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Abstract 

Computer vision becomes a great area of research due to huge availability of images and videos. For enhancement of 
security, biomedical imaging or automation of identification, one may need useful tools to recognize images. One main 
problem of image data set is high dimensional, and it is very expensive to work with huge dimensions.  In this paper, 
our main aim is to show a better dimension reduction process of high dimensional image data sets from several existing 
techniques. To verify it we start with most useful singular value decomposition to reduce the dimensionality of data to 
incorporate principal components. On the other hand, we classify data in advance to work out Fisher’s discriminant 
analysis. From many real-world examples, we set a very well-known paradigm of analysis using Principal Component 
Analysis (PCA), Linear Discriminant Analysis (LDA) or Fisher Discriminant Analysis (FDA) and Simple Projection (SP) 
to recognize people from their facial images. We consider that we have some images of known people that can be used 
to compare and recognize new images (of the same set of face images). Moreover, we show graphical and tabular 
representation for average performance of correct recognition as well as analyze the effectiveness of three different 
machine learning techniques.  

Keywords:  SVD; Orthogonal linear transformation; Orthogonal projection; PCA; LDA; Eigenfaces 

1. Introduction

By the advancement of technology, people are using internet for interchanging millions of photos every day from one 
to another part of the world, where data reductions are used to send file long distance within minimum period of time. 
In the medical science, physicians are detecting body organs, tumor cells and complex physical phenomena by optical 
fibers and where image processing is quite useful. The other important sectors of image processing is meteorology 
where it processes images sent by satellite to do daily weather forecasting or finding climate change. There are many 
other sectors such as military surveillances, underwater search, satellite navigation etc. Suppose there are millions of 
images in the database of NSA, but they do not have clear image of the suspect (or suspects). Their main aim is to find 
the image (or multiple images) of particular scene and identify object of interest in the image (or images). In the paper 
of digital image processing [1] showed example on medical radiology. It has been quite a while that researchers are 
finding better method to show images more clearly in different sectors. Here we introduced three existing methods and 
we gave a consultancy to the researcher that which method ought to apply. One of the mostly used methods is fisher-
faces which derives from fisher’s discriminant analysis [2] (R.A. Fisher 1936) or simply we say LDA [3]. Apart from 
FDA/LDA we use dimensionality reduction technique which produces projection directions that maximize the total 
scatter across all classes. Image recognition has very important applications in numerous ways, so the identification 
and authentication of an image is very crucial. For example, face recognition techniques applied by the facial recognition 
machinery which can identify the facial expressions using many machine learning algorithms like PCA, LDA and Kernel 
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LDA [4]. Those algorithms use grayscale or RGB images without in-depth details of object for classical image recognition 
techniques even though PCA based on the multi view depth information can improve the image classification accuracy 
[5]. Hence, for obtaining the in-depth details of an image people can use unsupervised image depth estimation. We used 
dimensionality reduction techniques to obtain the multi-view depth characters of images through several unsupervised 
machine learning techniques like PCA, FDA etc. since understanding the structure of high dimensional data is difficult. 
PCA is very popular among researchers to reduce the dimension of a dataset and uncovering the underlying structure 
of that dataset.  Using PCA we can derive the complex representation of image data by employing the algebra of matrices 
in the context of image analysis [6]. Data visualization is also an important factor for image data analysis. We can reduce 
the high dimensional data to low dimensional data for data visualization since the reduced form of the data shows the 
similar intuition as original data because we are transforming the correlated variables to uncorrelated variables by 
linear combinations of uncorrelated to the original variables by applying PCA [7]. We need to maintain the main features 
of images (distribution of color, edge shapes, texture features, and region shapes) by replacing the original features of 
images in case of dimension reduction and PCA can reduce the dimension by eliminating the components with low 
variance and keeping the components with high variance [8]. LDA is another machine learning technique for image 
recognition and very useful method for features extraction and dimension reduction with little computation time and 
the improvement of LDA method can be done by discrimination vector selection, statistical uncorrelation of 
discriminator vector and by improving the PCA [9]. Moreover, in the projected feature space LDA find out a set of 
projection vectors by supplementing the between class scatter matrix for extracting more discriminant information 
[10]. The most popular LDA method for image recognition is Fisherface/Eigenface which is based on Fisher's linear 
discriminant analysis and can generate in depth separated classes in a low-dimensional subspace even under the 
extreme variation in facial expressions and lightning [11]. Another technique is Eigenface which projected the image 
space to a low dimensional subspace but Fisherface was better than Eigenspace when tested Harvard and Yale face 
databases [11]. That is why we considered the fisher discriminant analysis technique in our study.  
In this current paper, we discuss the mathematical background of PCA, LDA and SP and incorporate with statistical 
analysis. We show few proofs to explain the projection and how it helps to reduce dimensionality. Moreover, we explain 
how to apply MATLAB for all mentioned techniques. Finally, a comparison is shown between three techniques and 
described the performances for face recognition.  

2. Methodology  

As images are very high dimensional, it is not easy to analyze them directly. A few common approaches are to reduce 
their diminution using principal component analysis (PCA), Fisher’s discriminant analysis (FDA), and other similar 
methods. Both PCA and LDA are linear transformation methods. PCA yields the directions (principal components) that 
maximize the variance of the data, whereas LDA also aims to find the directions that maximize the separation (or 
discrimination) between different classes, which is applied in pattern classification problem including image 
recognition.  

Our main problem is arising from 𝑌 = 𝑋𝛽 + 𝜀  where 𝑌 𝑖𝑠 𝑛 × 1 column matrix, 𝑋 𝑖𝑠 𝑛 × 𝑝 matrix and 𝜀 is 𝑛 × 1 matrix. 
If we ignore the error term 𝜀 and compare it with system of linear equation of the standard form 𝐴𝑋 = 𝑏 then for 𝑛 > 𝑝, 
the system is overdetermined and we consider it as linear least square problems (to solve it, we use Gram Schmidt 
process, QR factorization, Householder, etc), but when 𝑛 < 𝑝 then the system becomes underdetermined and we use 
singular value decomposition shortly SVD to reduce the dimension of columns of matrix 𝑋  from 𝑝  to a smaller 
dimension (say,‘d’ for our case). PCA is one of the central uses of SVD. 

Here, PCA analysis is to identify patterns in data; PCA aims to detect the correlation between variables. If a strong 
correlation between variables exists, the attempt to reduce the dimensionality only makes sense. In a sense PCA is all 
about finding the directions of maximum variance in high-dimensional data and projecting it onto a smaller dimensional 
subspace while retaining most of the information. Mathematically, PCA is defined as an orthogonal linear 
transformation that transforms the data to a new coordinate system such that the greatest variance by the projection 
of the data comes to lie on the first coordinate (called the first principal component), the second greatest variance on 
the second coordinate and so on. Let’s say 𝑿 as,  

𝑿 = (

𝑥11 ⋯ 𝑥1𝑝

⋮ ⋱ ⋮
𝑥𝑛1 ⋯ 𝑥𝑛𝑝

) 
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For any matrix 𝑿 ∈ 𝑅𝑛×𝑝, there exists an orthogonal matrix 𝑈 ∈ 𝑅𝑛×𝑛 and 𝑉 ∈ 𝑅𝑝×𝑝 such that  𝑈𝑇𝑋𝑉 = ∑, Where, sigma, 
∑ = diagonal (𝜎1, 𝜎2 … , 𝜎𝑛 ) ∈ 𝑅𝑛×𝑝 , 𝜎1 ≥ 𝜎2 ≥ 𝜎3 ≥ ⋯ ≥ 𝜎𝑛 ≥ 0 . The 𝜎𝑖′𝑠  are called the singular values of 𝑋  and the 
columns of 𝑈   and 𝑉 are called left and right singular vectors of 𝑋 respectively. For 𝑛 singular values, 𝜎1 ≥ 𝜎2 ≥ 𝜎3 ≥
⋯ ≥ 𝜎𝑑 ≥ 𝜎𝑑+1 = 𝜎𝑑+2 … 𝜎𝑛 = 0. Where 𝑑 is the number of positive singular values, others are zero. Now the rank of 
our original matrix 𝑋 is 𝑑 (Figure-1). Range of X is the span of 𝑢1, 𝑢2, … , 𝑢𝑑 which is equal to 𝑑. Originally, we had the 
dimension of 𝑋 was 𝑛 × 𝑝 and now it is 𝑛 × 𝑑. Statistically, number of data is reduced from 𝑝 to 𝑑. Now, 𝑈𝑇𝑋𝑉 = ∑  
becomes 𝑋 = 𝑈∑𝑉𝑇, that’s meaning, in original data we had 𝑝 columns and now after SVD, we obtain 𝑑 columns.  

 

Figure 1 Full singular value decomposition to reduced singular value decomposition. Randomly generated matrix was 
used 

From Figure 1, SVD is visualized using imagesc command from MATLAB library. Consider, 

X = randi([55 100],50,50); 

imagesc(X) 

[U,S,V] = svd(X); 

imagesc(U); imagesc(S); imagesc(V) 

Now we can use principal component analysis (PCA) using this SVD technique. Originally, our 𝑋 is like a column form 

𝑋 = (

𝑋1

𝑋1

⋮
𝑋𝑛

) ∈ 𝑅𝑝 

With mean zero and covariance 𝐾. But now it is reduced by 𝑋 ∈ 𝑅𝑑 which is our principal component. Please note, if 𝑋  
is not 0 then we should use 𝑋 − 𝐸(𝑋) for centering. 

Now the covariance matrix is 𝐾 which looks like 

𝐾 = (
𝑐𝑜𝑣(𝑋1, 𝑌1) ⋯ 𝑐𝑜𝑣(𝑋1, 𝑌𝑛)

⋮ ⋱ ⋮
𝑐𝑜𝑣(𝑋𝑛, 𝑌1) … 𝑐𝑜𝑣(𝑋𝑛, 𝑌𝑛)

) 

Covariance matrix is obtained by 𝑐𝑜𝑣(𝑋) = 𝐾.  

Suppose 𝑈  be the 𝑝 × 𝑝  orthogonal matrix such that the elements of the vectors 𝑍 = 𝑈𝑇𝑋  are uncorrelated. The 
uncorrelated elements of the vector 𝑍 = 𝑈𝑇𝑋 are called the component of 𝑋. So, our motto is to find this  𝑈 which can 
be obtained from the SVD of covariance matrix 𝐾. Precisely, 𝑐𝑜𝑣(𝑍) = 𝑈𝑇𝑐𝑜𝑣(𝑋)𝑈 = 𝑈𝑇𝐾𝑈 = ∑. Now we can compare 
this SVD.  

Thus 𝑍𝑖 = 𝑈𝑖
𝑇𝑋 is the principal component. More elaborately (𝑍1, 𝑍2, … ) and (𝑈1, 𝑈2, … ) are the principal components 

and directions respectively. Here, 𝑍1has the largest variance and 𝑍2 has the second largest and so on. So, we can reduce 
the algorithm of PCA of given data as bellows where 𝑋 denotes an independent observation vector ′𝑋′. Finding the 
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sample covariance 𝐾 ∈ 𝑅𝑝×𝑝  then compute the SVD of  𝐾  to obtain orthogonal matrix  𝑈 ∈ 𝑅𝑑×𝑛 . Then we define 
principal directions by choosing first column of 𝑈. Thus, the principal component is  

𝑍𝑑×1 = 𝑈𝑑×𝑛
𝑇 𝑋𝑛×1 

Note that, if we have more correlated data then 𝑑 will be very smaller than  𝑛.  
One of the most useful demonstrations of PCA is the so-called Eigen faces example. There are two sets of images 
considered for this particular study. One is known as the training set; these images are already identified and labeled by 
some experts, say humans and the second one is test images; these are new images which need to be identified and 
labeled. Our aim is to use the similarities between the test and training images to label the test images. Linear 
Discriminant Analysis (LDA) will project a dataset onto a lower-dimensional space with good class-reparability in order 
to avoid overfitting (“curse of dimensionality”) and also reduce computational costs. 

 

Figure 2 Principal component analysis 

Ronald A. Fisher formulated the Linear Discriminant in 1936 (The Use of Multiple Measurements in Taxonomic 
Problems), and it also has some practical uses as a classifier. The original linear discriminant was described for a 2-class 
problem, and it was then later generalized as “multi-class Linear Discriminant Analysis” or “Multiple Discriminant 
Analysis” by C. R. Rao in 1948. The general LDA technique is congruent to a PCA, but in addition to finding the component 
axes that maximize the variance of our data (PCA), we are additionally interested in the axes that maximize the 
separation between multiple classes (LDA). 
In LDA, the goal is to separate and characterize the observation after the projection. Similar observations should be 
closer and un-similar observations should be separated. In case of multiple class, let us take 𝐶1, 𝐶2, … , 𝐶𝑚 be m sets that 
partition of �̂� into 𝑚 classes. 

 

Figure 3 Linear Discriminant Analysis for two classes 

 

We are given, 𝑁𝑗  observations from class labeled by 𝐶𝑗. That is 𝑋𝑖
𝑗
 𝜖 𝐶𝑗 for 𝑖 = 1,2, … , 𝑁𝑗  & 𝑗 = 1,2, … , 𝑚 

Suppose, we have 𝐶𝑗 class  
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𝐶1 = 𝑋1
1, 𝑋2

1, … , 𝑋𝑁1
1 → 𝜇1 𝜖 𝑅𝑛 

𝐶2 = 𝑋1
2, 𝑋2

2, … , 𝑋𝑁2
2 → 𝜇2 𝜖 𝑅𝑛 

∗ ∗ ∗ 
𝐶𝑚 = 𝑋1

m, 𝑋2
m, … , 𝑋𝑁m

m → 𝜇𝑚 𝜖 𝑅𝑛 

 

Each 𝑋𝑖
𝑗

 ∈  𝑅𝑛 , the 𝑖𝑡ℎ observation in the 𝑗𝑡ℎ class. Let, 𝜇𝑗 be the mean of observation in class 𝐶𝑗.  

𝜇𝑗 =
1

𝑁𝑗

∑ 𝑋𝑖
𝑗

𝑁𝑗

𝑖=1

 ∈  𝑅𝑛 

A matrix captures the separation between the classes in the between class scatter matrix.  

𝑆𝐵 = ∑(𝜇𝑗 − 𝜇)(𝜇𝑗 − 𝜇)
𝑇

𝑚

𝑗=1

 ∈  𝑅𝑛×𝑛 

Where 𝜇 =
1

𝑚
∑ 𝑢𝑗

𝑚
𝑗=1  

 
A matrix captures the average separation between elements within the same class is captured by the within class scatter 
matrix.  

𝑆𝑤 = ∑ (∑(𝑋𝑖
𝑗

− 𝜇𝑗)(𝑋𝑖
𝑗

− 𝜇𝑗)
𝑇

𝑁𝑗

𝑖=1

)

𝑚

𝑗=1

∈  𝑅𝑛×𝑛 

 
Now our goal is to find the projection,  𝑍 = 𝑈𝑇𝑋. The between class scatter matrix becomes 
 

𝑆𝐵
𝑍 = 𝑈𝑇𝑆𝐵𝑈 

 
and the within class scatter matrix becomes  

𝑆𝑤
𝑍 = 𝑈𝑇𝑆𝑤𝑈 

 
Now the goal is to choose 𝑈 that maximizes the following function 
 

𝑓(𝑈) =
𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑛𝑡(𝑆𝐵

𝑍)

𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑛𝑡(𝑆𝑤
𝑍 )

     

 

                                     =
𝑑𝑒𝑡 (𝑈𝑇𝑆𝐵𝑈)

𝑑𝑒𝑡 (𝑈𝑇𝑆𝑤𝑈)
 
↑

↓
 ; 𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 𝑓(𝑈) ↑ 

 

The optimal projection is  �̂� = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑓(𝑈)); 𝑤𝑖𝑡ℎ 𝑈 ∈ 𝑅𝑛×𝑑. Now, we have to find 𝑈 that the quantity �̂� maximizes. 

�̂� can be solved as the generalized eigenvalue problem where we calculate 𝑆𝐵�̂�𝑖 = 𝑒𝑖𝑆𝑤�̂�𝑖; 𝑒𝑖 represents the eigenvalues 
of the transformation matrix 𝑈. If 𝑆𝐵  is nonsingular then we can find corresponding eigenvector by calculating 𝑈 =

𝑆𝐵
−1𝑆𝑤. In our case we will use built-in MATLAB code to find an eigenvector. 

Now, for Simple Projection, the following ideas are used. We introduce two theorems of real analysis to present it.  

In the inner product space 𝑊, if 𝑥, 𝑦 ∈ 𝑊 𝑠. 𝑡.  y ≠ 0, then the orthogonal projection of 𝑥 𝑜𝑛𝑡𝑜 𝑦 is given by 𝑝𝑟𝑜𝑗𝑦𝑥 =
<𝑥,𝑦>

<𝑥,𝑥>
𝑦. 

Theorem 1: For every vector 𝑥 in the 𝑊(𝐻𝑖𝑙𝑏𝑒𝑟𝑡 𝑆𝑝𝑎𝑐𝑒) and any nonempty closed convex set 𝐶 in 𝐻 where 𝐶 ⊂ 𝑊, 

there exists a unique vector 𝑝 ∈ 𝐶, then norm √< 𝑥 − 𝑞, 𝑥 − 𝑞 >=∥ 𝑥 − 𝑞 ∥ is minimized thru any other vector 𝑞 ∈ 𝐶.  

Theorem 2: Let a projection on a vector space 𝑊 is a linear operator H: 𝑊 → 𝑊 such that H2 = H,  then H and I − H are 
orthogonal projections. 

Proof: For any 𝑥, 𝑦 ∈ 𝑊, in the one direction 
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< 𝐻𝑥, (𝑦 − 𝐻𝑦) >  = < (𝑥 − 𝐻𝑥), 𝐻𝑦 >  = 0  

which is equivalent to  < 𝑥, 𝐻𝑦 >  = < 𝐻𝑥, 𝐻𝑦 > = < 𝐻𝑥, 𝑦 > 

Therefore,  H2 = H. Since, for being orthogonal projection, it needs to be self-adjoint. 

On the other direction, or any 𝑥, 𝑦 ∈ 𝑊,  

consider, 𝐻𝑥 ∈ 𝑀, 𝑦 − 𝐻𝑦 ∈ 𝑁, where 𝑀, 𝑁 any two vector spaces and 

< 𝐻𝑥, 𝑦 − 𝐻𝑦 > = < 𝐻2𝑥, 𝑦 − 𝐻2𝑦 > = < 𝐻𝑥, 𝐻(𝐼 − 𝐻)𝑦 > = < 𝐻𝑥, (𝐻 − 𝐻2)𝑦 > = 0 

Which implies, H and 𝐼 − 𝐻 are orthogonal projections.  

On the other direction, if H is orthogonal then it is self-adjoint. 

So, < 𝑥, 𝐻𝑦 >  = < 𝐻𝑥, 𝑦 >  ∀𝑥, 𝑦 ∈ 𝑊     ∎ 

Now we describe dimension reduction with orthogonal projection 

For our high dimensional image data set, 

𝑋 ∈ ℝ𝑛×𝑝, 𝑋 = {𝑦𝑗}
𝑗=1

𝑝
⊂ ℝ𝑛. 

We need to map 𝑦 into a lower dimensional affine subspace, �̅� + 𝑁. Note that, we keep the same notation of data set 𝑋 

instead of using 𝑌 to keep the similarity. In this case �̅� = ∑
𝑥𝑖

𝑝
, 𝑁

𝑝
𝑖=1  is 𝑛 dimensional linear subspace in ℝ𝑝 where 𝑛 < 𝑝.  

Used mapping obtained by orthogonal projection on ℎ ∈ 𝒢𝑛,𝑝,   

where Grassmannian  𝒢𝑛,𝑝 = {ℎ ∈ ℝ𝑛×𝑝: ℎ2 = ℎ, ℎ𝑇 = ℎ}, 𝑟𝑎𝑛𝑘(ℎ) = 𝑛, 𝑟𝑎𝑛𝑔𝑒(ℎ) = 𝑁. 

In this study, we compute the principal component (PCA) of training images and project them down to the smaller size. 
That is, each training image is now represented by a small vector size 𝑘. For the test image, we can project them down 
to a 𝑘 vector, using the same projection and then we find the nearest image in the training set by computing 𝑘 vectors. 
In the case of FDA, the low dimensional projection is determined by using scatter matrices. We will assume 𝑛2 training 
images each for 𝑛1  people in our database. The size of each image is 𝑠1 × 𝑠2 . These images are taken at different 
orientations, different facial expression etc. There are two parts, one is to analyze the training images and compute a 
projection to their principal 𝑘 −dimensional subspace and comparing with training data. In this work we will start from 
the following. Let us consider vector in a matrix size (𝑠1 × 𝑠2) × (𝑛1 × 𝑛2) is the arrangement of training images and we 
call it 𝑌𝑡𝑟𝑎𝑖𝑛. First 𝑛2 columns are images of person  1, and next 𝑛2 columns are images of person  2, and so on, with a 
total of 𝑛1 × 𝑛2 columns. Then we use PCA, FDA and Simple projection and we compare these three procedures. To 
perform PCA from our dataset 𝑌𝑡𝑟𝑎𝑖𝑛, we need to calculate SVD and designate 𝑈1 be the first 𝑘 columns of the orthogonal 
matrix 𝑈. The size of 𝑈 is now (𝑠1 × 𝑠2) × 𝑘. Now we will use FDA, where we still consider PCA to reduce the size of our 

data 𝑌𝑡𝑟𝑎𝑖𝑛 from (𝑠1 × 𝑠2) × (𝑛1 × 𝑛2) to 𝑑 × (𝑛1 × 𝑛2), where 𝑑 =
𝑛1×𝑛2

2
. So, we get a new matrix and let us call it  �̃�𝑡𝑟𝑎𝑖𝑛 

and call the (𝑠1 × 𝑠2) × 𝑑 projection matrix 𝑈0. Use all the vectors from the same person as observations from the same 
cluster. In �̃�𝑡𝑟𝑎𝑖𝑛, the first 𝑛2 columns designate the first person, the second 𝑛2 columns designate the second person, 
and so on. We have two scatter matrices; one is between class and another is with-in class scatter matrices and use the 
generalized eigen decomposition to find 𝑘 eigenvectors that correspond to the largest eigenvalues. So, we get this result 
as a matrix form and say it submatrix 𝑉 . Now we find the orthogonal columns 𝑑 × 𝑘  matrix. Define a (𝑠1 × 𝑠2) × 𝑘 
orthogonal matrix 𝑈1 = 𝑈0𝑉. 
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Figure 4 Examples of Eigen faces for test and train datasets 

We will use simple projection for comparison with PCA and FDA. In this case, we will take another projection where 𝑈1 
is simply first 𝑘 columns of (𝑠1 × 𝑠2) identity matrix.  Now, we will repeat the following for the upper three cases one 

by one. We will use the projection 𝑌1 = 𝑈1
𝑇 𝑌𝑡𝑟𝑎𝑖𝑛  with size 𝑘 × (𝑛1 × 𝑛2), which simplify each image in  𝑌𝑡𝑟𝑎𝑖𝑛  in a 

reduced form of 𝑘 −dimensional vector. After using this procedure for each case, we can perform classification. We have 
𝑛2 test images per person and the test data set 𝑌𝑡𝑒𝑠𝑡 is in the same form as the training data set  𝑌𝑡𝑟𝑎𝑖𝑛. We will take an 
image 𝐼 randomly from the test set which represents a random column from 𝑌𝑡𝑒𝑠𝑡 actually. Projection of 𝐼 can be found 

from 𝐼1 = 𝑈1
𝑇𝐼 where 𝐼1 is a 𝑘 × 1 vector. Using 𝑙2 norm we can find the distance between 𝐼1 and each column of  𝑌1. 

Now, to find the label of the column that has the smallest distance to 𝐼1. If this label matches the true label, then our 
recognition is successful otherwise it is a failure. For computing the percentage of successful recognition 𝐹(𝑘), we 
perform the above procedure 500 times, which will also give us the average performance of the upper three methods. 
After plotting 𝑘 against each of the three projections we can easily discuss the performance.  For these images the image 
size is 𝑠1 = 28 and 𝑠2 = 23 where 𝑛1 = 40 which is the number of people. The number of training images per person is 
𝑛2 = 5 . So, we have the matrix size of  𝑌𝑡𝑟𝑎𝑖𝑛  is (𝑠1 × 𝑠2) × (𝑛1 × 𝑛2), i.e. (28 × 23) × (40 × 5) . We take  5 different 
training as well as test images from the data set and compare them with each other.  
 

3. Results and discussion 

We have summarized the result by using tables and graphs. Then we have shown an example of sets of images when the 
dimensionality parameter 𝑘 changes then the performance 𝐹(𝑘) becomes improved so that the quality of image gets 
better.  We demonstrate it by a few examples using test images and the closest images in the training set finally. 
Observation we wish to make from Table 1 is that regarding our training datasets has to do with relative behavior of 
Simple projection (SP), LDA and PCA as the dimensionality parameter 𝑘 becomes larger. The performance of these 
transforms gets better as the value of 𝑘 increases. What’s the difference between the three is that the recognition rate 
with PCA saturates around 4% to 89% when 𝑘  varies from 1 to 40 while the performance of simple projection and 
LDA/FDA vary widely from PCA. For the experiments under discussion, the average performance of correct recognition 
best for 𝐹𝑃𝐶𝐴(𝑘) = 89.2% when 𝑘 = 27, 𝐹𝑃𝐶𝐴(𝑘) = 74.2% when 𝑘 = 39, 𝐹𝑆𝑃(𝑘) = 34.4% whn 𝑘 = 40. From the table 
we can conclude that the values of 𝑭(𝒌)  is increasing with the increase of 𝒌  where PCA shows relatively best 
performance and SP reflects weaker performance.  
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Table 1 Representation of average performance of correct recognition 𝑭(𝒌) versus the number 𝒌 for three cases 

𝒌 𝑭𝑷𝑪𝑨(𝒌) 𝑭𝑭𝑫𝑨(𝒌) 𝑭𝑺𝑷(𝒌) 𝒌 𝑭𝑷𝑪𝑨(𝒌) 𝑭𝑭𝑫𝑨(𝒌) 𝑭𝑺𝑷(𝒌) 

1 0.114 0.12 0.162 21 0.876 0.836 0.45 

2 0.414 0.228 0.19 22 0.872 0.868 0.462 

3 0.554 0.438 0.248 23 0.86 0.816 0.464 

4 0.608 0.54 0.214 24 0.86 0.862 0.486 

5 0.648 0.614 0.246 25 0.862 0.858 0.48 

6 0.676 0.622 0.334 26 0.864 0.824 0.46 

7 0.752 0.666 0.38 27 0.864 0.872 0.514 

8 0.752 0.746 0.398 28 0.882 0.868 0.52 

9 0.81 0.782 0.41 29 0.896 0.892 0.566 

10 0.846 0.778 0.426 30 0.87 0.9 0.584 

11 0.83 0.778 0.408 31 0.872 0.886 0.584 

12 0.834 0.792 0.476 32 0.9 0.888 0.578 

13 0.818 0.84 0.474 33 0.868 0.876 0.574 

14 0.868 0.838 0.504 34 0.884 0.878 0.602 

15 0.862 0.85 0.484 35 0.868 0.902 0.572 

16 0.832 0.818 0.45 36 0.872 0.912 0.602 

17 0.81 0.828 0.474 37 0.854 0.888 0.598 

18 0.842 0.856 0.48 38 0.878 0.878 0.534 

19 0.844 0.868 0.478 39 0.846 0.894 0.598 

20 0.842 0.852 0.484 40 0.888 0.916 0.662 

 
Here we calculate the average performance. After performing PCA, FDA and Simple projection 500 times and computing 
the percentage of successful recognition, we draw the graph of 𝑘 versus  𝐹(𝑘). Figure-4 shows PCA is the most proficient 
technique compared to other two techniques. In fact, PCA > FDA > Simple Projection in our experiment. The 
performance of PCA is strictly increasing up to 35% when 𝑘  runs up from 0 to 3 continuously, then again it grows 
continuously up to almost 60%  with in the 𝑘 interval 4 to 7 (app.). However, after that there are some fluctuations of 
performances.  PCA achieves almost 90% accuracy when dimensionality parameter 𝑘 becomes 26  which shows best 
performance in our analysis for PCA and it again declines a little and fluctuates close to  90%  till 𝑘  becomes 40 . 
Performance of FDA and SimPro (SP) intersect each other when 𝑘 is closed to 13, but it shows only 20% performance 
approximately. Then the FDA grows rapidly where SimPro does not. To validate our numerical results in table and 
graphical results with real images, we want to use our method (PCA, FDA and SP) to recognize new images and compare 
them with some images of known people. For this case, we have chosen different 𝑘   values such as 4, 27, 40 and take a 
person (say person 2) from the test image and compare with our experiment. Figure6 is indicating the perfection of our 
study. MATLAB code is attached in Appendix-01. 
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Figure 5 Variation between percentage of successful recognition 𝑭(𝒌) and the number 𝒌 

 

 

Figure 6 Comparison of Eigenfaces using test images with PCA, FDA and Simple Projection performed images 

4. Conclusions 

In this study, PCA, FDA and simple projection have been executed for face recognition. Although people might think that 
LDA always outperforms PCA since LDA deals directly with class separation, empirical evidence suggests otherwise. 
PCA might outperform LDA when the number of samples per class is small or when the training data non-uniformly 
sample the underlying distribution. For our face recognition problem, underlying distributions for different classes are 
unknown. So, in practice it would be difficult to assert whether or not the available training data is adequate for the job. 
The analysis we report validates our claim. That is, PCA is better performing than FDA. In addition, simple projection is 
easy to compute but which shows relatively less performance than PCA and FDA. 



Global Journal of Engineering and Technology Advances, 2021, 08(01), 084–095 

93 

Data: https://cam-orl.co.uk/facedatabase.html 

Codes: Appendix 01 

Appendix 01: MATLAB Codes 

close all; 
clear all; 
 
load TrainImages.mat; 
 
load TestImages.mat; 
 
% Computing the PCA of Ytrain 
 
[U S V]=svd(Ytrain);   %SVD of Ytrain 
 
[~,Index]=classifier(Ytrain,Ytest); % labeling the testing dataset 
 
    for k=1:40  
        tm=0; 
        fm=0; 
        for m=1:500 
         
            U1=U(:,1:k); % U1 is the 1st k columns of the orthogonal matrix U 
            Y1=U1'*Ytrain;  % Ytrain reduced to a k-dimensional vector using the projection 
            %randomly choosing an image from the Ytest 
            idx=randsample(200,1); 
            I=Ytest(:,idx); 
            I1=U1'*I;   % projection of I 
            T_index=Index(idx); %index of our desired image in Ytrain data 
            [~,ridx]=classifier(Y1,I1); % index of the recognized image 
            if ridx==T_index 
                tm=tm+1; 
            else 
                fm=fm+1; 
            end  
        end  
        tm; 
        F_PCA(k)=tm/500; 
    end   
figure(1); 
plot(F_PCA,'r--'); 
%Computing the FDA of Ytrain 
 
d=200/2;  % define d acording to our problem given 
 
U0=U(:,1:d); % computation of the projection matrix 
 
Ytrain_new=U0'*Ytrain;  % constructing the new training matrix 
 
[V,lambda]=lda(Ytrain_new); %calculation of the matrix V 
 
V=orth(V);  %to make the column orthogonal 
 
for k=1:40  
        tm=0; 
        fm=0; 
        for m=1:500  

https://cam-orl.co.uk/facedatabase.html


Global Journal of Engineering and Technology Advances, 2021, 08(01), 084–095 

94 

            V1=V(:,1:k); 
            
            U1=U0*V1; %orthogonal matrix 
            
            Y1=U1'*Ytrain;  %projected reduced Ytrain data 
            
            idx=randsample(200,1);  %randomly selecting image from test data set  
            I=Ytest(:,idx); 
            I1=U1'*I;   % projection of I 
            T_index=Index(idx); %index of our desired image in Ytrain data 
            [~,ridx]=classifier(Y1,I1); % index of the recognized image 
            if ridx==T_index 
                tm=tm+1; 
            else 
                fm=fm+1; 
            end  
        end  
        tm; 
        F_FDA(k)=tm/500; 
end 
hold on; 
plot(F_FDA,'g'); 
 
%Computing the Simple Projection of Ytrain 
%finding projections for different values of k(after reducing the dimension) 
 
U=eye(644); 
 
    for k=1:40  
        tm=0; 
        fm=0; 
        for m=1:500 
           
            U1=U(:,1:k);  %orthogonal matrix 
             
            Y1=U1'*Ytrain; %projected reduced Ytrain data 
            
            idx=randsample(200,1); %randomly selecting image from test data set  
            I=Ytest(:,idx); 
            I1=U1'*I;   % projection of I 
            T_index=Index(idx); %index of our desired image in Ytrain data 
            [~,ridx]=classifier(Y1,I1); % index of the recognized image 
            if ridx==T_index 
                tm=tm+1; 
            else 
                fm=fm+1; 
            end  
        end  
        tm; 
        F_Simple(k)=tm/500; 
    end 
    hold on; 
    plot(F_Simple,'b--o'); 
    
    legend('PCA','FDA','SimPro'); 
    xlabel('k'); 
    ylabel('F(k)'); 
 title('Variation of F(k) versus k') 
  T=table(F_PCA',F_FDA',F_Simple'); 
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