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Abstract 

Software Engineering is a branch of Computer Science that evolved as a result of urgent need to deal with decades of 
software crisis, characterized by low theoretical knowledge and practice of the construction of error-free and efficient 
software. The introduction of well-organized scientific, engineering and management strategies in the process of 
software development no doubt led to major breakthroughs, and solutions to software failures. One of the obvious 
game-changer in this regard is the evolution of Software Development Life Cycle, also known as Software Process Model 
for driving the different phases of software construction. A sound understanding of the process model is therefore 
inevitable, not just for software developers, but also to users and researchers. Such a theoretical cum practical 
understanding will enhance decisions on which process model is best for a particular job or perspective. This invariably, 
contributes immensely to the probability of success or failure of the project in question. Thus, the necessity for this 
research. This work presents an unambiguous expository of selected software development model variants. A total of 
four process model variants were studied, in a theoretical, visual and analytical manner. The variants were analyzed 
using strength versus weakness (SVW) tabular scenario. This work was concluded by presenting guides towards choice 
of these models. This research is expected to be a useful reference to software practitioners and researchers.  
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1. Introduction

The field of Software Engineering is a branch of Computer Science, saddled with the analysis, design, testing, 
implementation, and maintenance of efficient software system [1]. While the successful construction and deployment 
of an efficient software product is no doubt a milestone [2] in the software development journey, it is however not the 
climax, rather it is the beginning of the herculean task of software maintenance [3]. The importance of understanding 
and operationalizing the chronology of stages of software development phases in real life cannot be overemphasized, 
thus the reason for this research. The evolution of Software Engineering as engineering discipline stemmed from what 
appears to be a rescue mission and a response to widespread software crises [4] of the past decades. That critical 
moment was characterized by uncountable number of software project failures [5], software overbudgeting [6], lack of 
software maintenance know-how [7], low end-user satisfaction, among others. The evolution of Software Engineering 
however established scientific, quantitative, engineering and management perspectives to the evolution of software 
products, through the introduction and practice of Software Development Life Cycles (SDLC). The SDLC [8] also known 
as software development process models is a chronology of steps used by software practitioners to build software from 
conception to completion. The aim is to successfully design, develop and test high quality and cost-effective software 
that meets or exceeds customer expectations and completed within deadline.  
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Software Development Life Cycle (SDLC) is a very organized process for building quality and error-free software. If 
follows that the choice of software development model in use will no doubt affect what becomes of the resultant product. 
This research presents a study of four major software development process models – water fall, incremental, spiral and 
V-models respectively. Effort is made in this study to present requisite theoretical foundations [9] of the subject matter. 
This was achieved using diagrammatic and analytical contents. This work presents a strength versus weakness (SVW) 
tabular appraisal of each of the models studied, as well as determinant factors to the choice of process models. First and 
foremost, a brief exploration of the process model variants will be presented here.  

2. Process model enumerations 

The focus of this expository study is on four process models as shown in Fig. 1. Effort will be made to perform a critical 
and analytical study of each of these models, so as to ensure that practitioners [10] are able to make informed decision 
on which choice to model to use in order to tackle software projects in real life.  

 

Figure 1 Enumeration of Software Process Models 

3. Water fall model 

The waterfall software process model is adjudged one of the oldest of all the development models. Thus, a number of 
researches usually refer to it as the traditional model of software development [11]. 

 

Figure 2 Diagram of Waterfall Model 
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The name is derived from the shape of a natural water fall in a typical electricity generating dam [12], where water flows 
in a step-by-step fashion down from the topmost water table. The Waterfall Model follows a serial execution of the SDLC 
phases from inception to completion. One of the key attributes of waterfall model that distinguishes it from the rest of 
the others is that every component phase must be given adequate attention, and fully completed before proceeding to 
the next phase [13]. The visual representation of the Waterfall model is shown in Fig. 2. 

As shown in the diagram, a typical waterfall model consists of a number of developmental phases or stages such as 
requirement gathering and analysis, system design, system implementation, system testing, system deployment and 
system maintenance. Thus, in waterfall model, a particular phase must be fully competed, before the next one.  

4. Incremental model 

The easiest way to understand the incremental model is to look at it from the angle of a mathematical representation 
[14]. A simple quantitative representation of the incremental model is shown in equation 1. 

𝐼𝑛𝑐𝑀𝑂𝐷 =  𝑊𝑎𝑡𝑒𝑟𝐹𝑎𝑙𝑙1 + 𝑊𝑎𝑡𝑒𝑟𝐹𝑎𝑙𝑙2 + ⋯ 𝑊𝑎𝑡𝑒𝑟𝐹𝑎𝑙𝑙𝑁 (1) 

where: 

IncMOD = the Incremental Process Model, Water FallX is a series of waterfall models, where x is an integer from 1 to N, 
and N is the total number of times, a waterfall is repeated in the course of system development. 

It follows that the incremental model is a batch or multiple of N number of waterfalls, where N is an integer. The earlier 
equation can thus be rewritten as equation 2. 

𝐼𝑛𝑐𝑀𝑂𝐷 = 𝑁 (𝑊𝑎𝑡𝑒𝑟𝐹𝑎𝑙𝑙) (2) 

Fig. 3 shows an incremental model of multiple value 3. The implication is that there is usually an improvement in the 
value of the software after each of the increments. 

 

Figure 3 Incremental Model Diagram 

As shown in the diagram, there are a series of increments (INCs) emanating from the execution of series of water falls. 
In this case, there were three increments or improvements. 

5. Spiral model 

The spiral model [15] is a risk-focused software development strategy. In other words, the strong point of this model is 
that ample time, energy and resources are invested to ensure that software related risks [16] are trapped, and handled 
within the developmental process. Apart from the fact that spiral model lays a very strong emphasis on risk handling, it 
consists of series of spirals with multiple loops. A diagrammatical illustration of the model is shown in Fig. 4. In spiral 
model, each phase consists of four unique quadrants [17], designated as QUAD1, QUAD2, QUAD3 and QUAD4, each of 
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which have definite functionalities. For instance, QUAD1 determine objectives, QUAD2 identifies and resolves risks, 
QUAD3 is dedicated to development and test, while QUAD 4 involves planning the next iteration. 

 

Figure 4 Spiral Model Diagram 

There are a number of important theoretical and conceptual facts of key importance in the spiral model, some of which 
are as follows. First, the exact number of loops of the spiral is unknown, and varies from project to project [18]. Secondly, 
each loop of the spiral is called a Phase of the software development process [19]. Thirdly, a series of spirals give rise to 
prototypes, for instance P1, P2, as shown in the diagram, while the final one OP represents the operational prototype 
[20]. In spiral model, the exact number of phases needed to develop a product is varied by the project manager, and 
depends on the project risks. Furthermore, the Radius of the spiral [21] at any point represents the expenses (cost) of 
the project so far, while the angular dimension [22] represents the progress made so far in the current phase.  

6. V-model model 

The V-model is a SDLC model, in which the component processes are executed in a sequential V-shape manner as shown 
in Fig. 5. The V-Model is commonly known as the Verification and Validation model [23]. As can be clearly deduced from 
the diagram, V-Model contains Verification related phases on the left-hand side (LHS) and Validation related phases on 
the right-hand side (RHS), both of which are joined at the coding phase in an apparent V-shape. This is why it is known 
as V-Model. 

 

Figure 5 V-Model Diagram 
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Verification related activities encompass the static analysis or reviews done without code execution. In other words, 
they are numerous evaluations to ensure that system requirements are met. Validation on the other hands, encompasses 
dynamic analysis, code execution and testing. One major objective here is to evaluate the resulting software emanating 
from development phase to ensure it meets customer expectations and requirements. Obviously, the major strength of 
V-Model is that it involves thorough testing at all its numerous stages of system development. There are four major tests 
in V-Model, and each of these are designed before they take place. In the diagram, the tags ATD, STD, ITD and UTD 
represent acceptance test design, system test design, integration test design and unit test design respectively. Unit 
testing [24] is done during module design phase, and is executed to eliminate bugs at code or unit level.  

The Integration testing [25] is performed at the architecture design phase, and the major aim is to ensure correct 
modules integration and inter-communication. System testing [26] focuses on testing the entire system functionality, 
inter dependency, and communication. This is where the functional and non-functional requirements of the system are 
verified. The User Acceptance testing [27] is used to verify that completed application meets user’s requirement in real 
world. 

7. Comparative studies  

It is necessary at this stage to perform critical analysis [28] of the four models. This will be done using the Strength Vs 
Weakness (SVW) comparative studies as depicted in Table 1. 

Table 1 SVW Comparative Studies 

Process Model S/N Strength Weakness 

 

 

 

Waterfall 

Model [29] 

1 The Waterfall model is simple to 
understand and implement. 

Unfortunately, it is always difficult to get all 
requirements at project start. 

2 It is highly systematic in nature It is difficult to go back to a previous phase. 

3 It allows for proper documentation.  Working software may be available late, 
since all the phases must be followed 
chronologically.  

4 It is easy to implement and manage. It is risky, since risk management is not 
considered.  

 

 

 

Incremental 
Model [30] 

1 The first version of software is 
produced from the first module 

Decision on the number of increments is 
always difficult.  

2 High success rate Additional increments may introduce 
software bugs. 

3 It is easy to manage and monitor 
progress. 

Documentation is more difficult to handle 
due to need for continuous updates. 

 

 

 

 

Spiral 

Model [31] 

1 Spiral model favours large software 
products. 

The process of spiralling may go on longer 
than necessary. 

2 It also lays emphasis on risk-based 
development. 

It could be expensive and unsuitable for 
small projects. 

3 Working software is produced as 
early as possible. 

It requires expert skills for risk analysis. 

4 It accommodates future end-user 
requirements 

Documentation is more difficult to handle 
due to need for continuous updates. 

 

 

 

 

V-Model [32] 

1 V-Model is highly disciplined, and 
phases are completed one at a time. 

There is high risk and uncertainty 

2 It is simple and easy to implement. It may not be appropriate for complex and 
object-oriented projects. 

3 This model focuses on project 
verification and validation early 
enough, thus ensuring an error-free 
and quality product. 

It is not suitable for software projects 
whose requirements are unclear at 
inception.  
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8. Choice determinant factors  

There are a number of factors that determine the choice of software development model. Eight of such common factors 
shown in Fig. 6 will be discussed. 

 

Figure 6 Determinant Factors Listing 

Human resource constraints [33] could affect the decision on which software development model to choose. For 
instance, if a particular software requires expertise in particular niche area of computing, but a company lacks personnel 
in that area, the project manager may be required to make a decision on how best to tackle the challenge. One of the 
decisions may be to go for a particular developmental model, or to drop it. Human resources requirement can also come 
from the angle of end-user [34] expertise. In general, the existence or lack of particular software stockholders can affect 
decision on which software model to adopt. 

Material resources constraint [35] can also affect the choices of software development model. For instance, financial 
constraint can lead to material constraints. In other words, decisions on which software model to use will take careful 
consideration on the financial and material resources available and budgets must be tailored within what is affordable.  

Time constraint [36] is very key. Given two software products, one urgently needed while the second one rather needed 
in 12 months. It is obvious that the two may require different models. Domain familiarity [37] is also a decision factor. 
If software is needed to be developed for usage in specialized domains such as aviation, agriculture, military, mining, 
and so on, it may require the analysts, designers and developers to elicit specialized knowledge from domain experts. 
This will definitely affect the model of usage. Geographical factors [38] is another important decisional factor. For 
instance, if the software being developed is used in a different geographical setting, it will affect decision on software 
development model. The software developed on the planet earth, for usage in the moon, should put into cognizance the 
fact that the gravitational force on the earth is quite different from what is obtainable in the moon and vice versa. The 
sixth one is technological factor [39]. Changes in technology can affect decision on which software model to use. This is 
because, new techniques and technologies are evolved on a daily basis, and software practitioners are required to be as 
innovative and current as possible. Competition [40] can also affect choice of software development model. This stems 
from the fact that competing establishments will most likely choose the method that places them on a competitive edge 
over their peers in the same industry. Finally, legal and cultural issues [41] can also affect choice of software 
development models. This is because operational agreements governing an establishment, as well as the law of the land 
could be important in determining the software model to use.  
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9. Conclusion 

This research has presented a very unambiguous study of four software development process models. The work was 
concluded by presenting a SVW comparative table showing the strength and weaknesses [42] of each of the models. 
This research has also presented eight factors that affect the choice of software development model. It is believed that 
this research will be of relevance to software researchers, and other practitioners.  
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