. The modified velocity and position of each particle can be calculated as follows: 

𝑉𝑖
𝑘+1 = 𝑤. 𝑉𝑖

𝑘 + 𝑐𝑖 . 𝑟𝑛1. (𝑃𝑏𝑒𝑠𝑡𝑖
𝑘 − 𝑋𝑖

𝑘) + 𝑐2. 𝑟𝑛2. (𝐺𝑏𝑒𝑠𝑡𝑖
𝑘 − 𝑋𝑖

𝑘)  (1) 

𝑋𝑖
𝑘+1 = 𝑋𝑖

𝑘 + 𝑉𝑖
𝑘+1        (2) 

Where 

𝑉𝑖
𝑘   Velocity of Particle i at iteration k; 
𝑤  Inertia weight factor; 
𝑐𝑖 , 𝑐2  Acceleration coefficient; 
𝑟𝑛1, 𝑟𝑛2 Random number between 0 and 1; 
𝑋𝑖
𝑘  Position of particle i at iteration k; 

 
The search mechanism of the PSO using the modified velocity and position of individual based on (1) and (2) is the 
figure below: 

 

Figure 1: The search mechanism of the particle swarm optimization[14] 

In this paper, the approach to implement the particle swarm optimization algorithm will be described in solving the 
economic dispatch problems. The process of the particle swarm optimization algorithm can be summarized as follows: 

 Initialization of a group at random while satisfying constraints. 

 Velocity and p osition updates while satisfying constraints. 

 Update of Pbest and Gbest. 

 Activation of space reduction strategy. 

 Go to Step 2 until satisfying stopping criteria.[10] 

2.3. Initialization and Structure of Individuals 

In the initialization process, a set of individuals is created at random. In this paper, the structure of an individual for 
economic dispatch problem is composed of a set of elements (i.e., generation outputs). Therefore, individual’s position 
at iteration 0 can be represented as the vector of 𝑋𝑖

0= (𝑥𝑖1
0 ,……, 𝑥𝑖𝑛

0  ) where n is the number of generators [10] 

The velocity of individual i (i.e., 𝑉𝑖
0 = (𝑣𝑖1

0 ,…… , 𝑣𝑖𝑛
0 )) corresponds to the generation update quantity covering all 

generators. The elements of position and velocity have the same dimension, i.e., MW in this case. Note that the 
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summation of all elements of individual i (i.e.,∑ 𝑃𝑖𝑗
0𝑛

𝑗=1  ) should be equal to the total system demand 𝑃𝐷 and the created 

element j of individual i at random (i.e., 𝑃𝑖𝑗
0  ) should be located within its boundary. Although we can create element of 

individual at random satisfying the inequality constraint by mapping [0, 1] into [𝑃𝑗𝑚𝑖𝑛, 𝑃𝑗𝑚𝑎𝑥], it is necessary to develop 

a new strategy to handle the equality constraint. To do this, the following procedure is suggested for any individual in a 
group: 

Step 1) Set j =1. 

Step 2) Select an element (i.e., generator) of an individual at random. 

Step 3) Create the value of the element (i.e., generation output) at random satisfying its inequality constraint. 

Step 4) If j = n - 1then go to Step 5; otherwise and j = j + 1 go to Step 2. 

Step 5) the value of the last element of an individual is determined by subtracting ∑ 𝑃𝑖𝑗
0𝑛−1

𝑗=1 from the total system demand, 

𝑃𝐷. If the value is in the range of its operating region then go to Step 6; otherwise go to Step 1.  

Step 6) Stop the initialization process. [10] 

After creating the initial position of each individual, the velocity of each individual is also created at random. The 
following strategy is used in creating the initial velocity: 

(𝑃𝑗𝑚𝑖𝑛 − ɛ) − 𝑃𝑖𝑗
0  ≤ 𝑣𝑖𝑗

0  ≤ (𝑃𝑗𝑚𝑎𝑥 + ɛ) − 𝑃𝑖𝑗
0    (3) 

 

Where ɛ is a small positive real number. The velocity of element j of individual i is generated at random within the 
boundary. The developed initialization scheme always guarantees to produce individuals satisfying the constraints 
while maintaining the concept of the PSO algorithm. The initial Pbesti of individual i is set as the initial position of 
individual i and the initial Gbest is determined as the position of an individual with minimum payoff of the objective 
function. [10]. 

2.4. Velocity Update 

In the velocity updating process, the values of parameters such as 𝑤, 𝑐𝑖 , 𝑎𝑛𝑑 𝑐2 should be determined in advance. The 
constants 𝑐𝑖 𝑎𝑛𝑑 𝑐2 represent the weighting of the stochastic acceleration terms that pull each particle toward the Pbesti 

and Gbest positions. Suitable selection of inertia weight can provide a balance between global exploration and local 
exploitation, and results in a lower number of iterations to find the optimal solution. In general, to enhance the 
convergence characteristics, the inertia weight factor𝑤 is designed to decrease linearly (i.e., Inertia Weight Approach 
(IWA) [11], [12], descending from 𝑤𝑚𝑖𝑛 𝑡𝑜 𝑤𝑚𝑎𝑥to as follows: 

𝑤𝑘 = 𝑤𝑚𝑎𝑥 −
𝑤𝑚𝑎𝑥−𝑤𝑚𝑖𝑛

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
×  𝐾     (4) 

 

Where 𝑖𝑡𝑒𝑟𝑚𝑎𝑥corresponds to the maximum iteration number. Using the new position 𝑋𝑖
𝑘+1, the Pbesti and Gbest are 

updated at iteration k+1 using the greedy selection. 

 

 

 

2.5. Position Modification Considering Constraints 

The position of each individual is modified by  

𝑃𝑖𝑗
𝑘+1 = {

𝑃𝑖𝑗
𝑘 + 𝑉𝑖𝑗

𝑘+1  𝑖𝑓 𝑃𝑖𝑗,𝑚𝑖𝑛 ≤ 𝑃𝑖𝑗
𝑘 + 𝑉𝑖𝑗

𝑘+1 ≤ 𝑃𝑖𝑗,𝑚𝑎𝑥 

𝑃𝑖𝑗,𝑚𝑖𝑛 𝑖𝑓 𝑃𝑖𝑗
𝑘 + 𝑉𝑖𝑗

𝑘+𝑖 < 𝑃𝑖𝑗,𝑚𝑖𝑛 

𝑃𝑖𝑗,𝑚𝑎𝑥 𝑖𝑓 𝑃𝑖𝑗
𝑘 + 𝑉𝑖𝑗

𝑘+𝑖 > 𝑃𝑖𝑗,𝑚𝑎𝑥 

  (5) 
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Figure 2 Illustrates how the position of element j of individual i is adjusted to its maximum when the over-velocity 
situation occurs. 

Although the aforementioned method always produces the position of each individual satisfying the inequality 
constraints of the generator operating limit (Pi,min≤ Pi ≤ Pi,max; i = 1,…. ,n), the problem of equality constraint still remains 
to be resolved. Therefore, it is necessary to develop a new strategy such that the summation of all elements in an 
individual (i.e.,∑ 𝑃𝑖𝑗

𝑘𝑛
𝑗=1 ) is equal to the total system demand. [11]. [10] 

 

Figure 2 Adjustment strategy for an individual’s position within boundary [10] 

 

2.6. Update of Pbest and Gbest 

The Pbest of each individual at iteration k+1 is updated as follows: 

𝑃𝑏𝑒𝑠𝑡𝑖
𝑘+1 = 𝑋𝑖

𝑘+1 𝑖𝑓 𝑇𝐶𝑖
𝑘+1 < 𝑇𝐶𝑖

𝑘+1    (6) 

   𝑃𝑏𝑒𝑠𝑡𝑖
𝑘+1 = 𝑃𝑏𝑒𝑠𝑡𝑖

𝑘+1 𝑖𝑓 𝑇𝐶𝑖
𝑘+1 ≥ 𝑇𝐶𝑖

𝑘+1  (7) 

Where 

𝑇𝐶𝑖 the object function evaluated at the position of individual i. 

Additionally, Gbest at iteration k+1 is set as the best evaluated position among𝑃𝑏𝑒𝑠𝑡𝑖
𝑘+1. [10]. 

2.7. Space Reduction Strategy 

To accelerate the convergence speed to the solutions, the multiple particle swarm optimization has introduced the 
search space reduction strategy. This strategy is activated in the case when the performance is not increased during a 
pre-specified iteration period. In this case, the search space is dynamically adjusted (i.e., reduced) based on the 
“distance” between the Gbest and the minimum and maximum output of generator j. To determine the adjusted 
minimum/maximum output of generator i at iteration k, the distance is multiplied by the predetermined step-size Δ and 
subtracted (added) from the maximum (minimum) output at iteration as described in (8 and 9) 

𝑃𝑗 𝑚𝑎𝑥
𝑘+1 = 𝑃𝑗 𝑚𝑎𝑥

𝑘 − (𝑃𝑗 𝑚𝑎𝑥
𝑘 − 𝐺𝑏𝑒𝑠𝑡𝑗

𝑘) × 𝛥     (8) 

                         𝑃𝑗 𝑚𝑖𝑛
𝑘+1 = 𝑃𝑗 𝑚𝑖𝑛

𝑘 − (𝑃𝑗 𝑚𝑖𝑛
𝑘 − 𝐺𝑏𝑒𝑠𝑡𝑗

𝑘) × 𝛥     (9) 

Fig. 3 illustrates how the search space of each generator is dynamically reduced when activated. 
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Figure 2 Schematic of the dynamic space reduction strategy[10]. 

2.8. Stopping Criteria 

The multi-objective particle swarm optimization is terminated if the iteration approaches to the predefined maximum 
iteration. [10]. 

3. Methodology 

3.1. Modelling of Economic Dispatch and Problem Formulation 

The objective of the conventional economic dispatch problem is to minimize the total cost of thermal generating units 
while satisfying various constraints including power balance and generator power limits. In the economic dispatch 
problem with multiple fuel options, the piecewise quadratic function is used to represent the multiple fuels which are 
available for each generating units [13]. Therefore, the objective of the economic dispatch problem with multiple fuel 
options is to find a suitable fuel for each generating unit so as their total cost is minimized while satisfying different 
constraints including power balance and generation limits. 

Mathematically, the problem is formulated as follows: 

𝑀𝑖𝑛 𝐹 = ∑ 𝐹𝑖(𝑃𝑖)
𝑛
𝑖=1    (14)  

In general, a piecewise quadratic function is used to represent the input-output curve of a generator with multiple fuels 
and described as 

𝐹𝑖(𝑃𝑖) =

{
 
 

 
 
𝑎𝑖1 + 𝑏𝑖1𝑃𝑖 + 𝑐𝑖1𝑃𝑖

2, 𝐹𝑢𝑒𝑙 1 𝑃𝑖𝑚𝑖𝑛 ≤ 𝑃𝑖 ≤ 𝑃𝑖1
𝑎𝑖2 + 𝑏𝑖2𝑃𝑖 + 𝑐𝑖2𝑃𝑖

2, 𝐹𝑢𝑒𝑙 2  𝑃𝑖1 ≤ 𝑃𝑖 ≤ 𝑃𝑖2
.
.
.

𝑎𝑖𝑘 + 𝑏𝑖𝑘𝑃𝑖 + 𝑐𝑖𝑘𝑃𝑖
2, 𝐹𝑢𝑒𝑙 𝑘 𝑃𝑖𝑘−1 ≤ 𝑃𝑖 ≤ 𝑃𝑖𝑚𝑎𝑥

  (15) 

Where  

aik , bik, cik  Cost Coefficient for unit i for fuel type k 

Pi    Output power of unit i (MW) 

Pimin, Pimax  Lower and Upper generation limits of unit i  

Subject to 
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a) Power balance constraint  

∑ 𝑃𝑖 − 𝑃𝐿 − 𝑃𝐷 = 0
𝑛
𝑖=1     (16) 

Where the power loss is approximately calculated by Kron’s formula 

 𝑃𝐿 = ∑ ∑ 𝑃𝑖𝐵𝑖𝑗𝑃𝑗
𝑁
𝑖=1

𝑁
𝑖=1 + ∑ 𝐵0𝑖𝑃𝑖 + 𝐵00

𝑁
𝑖=1                              (17) 

b) Generator operating limits 

Pi,min≤ Pi ≤ Pi,max; i = 1, . . . , N     (18) 

Where  

Pi  Output power of unit i 

PD  Total load demand of the system (MW) 

PL  Total network loss of the system (MW) 

Bij, Boi, Boo Transmission loss formula coefficients 

Table 1 Data for 3-Unit System 

S/N Generating 
Units 

Lower Limit, Pmin 

(MW) 

Upper Limit, Pmax 

(MW) 

Cost Coefficient 

(a, b, c) 

1 Generator 1 10 85 0.008, 7, 200 

2 Generator 2 10 80 0.009, 6.3, 180 

3 Generator 3 10 70 0.007, 6.8, 140 

 
𝐵𝑖𝑓 =  0.000218 0.000093 0.000028

       0.000093 0.000228 0.000017
       0.000028 0.000031 0.000015

 

 

𝐵0𝑖 = 0.0003 0.0031 0.0015 

𝑩𝟎𝟎 = 𝟎. 𝟎𝟑𝟎𝟓𝟐𝟑 

 

Figure 5 Typical 3-Unit system 
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Table 2 Data for 6-Unit System 

Generating 
Unit 

Lower Limit, Pmin 

(MW) 

Upper Limit, Pmax 

(MW) 

Cost Coefficient 

(a, b and c) 

1 100 500 0.007, 7, 240 

2 50 200 0.0095, 10, 200 

3 80 300 0.009, 8.5, 300 

4 50 150 0.008, 11, 200 

5 50 200 0.008, 10.5, 220 

6 50 120 0.0075, 12, 120 

  

𝐵𝑖𝑗 =
0.000014 0.000017 0.000015
0.000017 0.00006 0.000013
0.000015 0.000013 0.000065

 
0.000019 0.000026 0.000022
0.000016 0.000015 0.00002
0.000017 0.000024 0.000019

 

 

      
0.000019 0.000016 0.000017
0.000026 0.000015 0.000024
0.000022 0.00002 0.000019

 
0.000071 0.00003 0.000025
0.00003 0.000069 0.000032
0.000025 0.000032 0.000085

 

 

𝐵0𝑖 = 0 

𝐵00 = 0 

 

 

Figure 3 Typical 6-Unit system 
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4. Results 

4.1. Test Strategy 

To verify the feasibility and effectiveness of Particle Swarm Optimization (PSO) in solving economic dispatch, the 
heuristic algorithms was applied to  

3-unit system with transmission losses 
3-unit system without transmission losses 
6-unit system with transmission losses 
6-unit system without transmission losses 
3-unit system with multiple fuel options 
 
The economic dispatch problem was solved using particle swarm optimization and the performance of each generator 
has been judged using MATLAB 8.1.0 on an Intel(R) Pentium(R) N3540 processor, 2.16GHz with 4GB RAM. 

4.2. Parameter Determination Strategy 

The several parameters to be determined for the implementation of the particle swarm optimization such as w, c1 and 
c2 in . In this journal, these parameters have been determined and to avoid the problem of the curse of dimensionality, 
the procedures and strategies are determined as follows:  

1. The values of c1 and c2  have the same value, which implies the same weights are given between Pbest and Gbest in 
the evolution processes.  

2. The values of w are varied from 0.9 to 0.4  

The parameters of the PSO are as follows 

 Population size is 50 

 Number of generation is 500 

 

Figure 4 Convergence Characteristics of PSO for 3-unit system 
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Figure 5 Convergence Characteristics of PSO for 6-unit system 

4.3. Solution Quality 

The particle swarm optimization was tested to know its effectiveness in minimizing generation cost and as well meeting 
the various load demands. The first test system has three-generating units and the parameters of the 3-Unit system has 
transmission loss coefficient represented in B-matrix form as shown in table 1. The output of the particle swarm 
optimization are presented in table 3. At various load demand (with 10MW increment), the result is given by particle 
swarm optimization algorithm in term of generation cost and power loss minimization. 

Table 3 Results by particle swarm optimization at different load values. 

Power 
Demanded 

(MW) 

Gen 

1 

(MW) 

Gen 

2 

(MW) 

Gen 

3 

(MW) 

Total 
Cost 

(#/hr.) 

Power 
Loss 

(MW) 

100 16.64 49.69 34.78 1219 1.08 

110 19.70 52.90 38.72 1293 1.30 

120 23.26 55.73 42.56 1368 1.53 

130 26.30 58.78 46.73 1444 1.78 

140 29.72 61.40 50.96 1521 2.05 

150 32.74 64.82 54.82 1598 2.35 

160 36.03 67.42 59.24 1676 2.65 

170 39.37 70.50 63.15 1754 2.99 

180 43.00 73.28 67.09 1834 3.35 

190 46.88 76.90 70.00 1914 3.74 

200 54.22 80.00 70.00 1995 4.19 

210 64.69 80.00 70.00 2078 4.65 

220 75.20 80.00 70.00 2164 5.17 
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Figure 6 Power Output of three generators using Particle Swarm Optimization 

 

 

Figure 7 Total Cost using Particle Swarm Optimization 

 

 

Figure 8 Total Power loss for three generators 

Considering the same 3-Unit system without transmission losses (from Table 1), it is found that the global solution of 
particle swarm optimization has a very high probability as shown in Table 4, exactly satisfying the equality and 
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inequality constraints. Although particle swarm optimization and genetic algorithm have different load sharing for 
different load demand, the cost of generation remain the same for various load demands. 

Table 4 Results by particle swarm optimization without transmission loss at different load values. 

Power 
Demanded 

(MW) 

Gen 

1 

(MW) 

Gen 

2 

(MW) 

Gen 

3 

(MW) 

Total Cost 

(#/hr.) 

100 15.83 52.21 31.96 1211 

110 18.65 55.54 35.81 1283 

120 22.23 58.54 39.23 1357 

130 25.32 61.07 43.61 1431 

140 28.90 64.15 46.96 1505 

150 32.11 67.23 50.67 1580 

160 35.25 70.36 54.39 1655 

170 38.59 73.11 58.30 1731 

180 41.93 75.92 62.15 1807 

190 45.13 78.92 65.95 1884 

200 50 80 70 1962 

210 60 80 70 2041 

220 70 80 70 2121 

 

Increasing the number of generating units to six and using particle swarm optimization to solve the economic dispatch 
problem of the 6-unit system, Table 2 shows the parameters of the 6-Unit system with their cost coefficient. The solution 
is shown in table 5. 

Table 5 Result by particle swarm optimization with transmission loss at different load values. 

Power 

Demanded 

(MW) 

Unit 1 

(MW) 

Unit 2 

(MW) 

Unit 3 

(MW) 

Unit 4 

(MW) 

Unit 5 

(MW) 

Unit 6 

(MW) 

Total 
Cost 

(#/hr.) 

Power 
Loss 

(MW) 

500 221.08 50 84.51 50 50 50 6132 5.59 

600 280.64 50 127.28 50 50 50 7203 7.92 

700 323.55 76.75 158.49 50 51.94 50 8353 10.74 

800 355.82 99.22 181.90 50 77.41 50 9559 14.34 

900 383.07 118.31 201.36 67.35 98.41 50 10813 18.51 

1000 410.60 137.35 220.62 86.15 118.52 50 12110 23.23 

1100 425.99 155.27 238.95 104.26 138.30 65.83 13452 28.60 

1200 459.43 171.32 255.41 120 154.43 74.02 14835 34.60 

1300 482.90 187.66 272.32 135.38 171.68 91.31 16257 41.26 

1400 500 200 292.37 150 192.54 113.95 17720 48.61 
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Figure 9 Power output of six generators using Particle Swarm Optimization 

 

 

Figure 10 Total cost of generation using Particle Swarm Optimization 

 

 

Figure 11 Total Power loss for six generators 

Again, the particle swarm optimization gives a slightly different solution for 6-unit system without transmission loss. 
The solution provided by the particle swarm optimization in terms of generation cost and transmission loss is shown in 
table 6. 
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Table 6 Result by particle swarm optimization without transmission loss at different load values. 

Power 

Demanded 

(MW) 

Unit 1 

(MW) 

Unit 2 

(MW) 

Unit 3 

(MW) 

Unit 4 

(MW) 

Unit 5 

(MW) 

Unit 6 

(MW) 

Total 
Cost 

(#/hr.) 

500 215.51 50 84.49 50 50 50 6076 

600 271.66 50 128.34 50 50 50 7117 

700 312.97 72.47 158.81 50 54.76 50 8229 

800 341.88 94.26 182.53 50 81.34 50 9388 

900 367.35 112.84 202.64 63.75 103.43 50 10585 

1000 391.34 130.63 221.52 82.50 124 50 11817 

1100 414.53 147.84 239.05 100.5 143.93 54.16 13082 

1200 435.14 161.92 253.65 115.64 161.07 72.58 14376 

1300 453.85 176.30 270.28 130.65 178.18 90.73 15698 

1400 473.66 191.32 285.13 145.86 195.70 108.32 17047 

An economic dispatch problem with multiple fuel options has also been considered. Particle swarm optimization was 
applied to solve the problem. The parameters of the generating unit as shown in table 7. The results of the three 
approaches with multiple fuel option combination are shown in table 8a-8d. 

Table 7 Data of 3-unit generator with multiple fuel options. 

Generating 
Unit 

Lower 
limit, Pmin 

Upper 
Limit, Pmax 

FT a B c 

1 190 490 1 0.001066 0.8773 13.92 

2 0.001597 -0.5206 99.76 

2 85 265 1 0.002758 -0.6348 52.85 

2 0.001049 0.03114 1.983 

3 200 500 1 0.0002454 0.3559 43.35 

2 0.001165 -0.2267 43.77 

 

Table 8a Comparison of optimization method (Demand =700MW). 

Unit FT Particle swarm optimization 

1 1 190 

2 1 207 

3 1 303 

Total Power  700 

Total Cost  432.43 
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Table 8b Comparison of optimization method (Demand =700MW) with FTunit3 =2 

Unit FT Particle swarm optimization 

1 1 190 

2 1 203.87 

3 2 306.13 

Total Power  700 

Total Cost  340.70 

 

Table 8c Comparison of optimization method (Demand =700MW) with FTunit2,3 =2  

Unit FT Particle swarm optimization 

1 1 190 

2 2 148.34 

3 2 361.66 

Total Power  700 

Total Cost  404.51 

  

5. Conclusion 

The complex problem of economic power dispatch is solved using particle swarm optimization. The test results clearly 
demonstrated that particle swarm optimization which is capable of achieving global solutions is simple, 
computationally efficient and has better and stable dynamic convergence characteristics. For the economic problem for 
6-generator system, the particle swarm optimization has also provided the global solution with a high probability. In 
the case economic dispatch problem with multiple fuel option, the particle swarm optimization has good solution. 

However, more research should be done on the effect of changing parameters of particle swarm optimization in solving 
economic dispatch problem. The parameters should be varied in other to see the behaviour of particle swarm 
optimization.  
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