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Abstract 

A multivariable process of four interconnected water tanks is considered for modeling and control. The objective of the 
current study is to design and implement a distributed control and estimation (DEC) for a multivariable four-tank 
process. Distributed model and inter-nodal communication structure are derived from global state–space matrices, thus 
combining the topology of plant flow sheet and the interaction dynamics across the plant subunits. Using experimental 
data, the process dynamics and disturbance effects are modeled. A typical lab-scale system was simulated and the 
obtained results demonstrated the potential of the DEC algorithm.  

Keywords: Distributed control and estimation; Interconnected systems; Multivariable four-tank process; Four-tank 
system. 

1. Introduction

A large-scale system is usually constructed from many distributed subsystems, which are interconnected with each 
other. Such systems are widely employed in practice, for example, multi-axis machinery, electric power systems, 
chemical reactors, petrochemical systems etc. [1]. Nonlinear interconnected systems are one of the most difficult to 
control in the category. State estimation and control algorithms have been implemented for dynamical systems 
represented by state–space models [2]. For highly nonlinear processes, it turns out that the linearization of high 
order state–space models is critical and non-trivial computational step in developing the state estimator. In addition, 
the centralized methods do not exploit the underlying structural features present in typical plant-wide systems. The 
computational burden of computing the Kalman filter renders the conventional centralized algorithm unsuitable 
for on-line applications to large-scale systems. The off-line computational efficiency is also an issue, albeit to a 
lesser degree, as a typical filter tuning approach involves computing the Kalman filter for various values of process 
and measurement noise covariance in search of a reasonable estimator for the application of interest. Similar results 
apply for linear quadratic control (LQR) control design in computing the feedback controller gain with the 
corresponding tuning of error penalty functions [3], [4], [7], [10]. 

Recent results in multi-sensor data fusion [5] employ information theoretic principles to transform the estimation 
and control problem to yield a fully distributed and decentralized estimation and control structure. This algorithm 
provides the required scalability while at the same time retain the global optimal performance that is equivalent to 
that of a centralized fusion system. Distributed and decentralized estimation and control (DDEC) has been successfully 
applied to several low-order mechanical and aeronautical systems. 
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Figure 1 Schematic of the four-interconnected-tanks system 

In this paper, we examine a system of four interconnected water tanks for the purpose of applied modeling and 
control. We then develop an improved distributed estimation and control algorithm that guarantee prescribed 
performance, tracking properties and provides disturbance rejection capabilities. The ensuing simulation results 
illustrated the efficacy of the developed method. 

2. System description 

One of the realistic process system applications is the interacting four-tank system depicted in Fig. 1, where the 
objective is to adjust the liquid level to prescribed value using appropriate technique. 

In this system, two pumps are used to convey water from a basin into four overhead tanks. The two tanks at the 
upper level drain freely into the two tanks at the bottom level. The liquid levels in the bottom two tanks are measured. 
The piping system is such that each pump affects the liquid levels of both measured tanks. A portion of the flow 
from one pump is directed into one of the lower-level tanks (where the level is monitored). The rest of the flow 
from a single pump is directed to the overhead tank that drains into the other lower- level tank. By adjusting the 
bypass valves of the system, the amount of interaction between the inputs and the outputs can be varied. The process 
flow sheet is displayed in Fig. 1. In the present study, additional flow disturbances are introduced into the upper-level 
tanks. These external unmeasured disturbance flows can either drain or fill the top tanks. The process variations 
include uncertainties in the actuators, valve settings, and head losses in the tanks. 

 

Figure 2 Nonlinear model equations for the four-tank system  

A nonlinear mathematical model for a similar four tanks system is detailed in [6]. The model used in the present 
study includes the disturbance effect of flows in and out of the upper-level tanks 3 and 4. The differential equations 
representing the mass balances, based on Bernoulli’s law flowing out of the tanks, in the four-tank system are 
given in Fig. 2 and the definition of the variables is given in Table 1. 
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Table 1 Definition of variables 

Variable Definition 

hi the liquid level in tank i 

ai the outlet cross − sectional area of tank i 

Ai the cross − sectional area of tank i 

vj the speed setting of pump j 

d1 flow disturbances from tank 3 

with corresponding gain kd1 

d2 flow disturbances from tank 4 

with corresponding gain kd2 

kj cj gains which are the portion of the 

flow that goes into the upper tank from pump j 

v1 v2 The process manipulated inputs 

(speed settings to the pumps) 

y1 y2 The measured outputs 

(voltages from level measurement devices) 

 

It is assumed henceforth that the measured level signals are proportional to the true levels, that is, y1 = km1h1 and 
y2 = km2h2. The level sensors were calibrated so that km1 = km2 =1. 

The relationship between the flows at each outlet pipe and the total flow from pump A and pump B depends on the 
flow parameters γ1 and γ2 as: 

q1 = γ1qa, q2 = γ2qb, q3 = (1 − γ2)qa, q4 = (1 − γ1)qb 

which are the water flows to each tank. The flow parameters γ1 and γ2 are such that 0 ≤ γ1 ≤ 1, 0 ≤ γ2 ≤ 1. 

The steady-state operating conditions of v1 = 50%andv2 = 50% are used for subsequent modeling and controller 
synthesis. To work with a linear description the model has to be linearized around an operating point. Defining 
the operating point as ℎ𝑖

0  and the perturbation variables as 𝑥𝑖 = ℎ𝑖 − ℎ𝑖
0 , 𝑢𝑗 = 𝑞𝑗 − 𝑞𝑗

0  where 𝑗 = 𝑎, 𝑏  and 𝑖 =

1, . . . , 4. This leads to 𝑇𝑖 =
𝐴𝑖

𝑎𝑖
√

2ℎ𝑖
0

𝑔
. 

3. Linearized model 

Figure 3 Values of nominal parameters 

symbol state/parameters value 
h0 nominal levels 16.3, 13.7, 6.0, 8.1 cm 
v0 nominal pump settings 50.50% 
ai area of the drain in tank i 2.05, 2.26, 2.37, 2.07 

cm² 
A₁ areas of the tanks 730 cm3 
𝛾1 ratio of flow in tank 1 to flow in tank 4  0.3 
𝛾2 ratio of flow in tank 2 to flow in tank 3  0.3 
kj pump proportionality constants 7.45, 7.30 cm²/(5 %) 

Kdj disturbance gains 0.049, 0.049 
Ti time constants in the linearized model 65. 54.1. 34. 45.3 s 

�̅�, �̅�, �̅� scaling factors 25%. 4 cm. 4 cm 
g Gravitation constant 981 cm/s² 
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Based on the nominal values given in Fig. 3, a linearized state-space model is presented in Fig. 4 where x = 
[ℎ1, ℎ2, ℎ3, ℎ4], 𝑢 = [𝑣1 , 𝑣2] ,𝑑 = [𝑑1 , 𝑑2],  and 𝑦 = [ℎ1 , ℎ2]. The corresponding linear transfer function matrix 
has the form in Fig. 5. Note that individual transfer functions in each of the input – output channels of G(s) 
do not have zeros. The right half plane zero of the system is a multivariable characteristic and imposes 
limitations on achievable performance. 

 

Figure 4 State space model 

 

Figure 5 Transfer function matrix 

4. DEC scheme 

A distributed system is defined as a data processing system in which all information is treated locally without the 
presence of a central processing site. Each data fusion node obtains local observations; shares appropriate information 
with the other nodes, assimilates the received information and computes a globally optimal estimate. A schematic 
diagram of a typical distributed estimation and control (DEC) network for four interconnected tank system is shown in 
Fig. 6. 

 

Figure 6 A typical distributed control and estimation structure 
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Figure 7 Definition of variables in model (2) 

A linear discrete-time system with nu inputs and ny outputs of the following state–space form is considered: 

x(k) = Φx(k − 1) + Bu(k − 1) + w(k − 1) 

 y(k) = Cx(k) + v(k)  (2) 

where the definition of the variables involved is listed in Fig. 7. 

The proposed DEC scheme can be divided into three main phases: 

 Model Decomposition 
 Distributed Estimation 
o Prediction 
o Estimation 
 Distributed Control 

4.1. Model decomposition 

The preliminary step in the design of the DDEC network is the distribution of the state prediction and observation 
equations across a network of N number of processing nodes. The local state vector at node i; 𝑥𝑖(𝑘) is related to the 
global state vector 𝑥(𝑘) by 𝑥𝑖(𝑘) = 𝑇𝑖𝑥(𝑘); where Ti is a linear nodal transformation matrix. Through the inter-nodal 
transformations Ti only the locally relevant states for each node are chosen. Relevance of states is defined by the global 
state transition matrix Φ; which incorporates the effects of states on each other as the system evolves in time. Model-
specific inter-nodal communication ensures that only appropriate nodes communicate relevant information. The local 
state transition and observations at node i are given by: 

𝑥𝑖(𝑘) = Φ𝑖𝑥𝑖(𝑘 − 1) + 𝐵𝑖𝑢𝑖(𝑘 − 1) + 𝑤𝑖(𝑘 − 1) 
𝑦𝑖(𝑘) = 𝐶𝑖𝑥𝑖(𝑘) + 𝑣𝑖(𝑘)   (3) 

where ui(k) are the inputs affecting the local states and Φi is related to the global state transition matrix Φ with the 
following relation Φ𝑖 = 𝑇𝑖Φ𝑇𝑖

∗  , 𝑇𝑖
∗ is a generalized inverse of Ti. The observation matrix Ci is periodic with time period 

of Nm samples and is non-zero only at every 𝑇𝑁𝑚
𝑡ℎ  sample instant. There are points need to be considered when we want 

to partition the process into estimation nodes: 

 Similarity of the estimation network to the actual plant. 
 The computational load at each node. 
 The communication overhead. 
 The available computational resources. 
 Avoid excessive partitioning otherwise communication load will increase and the computational burden on will 

decrease on each node. 

The procedure for constructing a distributed estimation network can be done as follows: 
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 A Identify the “states of interest” which are the states of the process unit and assign one estimation node to 
each of the identified units. 

 B Obtain the discretized model from the continuous time description. The sample time DT for discretization is 
critical. For small DT; the hierarchy in the discretized model is same as that in the continuous description. 
However, low DT results in high communication rates between nodes. 

 C Identify the “overlapping” states at each node based on the discrete-time global state transition matrix, if 
available. Otherwise, the process flow sheet and the system matrices of individual units could be used. This step 
will determine the connectivity of the network and the number of states in the model at each estimation node. 
The “relevant states” that constitute the local model are the”states of interest” augmented by the “overlapping 
states”. 

 D If necessary, combine and partition nodes further to balance computational load and communication over- 
head across all the nodes in the network. 

 E If the communication is excessive due to large number of ”overlapping” states, repeat the decomposition 
process with a lower discretization sample time, to be explored on a trial-and error basis. 

 F To the extent possible, limit the number of nodes based on the available computational resources. 

The distributed estimation and control network thus designed is not necessarily fully connected. Various ring, tree or 
loop connected topologies can result based on the inter-nodal transformations defined by the model. 

4.2. Distributed estimation 

In this phase, we use the distributed and decentralized Kalman filter (DDKF) which is done in two stages: 

Prediction  

At each node the following prediction steps are performed locally prior to any communication with the other nodes. 

�̂�𝑖(𝑘|𝑘 − 1) = Φ𝑖|�̂�𝑖(𝑘 − 1|𝑘 − 1) + 𝐵𝑖𝑢𝑖(𝑘 − 1) 

�̂�𝑖(𝑘|𝑘 − 1) = Φ𝑖  𝑃𝑖(𝑘 − 1|𝑘 − 1)Φ𝑖
𝑇 + 𝑄𝑖   (4) 

Estimation  

The estimation step consists of three stages: 

 Local estimation, 
 Inter-nodal communication 
 Assimilation to produce global estimate. 

Local covariance and state estimates are computed based on local measurements as: 

 𝑃𝑗(𝑘|𝑦𝑗(𝑘)) = [𝐶𝑗
𝑇𝑅𝑗

∗𝐶𝑗]
∗
Φ𝑖 �̂�𝑖(𝑘|𝑘 − 1)+𝐵𝑖𝑢𝑖(𝑘 − 1) 

�̂�𝑗(𝑘|𝑦𝑗(𝑘)) =  𝑃𝑗(𝑘|𝑦𝑗(𝑘))[𝐶𝑗
𝑇𝑅𝑗

∗𝐶𝑗] × [𝜖𝑗(𝑘) + 𝐶𝑗(𝑁𝑚)𝑥𝑗(𝑘|𝑘 − 1)] (5) 

where 𝜖𝑗(𝑘) is the innovation at time k defined by 𝜖𝑗(𝑘) = 𝑦𝑖(𝑘) − 𝐶𝑗(𝑁𝑚)𝑥𝑗(𝑘|𝑘 − 1), for 𝑘 = 0, 𝑁𝑚, 2𝑁𝑚, … and 𝜖𝑗(𝑘)= 

0, otherwise. The relevant subset of local estimates of state and prediction error covariance’s are communicated to 
relevant nodes and the information at each node is transformed into local state subspace. 

The transformed state and covariance estimates are given by 

�̂�𝑖(𝑘|𝑘) =  𝑃𝑖(𝑘|𝑘)[𝑃( − 1)𝑖(𝑘|𝑘 − 1) �̂�𝑖(𝑘 − 1|𝑘 − 1)] + ∑ 𝑃𝑖
∗

𝑁

𝑗=1

(𝑘|𝑦𝑗(𝑘))�̂�𝑖(𝑘|𝑦𝑗(𝑘)) 

 𝑃𝑖(𝑘|𝑘) = [𝑃( − 1)𝑖(𝑘|𝑘 − 1) + ∑ 𝑃𝑖
∗𝑁

𝑗=1 (𝑘|𝑦𝑗(𝑘)) ]
∗
 (6) 

4.3. Distributed control 
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A nodal control law obtained as a cost minimizing control function is given by 

𝑢𝑖(𝑘) = 𝐾𝑐𝑖[𝑥𝑟𝑖(𝑘) − �̂�𝑖(𝑘|𝑘)] 

where 𝑥𝑟𝑖(𝑘) is the local state reference, and �̂�𝑖(𝑘|𝑘) is the local optimal state estimate, and Kci is the optimal control 
gain computed from the solution to a distributed backward Riccati recursion given as  

𝐾𝑐𝑖(𝑘) = [Γ𝑢𝑖 + 𝐵𝑖
𝑇(𝑘)Ψ𝑖(𝑘)𝐵𝑖(𝑘)]−1 × 𝐵𝑖

𝑇(𝑘)𝑃𝑠𝑖𝑖(𝑘)Φ𝑖  

𝐵𝑖(𝑘) = 𝑇𝑖[𝐵𝐾𝑐(𝑘)]𝑇𝑖
∗𝐾𝑐𝑖

∗ (𝑘) 

𝐾𝑐(𝑘) = 𝐵∗𝑇𝑖
∗[𝐵𝑖(𝑘)𝐾𝑐𝑖(𝑘)]𝑇𝑖  

Ψ𝑖(𝑘) = Γ𝑥𝑖[Φ𝑖
𝑇Ψ𝑖(𝑘 + 1)][Φ𝑖 − 𝐵𝑖(𝑘)𝐾𝑐𝑖(𝑘)] (7) 

where Γui and Γxi are local state and control cost weighting matrices, respectively. 

Schematic representation of the prediction, communication, and assimilation stages in an individual node in the 
distributed estimation and control network is portrayed in Fig. 8. 

 

Figure 8 Prediction and estimation structure 

 

Figure 9 Closed-loop reference tracking using DEC algorithm 

5. Simulation results 

In computer experimentation, MATLAB R2008b was used to implement the control algorithms on DELL Latitude 6400, 
2.4 GHz personal laptop with 2 GB of memory with operating system Windows Vista Business. The sampling time for 
the interconnected tank system is 0.1 s and the time constant is about 30 s. Initially, Fig. 9 shows closed-loop 
performance of the DEC algorithm for reference changes. 
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Then two sets of computer simulation experiments were carried out: 

 

Figure 10 Set points 

 

Figure 11 Water level variations using DEC algorithm 

 

Figure 12 Pump voltage variations using DEC algorithm 

5.1. Simulation run 1 

Given a particular weighting matrices Pi = I, Qi = 0, the set point signals are given in Fig. 10 and the corresponding water 
level and pump voltage variations are plotted in Figs. 11 and 12, respectively. 

5.2. Simulation run 2 

Given a different weighting matrices Pi = I, Qi = 10I, the set point signals are given in Fig. 10 and the corresponding 
water level and pump voltage variations are plotted in Figs. 13 and 14, respectively. 
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Figure 13 Water level variations using DEC algorithm 

 

Figure 14 Pump voltage variations using DEC algorithm 

 

Figure 15 Disturbance rejection results 
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From the ensuing results, it is observed that the maximum and minimum levels of control signal are 0 and 5V, 
respectively, and the maximum levels of tanks are 25cm. The controller designed in the second simulation run 
illustrated that the variations of the control signals are successfully limited. This second controller brings tracking error 
during the last step (from samples 9 − −104 to 12 − −104). This shows the inability of the second controller to overcome 
the interaction among loops. 

The obtained results illuminated very good performance, which enhances the importance of incorporating an estimator 
that faithfully reproduce the system states. In addition, the developed controllers designed by the DEC algorithm 
significantly track the reference input. 

Finally, the developed method has been evaluated for disturbance rejection problem. Fig. 15 shows the results for the 
DEC methodology in a disturbance rejection problem. In this test, following [8], [9] the input references have been 
applied at sample 5000 ,then in sample 15, 000 the disturbance input on h1 with amplitude 5 cm has been applied. The 
same disturbance has been applied to the second output at sample 20, 000. As depicted in Fig. 15 the controller has 
demonstrated good properties in the closed-loop experiments, exhibiting stable and feasible trajectories in spite of the 
disturbances. 

6. Conclusion 

In this paper, we have shown one application of distributed estimation and control (DEC) methodology in designing 
an effective level control system. The methodology is implemented on an interconnected tank system. The simulation 
results have emphasized the potential of the developed DEC for process control industry.  
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