
∗ Corresponding author: Fabien Kenmogne; Email:  
Department of Civil Engineering, Higher Teacher Training College of the Technical Education,P.O. Box 1872, University of Douala, 
Cameroon. 

Copyright © 2021 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution Liscense 4.0. 

Dynamics of a discontinuous coupled electro-mechanical system oscillator with 
strong irrational nonlinearities and with two outputs 

Danao Adile Adoum 1, Ali Ramadan 1, Samuel Noubissié 2, Mahmat Tahir Abakar 1, Hervé Simo 3, Fabien 
Kenmogne 4, *, Timothée Thierry Odi Enyegue 4, and  Malloum Soultan 5  

1Department of industrial engineering and maintenance, polytechnic university of Mongo,   Chad 
2Research unit of industrial systems engineering and environment (RU-ISEE), Fotso Victor University Institute of 
Technology, University of Dschang, Cameroon. 
3Department of Mechanical Engineering, the University Institute of Technology, P.O. Box 455, The University of 
Ngaoundéré, Cameroon 
4Department of Civil Engineering, Higher Teacher Training College of the Technical Education, P.O. Box 1872, University 
of Douala, Cameroon 
5Department of technical sciences, faculty of exact and applied sciences, P.O. Box 4377 University of Djamena, Chad 

Global Journal of Engineering and Technology Advances, 2021, 06(01), 116–135 

Publication history: Received on 17 January 2021; revised on 24 January 2021; accepted on 26 January 2021 

Article DOI: https://doi.org/10.30574/gjeta.2021.6.1.0301 

Abstract 
The dynamics of the nonlinear electromechanical device, consisting of a mechanical part with two outputs and an 
electrical part which acts as the server is strongly investigated in the present work. The mechanical part consists of two 
nonlinear oscillators with strong irrational nonlinearities having smooth or discontinuous characteristics, where 
nonlinearity is just due to the inclination of springs, the geometric configuration, which are both elastically coupled. 
While the electrical part is the 𝜙𝜙6Rayleigh equation. By using the Lagrangian formulation, the model equations are 
established and used to investigate the equilibrium points and their stabilities. Nest by using the multiple time scales 
method, the analytical solutions are found both for the case of large amplitude and the weak amplitude, leading to 
interesting bifurcation sets of the equilibria by varying the control parameters, the inclination angles and driven 
frequency. Finally, numerical investigations of the exact equation of the system are used to justify the validity of 
analytical results and to find new phenomena such as chaotic impulses, chaotic bursting and the train of kink signal 
generations.  

Keywords:  Irrational Nonlinearity; Electromechanical Device; Chaotic Impulse; Chaotic Bursting. 

1. Introduction
Nowadays, much more attentions are focused on nonlinear systems useful in the design and modeling of some practical 
systems, and this in most scientific and technology applications [1, 2, 3]. To name just a few, Qingjie Cao et al. proposed 
an archetypal system to investigate transitions from smooth to discontinuous dynamics, which in the smooth regime, 
bears significant similarities to the Duffing oscillator, exhibiting the standard dynamics governed by the hyperbolic 
structure associated with the stationary state of the double well, while Dupac et al. [5] modeled an electromagnetically 
levitated droplet as a three-dimensional system with lumped masses and elastic springs where its nonlinear behaviour 
was investigated. Next Boubaker et al. [6] investigated the mesoscopic fabric models by employing a discrete mass-
spring approach. Terumichi et al. [7] proposed a mass-spring system attached at the lower end to a time-varying length 
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string and the non-stationary vibrations were investigated. Although certain single autonomous oscillators like the 
Shua, Colpits and Vander Pol have been proved to have riches dynamics, the driven versions of these oscillators have 
richer dynamics and this being due to the fact that the time varying excitation introduces one more degree of freedom 
in the dynamical systems [8]. Let us mention that some of the driven oscillators like the Duffing one have oscillations 
which vanish when the driven force is removed. In addition, it has been proved that when these oscillators are coupled 
each to others, the resulting system will have more applications, among which the increasing of the frequency range of 
signals generated, the increasing of the generated powers as well as the conversion of one form of energy to other, with 
different dynamics [9]. For e.g. the periodic regular electrical signal can be converted to chaotic mechanical motion and 
vice versa. 

Nature is full of nonlinearities, responsible for a great variety of responses in natural systems. Natural behaviors could 
either be periodic or chaotic over time and space. Let us mention that all technology innovations are consequences of 
the development in scientific tools, and this after strong mathematical investigations. New phenomena in nonlinear 
dynamics were discovered because of chaotic and unpredictable behavior from apparently deterministic systems, 
including mechanical systems. It is known that the chaotic motion of dynamical systems cannot always be predicted far 
into the future. Generally, dynamical systems depend on one or several parameters that control the strength of external 
influences. For example in forced oscillations, the frequency and amplitude of the exciting oscillation are the control 
parameters. In varying these parameters one may hit critical values at which the behaviors of systems change 
qualitatively. Critical values of this kind are called bifurcations. Bifurcations play an important role in the development 
of deterministic chaos. Many mechanical systems, being them single or coupled can be used to see the effects of 
nonlinear dynamics. 

 The attention carried on researches in the area of coupled non-linear oscillators has received a great particular 
attention in recent years [10, 11]. This being due to the fact that coupled oscillators provide fundamental models for the 
dynamics of various physical, electrical, mechanical and biological systems [12, 13, 14]. The electro-mechanical systems, 
that is systems with coupled mechanical structures and electrical/electromagnetic circuits, are widely used in 
mechatronics for a variety of applications (e.g. as actuators, sensors, servo mechanisms, switches,…). Dynamics of such 
systems have been proved to be possible by means of two mutually coupled differential equations that are the equations 
describing both the electrical, and the mechanical parts.  

In [4], Y W Han, et al. proposed a nonlinear oscillator with a pair of irrational nonlinearities, which lead to the transition 
from smooth to discontinuous dynamics, this nonlinear oscillator being comprised a lumped mass, linked by a pair of 
inclined elastic linear springs. As a consequence the nonlinearity obtained was strong and due just to the inclination. In 
this work, we focus on the elastically coupling of two of the previous models of nonlinear oscillators, both magnetically 
coupled to nonlinear electrical Rayleigh circuit. As we shall see further, the obtained circuit has richer dynamics and 
would provide a variety of applications in engineering. 

2. Description of the system model and equations of motion 
We consider the dynamic response of an electromechanical instrument consisting of an electrical part described by the 
𝜙𝜙6  Rayleigh equation [8] coupled to the mechanical part as depicted in Fig.1. The mechanical part consists of two simple 
mechanical systems, elastically coupled through the spring with stiffness 𝑘𝑘𝑠𝑠 . Each mechanical system comprises a 
lumped mass, 𝑚𝑚𝑖𝑖 (𝑖𝑖 = 1,2), linked by a pair of inclined elastic springs of stiffness 𝑘𝑘𝑖𝑖  (𝑖𝑖 = 1,2),  capable of resisting both 
tension and compression and which are pinned to their rigid supports (T). Although each of the inclined springs 
provides linear restoring resistance, it has been proved that the resulting force has a strong irrational nonlinearity due 
to the geometric configuration [4].  The electrical part consists of a linear inductor L, a nonlinear capacitor (NC), a 
nonlinear resistor (NR) in series with electromotive force e(t). The voltage over the NR and the NC can be expressed as 
𝑉𝑉𝑁𝑁𝑁𝑁 = −𝑅𝑅 �1 − �̇�𝑞2

𝜔𝜔02 𝑄𝑄02
� �̇�𝑞 and  𝑉𝑉𝑁𝑁𝑁𝑁  = 𝑞𝑞

𝑐𝑐0
�1 − αa

Q02
q2 + αbq4

Q04
�, where by the dot, we mean the derivative with respect to time 

t. 𝛼𝛼𝑎𝑎  being a dimensionless parameter which can be positive or negative, while  𝛼𝛼𝑏𝑏  is a positive dimensionless 
parameter. These parameters account of nonlinear diode used. 𝜔𝜔0  and 𝑄𝑄0  are the nominal angular frequency and 
charge, respectively. 
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Figure 1 Circuit diagram of the electromechanical instrument, driven by the low frequency signal generator. 

The coupling between the electrical and mechanical parts is made by the electromagnetic transducer where the first 
coupling equation follows from Faraday's law: A coil of n turns moving at the velocity v with respect to the magnetic 
flux density B generates an electromotive force (voltage) given by 𝑒𝑒 = 2𝜋𝜋 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑛𝑛𝐵𝐵�̇�𝑥. The second equation follows 
from the Lorentz force law: The external force f required to balance the total force of the magnetic field on turns of the 
conductor is  𝑓𝑓 = − 2𝜋𝜋𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖 =  −𝑛𝑛𝐵𝐵�̇�𝑞. The kinetic energy of the system is then deduced as: 

𝑇𝑇 = 1
2
𝑚𝑚1�̇�𝑥2  + 1

2
𝑚𝑚2�̇�𝑦2 + 1

2
𝐿𝐿�̇�𝑞2 + 1

2
𝑛𝑛𝐵𝐵(𝑥𝑥�̇�𝑞 − 𝑞𝑞�̇�𝑥)                                                                                                                                     (1) 

where the over dot is the derivative with respect to time t and where x and y are the displacements of masses 𝑚𝑚1  and 
𝑚𝑚2, respectively.   The potential energy is: 

𝑉𝑉 = + 1
2
𝑘𝑘1 ���(𝑑𝑑1 + 𝑥𝑥)2 + ℎ2 − �𝑑𝑑12 + ℎ2�

2
+ ��(𝑑𝑑1 − 𝑥𝑥)2 + ℎ2 − �𝑑𝑑12 + ℎ2�

2
� + 1

2
𝑘𝑘2 ���(𝑑𝑑2 + 𝑦𝑦)2 + ℎ2 −

�𝑑𝑑22 + ℎ2�
2

+ ��(𝑑𝑑2 − 𝑦𝑦)2 + ℎ2 − �𝑑𝑑22 + ℎ2�
2
� + 1

2
𝑘𝑘𝑠𝑠(𝑦𝑦 − 𝑥𝑥)2 + 1

2𝑐𝑐0
𝑞𝑞2 − 𝛼𝛼𝑎𝑎

4𝑄𝑄02
𝑞𝑞4 + 𝛼𝛼𝑏𝑏

6𝑄𝑄04
𝑞𝑞6.                                                   (2) 

While the dissipative function is expressed as: 

𝐷𝐷 = 1
2
𝜆𝜆1�̇�𝑥2 + 1

2
𝜆𝜆2�̇�𝑦2 −

1
2
𝑅𝑅 �1 − �̇�𝑞2

2𝜔𝜔02𝑄𝑄02
� �̇�𝑞2                                                                                                                                    (3) 

 From the above defined energy components, one can define the Lagrangian given as 𝐿𝐿 = 𝑇𝑇 − 𝑉𝑉, while the equation of 
motion can be obtained from the Lagrangian equation 

𝑑𝑑
𝑑𝑑𝑑𝑑
�𝜕𝜕𝜕𝜕
𝜕𝜕�̇�𝑥

 � − 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

= −𝜕𝜕𝜕𝜕
𝜕𝜕�̇�𝑥

, 𝑑𝑑
𝑑𝑑𝑑𝑑
�𝜕𝜕𝜕𝜕
𝜕𝜕�̇�𝑦

 � − 𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦

= −𝜕𝜕𝜕𝜕
𝜕𝜕�̇�𝑦

,      𝑑𝑑
𝑑𝑑𝑑𝑑
�𝜕𝜕𝜕𝜕
𝜕𝜕�̇�𝑞

 � − 𝜕𝜕𝜕𝜕
𝜕𝜕𝑞𝑞

= −𝜕𝜕𝜕𝜕
𝜕𝜕�̇�𝑞

+ 𝑒𝑒(𝑡𝑡)                                                                                    (4) 

 leading to the following equation of motion: 

⎩
⎪
⎨

⎪
⎧𝑚𝑚1�̈�𝑥 + 𝜆𝜆1�̇�𝑥 + 2𝑘𝑘1𝑥𝑥 − 𝑘𝑘1�𝑑𝑑12 + ℎ2 � (𝑥𝑥+𝑑𝑑1)

�(𝑥𝑥+𝑑𝑑1)2+ℎ2
+ (𝑥𝑥−𝑑𝑑1)

�(𝑥𝑥−𝑑𝑑1)2+ℎ2
� + 𝑘𝑘𝑠𝑠(𝑥𝑥 − 𝑦𝑦) − 𝑛𝑛𝐵𝐵�̇�𝑞 = 0,

𝑚𝑚2�̈�𝑦 + 𝜆𝜆2�̇�𝑦 + 2𝑘𝑘2𝑦𝑦 − 𝑘𝑘2�𝑑𝑑22 + ℎ2 � (𝑦𝑦+𝑑𝑑2)
�(𝑦𝑦+𝑑𝑑2)2+ℎ2

+ (𝑦𝑦−𝑑𝑑2)
�(𝑦𝑦−𝑑𝑑2)2+ℎ2

� + 𝑘𝑘𝑠𝑠(𝑦𝑦 − 𝑥𝑥) = 0,

𝐿𝐿�̈�𝑞 − 𝑅𝑅 �1 − �̇�𝑞2

𝜔𝜔02𝑄𝑄02
� �̇�𝑞 + 1

𝑁𝑁0
𝑞𝑞 − αa

Q02
𝑞𝑞3 + αb

Q04
𝑞𝑞5 + 𝑛𝑛𝐵𝐵�̇�𝑥 = 𝑒𝑒0 cos(𝜔𝜔 𝑡𝑡).

                                                       (5)  

Let us make the changes of variables and parameters: 

𝑋𝑋 = 𝑥𝑥

�𝑑𝑑12+ℎ2
,𝑌𝑌 = 𝑦𝑦

�𝑑𝑑22+ℎ2
,𝑍𝑍 = 𝑞𝑞

𝑄𝑄0
, 𝜏𝜏 = 𝑡𝑡𝜔𝜔𝑒𝑒 , 𝜔𝜔𝑒𝑒 = 1

�𝜕𝜕𝑁𝑁0
,                                                                                                                       (6) 

 leading to the following dimensionless equation: 



Global Journal of Engineering and Technology Advances, 2021, 06(01), 116–135 

119 

⎩
⎪
⎨

⎪
⎧  �̈�𝑋 + 𝜎𝜎1�̇�𝑋 + 2𝜔𝜔12𝑋𝑋 − 𝜔𝜔12 �

𝑋𝑋+cos(𝜃𝜃1)
�(𝑋𝑋+cos(𝜃𝜃1))2+sin2(𝜃𝜃1)

+ 𝑋𝑋−cos(𝜃𝜃1)
�(𝑋𝑋−cos(𝜃𝜃1))2+sin2(𝜃𝜃1)

� + 𝛾𝛾1(𝑋𝑋 − 𝜀𝜀1𝑌𝑌) − 𝛽𝛽1�̇�𝑍  = 0,

�̈�𝑌 + 𝜎𝜎2�̇�𝑌 + 2𝜔𝜔2
2𝑌𝑌 − 𝜔𝜔2

2 � 𝑌𝑌+cos(𝜃𝜃2)
�(𝑌𝑌+cos(𝜃𝜃2))2+sin2(𝜃𝜃2)

+ 𝑌𝑌−cos(𝜃𝜃2)
�(𝑌𝑌−cos(𝜃𝜃2))2+sin2(𝜃𝜃2)

� − 𝛾𝛾2(𝑋𝑋 − 𝜀𝜀1𝑌𝑌)  = 0,

  �̈�𝑍 − 𝜎𝜎3�1 − 𝛼𝛼0�̇�𝑍2��̇�𝑍 + 𝑍𝑍 − 𝛼𝛼1𝑍𝑍3 + 𝛼𝛼2𝑍𝑍5 + 𝛽𝛽2�̇�𝑋   = 𝐸𝐸0𝑐𝑐𝑐𝑐𝑐𝑐(Ω 𝑡𝑡),

                                  (7) 

𝜎𝜎1 = 𝜆𝜆1
𝑚𝑚1𝜔𝜔𝑒𝑒

, 𝜔𝜔12 = 𝑘𝑘1
𝑚𝑚1𝜔𝜔𝑒𝑒2

, 𝛾𝛾1 =  𝑘𝑘𝑠𝑠
𝑚𝑚1𝜔𝜔𝑒𝑒2

,  𝛽𝛽1 = 𝐵𝐵𝐵𝐵𝑄𝑄0

𝑚𝑚1𝜔𝜔𝑒𝑒�𝑑𝑑12+ℎ2
,𝜎𝜎2 = 𝜆𝜆2

𝑚𝑚2𝜔𝜔𝑒𝑒
, 𝜔𝜔2

2 = 𝑘𝑘2
𝑚𝑚2𝜔𝜔𝑒𝑒2

, 𝛾𝛾2 = 𝑘𝑘𝑠𝑠
𝑚𝑚2𝜀𝜀1𝜔𝜔𝑒𝑒2

, 

 𝜎𝜎3 = 𝑁𝑁
𝜕𝜕𝜔𝜔𝑒𝑒

,𝛼𝛼0 = 𝜔𝜔𝑒𝑒2

𝜔𝜔02
, 𝛼𝛼1 = 𝐶𝐶𝛼𝛼𝑎𝑎,𝛼𝛼2 = 𝐶𝐶 𝛼𝛼𝑏𝑏, 𝑡𝑡𝑡𝑡𝑛𝑛(𝜃𝜃1) = ℎ

𝑑𝑑1
, 𝑡𝑡𝑡𝑡𝑛𝑛(𝜃𝜃2) = ℎ

𝑑𝑑2
,  

 𝛽𝛽2 =
𝐵𝐵𝐵𝐵�𝑑𝑑12+ℎ2

𝜕𝜕𝑄𝑄0𝜔𝜔𝑒𝑒
 ,𝐸𝐸0 = 𝐶𝐶𝑒𝑒0, Ω = 𝜔𝜔

𝜔𝜔𝑒𝑒
,   𝜀𝜀1 =

�𝑑𝑑22+ℎ2

�𝑑𝑑12+ℎ2
                                                                                                                                 (8) 

The mechanical parts the above equations (7) have already been found in [4], in which in place of 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃) and 𝑐𝑐𝑖𝑖𝑛𝑛(𝜃𝜃), 
they had 𝛼𝛼 and 𝛽𝛽, respectively. With 𝛼𝛼 = ℎ

𝜕𝜕
 and 𝛽𝛽 = 𝑑𝑑

𝜕𝜕
, while 𝐿𝐿 = √ℎ2 + 𝑑𝑑2. As one can see, 𝛼𝛼2  + 𝛽𝛽2 = 1, meaning that 𝛼𝛼 

and 𝛽𝛽 of the differential equation obtained in  [4] could not be treated as independent parameters as it was the case. 
This is why in order to avoid this misunderstanding, we use here 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃)  and 𝑐𝑐𝑖𝑖𝑛𝑛(𝜃𝜃)  in place of the old 𝛼𝛼 and 𝛽𝛽 since 
cos2(𝜃𝜃)  + sin2(𝜃𝜃) = 1 .For the large amplitude oscillations, or for weak value of angles 𝜃𝜃1 and 𝜃𝜃2  that is for  |𝑋𝑋 ±
𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃1| ≫ 𝑐𝑐𝑖𝑖𝑛𝑛(𝜃𝜃1) and  |𝑌𝑌 ± 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃2)| ≫ 𝑐𝑐𝑖𝑖𝑛𝑛(𝜃𝜃2), equation (7) leads to 

�
�̈�𝑋 + 𝜎𝜎1�̇�𝑋 + 2𝜔𝜔12𝑋𝑋 − 𝜔𝜔12(𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛(𝑋𝑋 + 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃1)) + 𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛(𝑋𝑋 − 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃1)) + 𝛾𝛾1(𝑋𝑋 − 𝜀𝜀1𝑌𝑌) − 𝛽𝛽1�̇�𝑍  = 0,
�̈�𝑌 + 𝜎𝜎2�̇�𝑌 + 2𝜔𝜔2

2𝑌𝑌 − 𝜔𝜔2
2�𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛(𝑌𝑌 + 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃2)� +  𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛(𝑌𝑌 − 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃2)) + 𝛾𝛾2(𝜀𝜀1 𝑌𝑌 −  𝑋𝑋)   = 0,

  �̈�𝑍 − 𝜎𝜎3�1 − 𝛼𝛼0�̇�𝑍2��̇�𝑍 + 𝑍𝑍 − 𝛼𝛼1𝑍𝑍3 + 𝛼𝛼2𝑍𝑍5 + 𝛽𝛽2�̇�𝑋   = 𝐸𝐸0𝑐𝑐𝑐𝑐𝑐𝑐(Ω 𝑡𝑡),
                                          (9) 

csgn(x) being the signum function. 

𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛(𝑥𝑥) = �−1 𝑖𝑖𝑓𝑓 𝑥𝑥 < 0,
1 𝑖𝑖𝑓𝑓 𝑥𝑥 ≥ 0                                                                                                                                                                              (10) 

For weak amplitude oscillations, Eq.(7) can be expanded to sixth order to give: 

⎩
⎪⎪
⎨

⎪⎪
⎧ �̈�𝑋 + 𝜎𝜎1�̇�𝑋 + 2𝜔𝜔12\𝑐𝑐𝑐𝑐𝑐𝑐2(𝜃𝜃1)𝑋𝑋 − 𝜔𝜔12𝑐𝑐𝑖𝑖𝑛𝑛2(𝜃𝜃1)(5𝑐𝑐𝑐𝑐𝑐𝑐2(𝜃𝜃1) − 1)𝑋𝑋3 −
3
4
𝜔𝜔12𝑐𝑐𝑖𝑖𝑛𝑛2(𝜃𝜃1)(21𝑐𝑐𝑐𝑐𝑐𝑐4(𝜃𝜃1) − 14𝑐𝑐𝑐𝑐𝑐𝑐2(𝜃𝜃1) + 1)𝑋𝑋5 + 𝛾𝛾1(𝑋𝑋 − 𝜀𝜀1𝑌𝑌) − 𝛽𝛽1�̇�𝑍  = 0,

�̈�𝑌 + 𝜎𝜎2�̇�𝑌 + 2𝜔𝜔2
2𝑐𝑐𝑐𝑐𝑐𝑐2(𝜃𝜃2)𝑌𝑌 − 𝜔𝜔2

2𝑐𝑐𝑖𝑖𝑛𝑛2(𝜃𝜃2)(5𝑐𝑐𝑐𝑐𝑐𝑐2(𝜃𝜃2) − 1)𝑌𝑌3 −
3
4
𝜔𝜔2
2𝑐𝑐𝑖𝑖𝑛𝑛2(𝜃𝜃2)(21𝑐𝑐𝑐𝑐𝑐𝑐4(𝜃𝜃2) − 14𝑐𝑐𝑐𝑐𝑐𝑐2(𝜃𝜃2) + 1)𝑌𝑌5  + 𝛾𝛾2(𝜀𝜀1 𝑌𝑌 −  𝑋𝑋)   = 0,

 �̈�𝑍 − 𝜎𝜎3�1 − 𝛼𝛼0�̇�𝑍2��̇�𝑍 + 𝑍𝑍 − 𝛼𝛼1𝑍𝑍3 + 𝛼𝛼2𝑍𝑍5 + 𝛽𝛽2�̇�𝑋   = 𝐸𝐸0𝑐𝑐𝑐𝑐𝑐𝑐(Ω 𝑡𝑡),

                                                                         (11) 

3. Equilibrium points and stability  

3.1. Equilibrium points 

In order to find the equilibrium points of the system, let us rewrite the set of Eqs.(7) in the vector form as �̇�𝑢 = 𝐹𝐹(𝑢𝑢) +
𝐸𝐸(𝑡𝑡), where 𝑢𝑢 = (𝑋𝑋, �̇�𝑋,𝑌𝑌, �̇�𝑌,𝑍𝑍, �̇�𝑍). The non-linear flow F represents the motion equations of the non-excited system and 
E is the external excitation. The equilibrium states 𝑢𝑢𝑒𝑒𝑞𝑞  are solutions of the set of non-linear algebraic equations 
𝐹𝐹(𝑢𝑢𝑒𝑒𝑞𝑞) = 0, that is 

⎩
⎪
⎨

⎪
⎧2𝜔𝜔12𝑋𝑋 − 𝜔𝜔12 �

𝑋𝑋+cos(𝜃𝜃1)
�(𝑋𝑋+cos(𝜃𝜃1))2+sin2(𝜃𝜃1)

+ 𝑋𝑋−cos(𝜃𝜃1)
�(𝑋𝑋−cos(𝜃𝜃1))2+sin2(𝜃𝜃1)

� + 𝛾𝛾1(𝑋𝑋 − 𝜀𝜀1𝑌𝑌)  = 0,

2𝜔𝜔2
2𝑌𝑌 − 𝜔𝜔2

2 � 𝑌𝑌+cos(𝜃𝜃2)
�(𝑌𝑌+cos(𝜃𝜃2))2+sin2(𝜃𝜃2)

+ 𝑌𝑌−cos(𝜃𝜃2)
�(𝑌𝑌−cos(𝜃𝜃2))2+sin2(𝜃𝜃2)

� − 𝛾𝛾2(𝑋𝑋 − 𝜀𝜀1𝑌𝑌)  = 0,

𝑍𝑍 − 𝛼𝛼1𝑍𝑍3 + 𝛼𝛼2𝑍𝑍5 = 0.

                                                                      (12) 
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In order to simplify our studies, let us impose 𝑑𝑑1 = 𝑑𝑑2 = 𝑑𝑑, leading that 𝜃𝜃1 = 𝜃𝜃2 = 𝜃𝜃 = 𝑡𝑡𝑛𝑛𝑐𝑐𝑡𝑡𝑡𝑡𝑛𝑛(ℎ/𝑑𝑑) and 𝜀𝜀1 = 1. One 
can then have  at the equilibrium point, 𝑥𝑥0 = 𝑦𝑦0 = 𝑅𝑅0, 𝑅𝑅0  being the solution of the following equation: 

2𝑅𝑅0 − � 𝑁𝑁0+cos(𝜃𝜃)
�(𝑁𝑁0+cos(𝜃𝜃))2+sin2(𝜃𝜃)

+ 𝑁𝑁0−cos(𝜃𝜃)
�(𝑁𝑁0−cos(𝜃𝜃))2+sin2(𝜃𝜃)

� = 0.                                                                                                                    (13) 

admitting as solutions 𝑅𝑅0 = 0, and/or 𝑅𝑅0 = 𝑅𝑅, where R is the solution of the following polynomial equation: 

2𝑅𝑅10 − 2�1 + 4𝑐𝑐𝑐𝑐𝑐𝑐(2𝜃𝜃)�𝑅𝑅8 + �9 + 4𝑐𝑐𝑐𝑐𝑐𝑐(4𝜃𝜃) + 7𝑐𝑐𝑐𝑐𝑐𝑐(2𝜃𝜃)�𝑅𝑅6 − �6 + 3𝑐𝑐𝑐𝑐𝑐𝑐(4𝜃𝜃) + 11𝑐𝑐𝑐𝑐𝑐𝑐(2𝜃𝜃)�𝑅𝑅4 +  

�4 + 5𝑐𝑐𝑐𝑐𝑐𝑐(2𝜃𝜃) + 𝑐𝑐𝑐𝑐𝑐𝑐(4𝜃𝜃)�𝑅𝑅2 − 2(𝑐𝑐𝑖𝑖𝑛𝑛6(𝜃𝜃) + 𝑐𝑐𝑐𝑐𝑐𝑐2(𝜃𝜃) − 𝑐𝑐𝑖𝑖𝑛𝑛4(𝜃𝜃) = 0.                                                                                         (14) 

The obtained solution is plotted in Fig.2, showing for each value of 𝜃𝜃 two solutions with opposite signs.  Since 𝛼𝛼2 > 0, it 
appears that the third line of Eq.(12) will admit the following solution: 

If 𝛼𝛼1 < 2√𝛼𝛼2, one has only one solution 𝑍𝑍0 = 0, leading the system to three possible equilibrium points (𝑋𝑋0,𝑌𝑌0,𝑍𝑍0) =
(0,0,0), that is the trivial solution and (𝑋𝑋0,𝑌𝑌0,𝑍𝑍0) = (± 𝑅𝑅, ±𝑅𝑅, 0), R being the solution of 

  Eq.(13)  as plotted in Fig.2. 

 

Figure 2 Evolution of equilibrium point related to Eq. (14) with respect to phase θ/π. It is 
obvious that Eq.13 admits three solutions 

If 𝛼𝛼1 = 2√𝛼𝛼2, the last line of Eq.(12) has as  solution 𝑍𝑍0 = 0 or 𝑍𝑍0 = ±�
𝛼𝛼1
2𝛼𝛼2

 , meaning that the system will admit the 

combination of 3 fixed points for the first two lines and 3 others for the third line, which give 3 × 3 = 9 equilibrium 
points. 

For 𝛼𝛼1 > 2√𝛼𝛼2, the last line of Eq.(12) has as solution 

    𝑍𝑍1± = ±�
�𝛼𝛼1+�𝛼𝛼12−4𝛼𝛼2�

2𝛼𝛼2
,  𝑍𝑍2± = ±�

�𝛼𝛼1−�𝛼𝛼12−4𝛼𝛼2�

2𝛼𝛼2
                                                                                                                            (15) 

meaning that the system will admit the combination of 3 fixed points for the first two lines and 5 others for the third 
line, which 𝑐𝑐𝑖𝑖𝑛𝑛𝑒𝑒𝑐𝑐 3 × 5 = 15 equilibrium points. 
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For these obvious reasons the system will have the multi stability-like behaviour. To prove the above remarks, let us 
mention that for 𝜀𝜀1 = 1 and 𝛾𝛾1 = 𝛾𝛾2, the set of Eq.(11) admits the potential energy 

𝑉𝑉(𝑋𝑋,𝑌𝑌,𝑍𝑍) = 1
2
𝜔𝜔12 ����𝑋𝑋 + 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃)�2 +\𝑐𝑐𝑖𝑖𝑛𝑛2(𝜃𝜃) − 1�

2

+ ���𝑋𝑋 − 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃)�2 + 𝑐𝑐𝑖𝑖𝑛𝑛2(𝜃𝜃) − 1�
2

� +  

1
2
𝜔𝜔2
2 ����𝑌𝑌 + 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃)�2 + 𝑐𝑐𝑖𝑖𝑛𝑛2(𝜃𝜃) − 1�

2

+ ���𝑌𝑌 − 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃)�2 + 𝑐𝑐𝑖𝑖𝑛𝑛2(𝜃𝜃) − 1�
2

� +  

1
2
𝛾𝛾1(𝑋𝑋 − 𝑌𝑌)2 + 1

2
𝑍𝑍2 − 1

4
𝛼𝛼1𝑍𝑍4 + 1

6
𝛼𝛼2𝑍𝑍6.                                                                                                                                                   (16) 

This potential energy is plotted in Fig.(3) for the case 𝑋𝑋 = 𝑌𝑌,𝜔𝜔1 = 𝜔𝜔2 = 1
√2

,𝜃𝜃 = 0.2,𝛼𝛼2 = 1. In Fig.(3) (a), we have the 

case  𝛼𝛼1 = 3 > 2�2𝛼𝛼2, while in Fig.(3)(b) the case 𝛼𝛼1 = 1 < 2√𝛼𝛼2 . These graphs are in agreement with the above 
analysis. 

 

Figure 3 Potential energy according to Eq.(16) obtained for, (a): 𝜶𝜶𝟐𝟐 = 1, and α1 = 3 > 2√𝜶𝜶𝟐𝟐. 
(b): 𝜶𝜶𝟐𝟐  =  𝟏𝟏 and 𝜶𝜶𝟏𝟏 = 1 < √𝜶𝜶𝟐𝟐. 

3.2. Stability of equilibrium points 

     The local stability analysis of the above equilibrium points can be determined by investigating the linearized system 
𝛿𝛿�̇�𝑢 = 𝐽𝐽𝛿𝛿𝑢𝑢, J is the sixth   order Jacobean matrix defined by 𝐽𝐽 = 𝜕𝜕 𝐹𝐹(𝑢𝑢)

𝜕𝜕 𝑢𝑢
, leading to: 

𝐽𝐽 =

⎝

⎜⎜
⎛

0 1 0
−ξ1  −σ1  γ1

0 0 0

0 0 0
0 0 β1 
1 0 0

  γ2 0 −𝜉𝜉2
0 0 0
0 −β2 0

 −σ2 0 0
0 0 1
0 j2  σ3⎠

⎟⎟
⎞

 , 𝜉𝜉1 = ω1
2  j1 + γ1, 𝜉𝜉2 = ω2

2j1 + γ2                                                                              (17) 

 with  𝑗𝑗1 = 2 − 𝑐𝑐𝑖𝑖𝑛𝑛2(𝜃𝜃)� 1

��𝑁𝑁+𝑐𝑐𝑐𝑐𝑠𝑠(𝜃𝜃)�2 +𝑠𝑠𝑖𝑖𝑛𝑛2(𝜃𝜃)�
3/2

 
+ 1

��𝑁𝑁−𝑐𝑐𝑐𝑐𝑠𝑠(𝜃𝜃)�2 +𝑠𝑠𝑖𝑖𝑛𝑛2(𝜃𝜃)�
3/2

 
� , 𝑗𝑗2 = −1 + 3𝛼𝛼1𝑍𝑍02 − 5𝛼𝛼2𝑍𝑍04 . This jacobean 

matrix leads to the characteristic equation                      

     𝜆𝜆6 + 𝑝𝑝0𝜆𝜆5 + 𝑝𝑝1𝜆𝜆4 + 𝑝𝑝2𝜆𝜆3 + 𝑝𝑝3𝜆𝜆2 + 𝑝𝑝4𝜆𝜆 + 𝑝𝑝5 = 0,                                                                                                                           (18) 
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    With 

𝑝𝑝0 = 𝜎𝜎1 + 𝜎𝜎2 − 𝜎𝜎3, 𝑝𝑝1 = (𝜔𝜔2
2 + 𝜔𝜔12)𝑗𝑗1 + 𝛽𝛽2𝛽𝛽1 − 𝑗𝑗2 − 𝜎𝜎3𝜎𝜎2 − 𝜎𝜎3𝜎𝜎1 + 𝛾𝛾1 + 𝛾𝛾2 + 𝜎𝜎2𝜎𝜎1;  

𝑝𝑝2 = (−𝜎𝜎3𝜔𝜔12 + 𝜎𝜎1𝜔𝜔2
2 + 𝜎𝜎2𝜔𝜔12 − 𝜎𝜎3𝜔𝜔2

2)𝑗𝑗1 + 𝛽𝛽2𝛽𝛽1𝜎𝜎2 − 𝑗𝑗2𝜎𝜎2 − 𝑗𝑗2𝜎𝜎1 − 𝜎𝜎3𝛾𝛾1 − 𝜎𝜎3𝛾𝛾2 − 𝜎𝜎3𝜎𝜎2𝜎𝜎1 + 𝜎𝜎2𝛾𝛾1 + 𝜎𝜎1𝛾𝛾2;  

𝑝𝑝3 = 𝛽𝛽2𝛽𝛽1𝜔𝜔2
2𝑗𝑗1 + 𝛽𝛽2𝛽𝛽1𝛾𝛾2 − 𝑗𝑗2𝜔𝜔2

2𝑗𝑗1 − 𝑗𝑗2𝛾𝛾2 − 𝑗𝑗2𝜎𝜎2𝜎𝜎1 − 𝑗𝑗2𝜔𝜔12𝑗𝑗1 − 𝑗𝑗2𝛾𝛾1 − 𝜎𝜎3𝜎𝜎1𝜔𝜔2
2𝑗𝑗1 − 𝜎𝜎3𝜎𝜎1𝛾𝛾2 − 𝜎𝜎3𝜎𝜎2𝜔𝜔12𝑗𝑗1 − 𝜎𝜎3𝜎𝜎2𝛾𝛾1 +

𝜔𝜔2
2𝑗𝑗12𝜔𝜔12 + 𝜔𝜔2

2𝑗𝑗1𝛾𝛾1 + 𝛾𝛾2𝜔𝜔12𝑗𝑗1;  

𝑝𝑝4 = −𝜎𝜎3𝜔𝜔2
2𝑗𝑗12𝜔𝜔12 + (−𝑗𝑗2𝜎𝜎1𝜔𝜔2

2 − 𝜎𝜎3𝛾𝛾2𝜔𝜔12 − 𝜎𝜎3𝜔𝜔2
2𝛾𝛾1 − 𝑗𝑗2𝜎𝜎2𝜔𝜔12)𝑗𝑗1 − 𝑗𝑗2(𝜎𝜎1𝛾𝛾2 + 𝜎𝜎2𝛾𝛾1);  

𝑝𝑝5 = −𝑗𝑗2𝑗𝑗1(𝛾𝛾2𝜔𝜔12 + 𝑗𝑗1𝜔𝜔2
2𝜔𝜔12 + 𝜔𝜔2

2𝛾𝛾1).                                                                                                                                                       (19) 

The analytic determination of the eigenvalues solutions of Eq.(18) leads to quite large analytical expressions, this is why 
in order to find the parameter bands for which the system is stable, we recall  the  Routh- hurwitz stability criteria as 
follows; 

All parameters of Eq.(18}) must have the same sign, that is the positive sign since the first parameter is 

positive. That is 𝑝𝑝𝑛𝑛 > 0,𝑛𝑛 = 0,1,2,3,4,5. In addition, 

𝑝𝑝2 − 𝑝𝑝0𝑝𝑝1 < 0, 𝑝𝑝1𝑝𝑝4 − 𝑝𝑝2𝑝𝑝3 < 0 𝑡𝑡𝑛𝑛𝑑𝑑 𝑝𝑝2
𝑝𝑝0

(𝑝𝑝2 − 𝑝𝑝0𝑝𝑝1) − 𝑝𝑝0
𝑝𝑝2

(𝑝𝑝1𝑝𝑝4 − 𝑝𝑝2𝑝𝑝3) < 0.                                                                        (20) 

The numerical algorithm has been used to compute these eigenvalues, and the results are plotted in Figs.4(a,b), for 
−1 < 𝑋𝑋0 = 𝑌𝑌0 < 1 and −15 < 𝑍𝑍0 < 15, showing that the system admits some solutions with positive real part, meaning 
that the system model will admit unbounded or chaotic solutions. 
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Figure 4 Real part versus imaginary part of solutions of Eq.(18), obtained for 𝝎𝝎𝟏𝟏 = 𝝎𝝎𝟐𝟐 = 𝟏𝟏
√𝟐𝟐

, 𝜷𝜷𝟏𝟏 = 𝜷𝜷𝟐𝟐 = 𝟎𝟎.𝟓𝟓,𝝈𝝈𝟏𝟏 = 𝝈𝝈𝟐𝟐 =
𝟎𝟎.𝟐𝟐𝟓𝟓, 𝝈𝝈𝟑𝟑 = 𝟎𝟎.𝟐𝟐𝟓𝟓 𝜸𝜸𝟏𝟏 = 𝜸𝜸𝟐𝟐 = 𝟏𝟏, 𝜶𝜶𝟏𝟏 = 𝟑𝟑,𝜶𝜶𝟐𝟐 = 𝟏𝟏, obtained by varying −𝟏𝟏 < 𝑿𝑿𝟎𝟎 = 𝒀𝒀𝟎𝟎 < 𝟏𝟏 and   −𝟏𝟏𝟓𝟓 < 𝒁𝒁𝟎𝟎 < 𝟏𝟏𝟓𝟓. (a): 𝜽𝜽 =
𝝅𝝅/𝟐𝟐 − 𝟎𝟎.𝟎𝟎𝟐𝟐$, and (b): 𝜽𝜽 = 𝟎𝟎.𝟎𝟎𝟐𝟐.  

 

As one can see, the equation admits some solution with positive real part, which is the precursor sign of the existence 
of unbounded or chaotic solutions.  The equation will also admit solution with zero real part, the well known Hopf 
bifurcation. 

4. Analytical solution of the system equation 
Amongst all the analytic approaches for the non-linear oscillations, the multiple time scales method (MTSM) has been 
chosen because it is the most adapted to the study of dynamical systems around resonance frequencies. In this paper, 
the damping, the coupling, the external excitation and the non-linearity are considered as global first order 
perturbations. Therefore let us write 𝜎𝜎1 = 𝜖𝜖𝜎𝜎10,𝜎𝜎2 = 𝜖𝜖𝜎𝜎20,𝜎𝜎3 = 𝜖𝜖\𝑐𝑐𝑖𝑖𝑐𝑐𝑚𝑚𝑡𝑡30, 

𝛾𝛾1 = 𝜖𝜖𝛾𝛾10, 𝛾𝛾2 = 𝜖𝜖𝛾𝛾20,𝛽𝛽1 = 𝜖𝜖𝛽𝛽10,𝛽𝛽2 = 𝜖𝜖𝛽𝛽20,𝛼𝛼1 = 𝜖𝜖𝛼𝛼10,𝛼𝛼2 = 𝜖𝜖𝛼𝛼20 𝑡𝑡𝑛𝑛𝑑𝑑 𝐸𝐸0 = 𝜖𝜖 𝐸𝐸 . In order to simplify our studies and to 
approach the solutions with the best accuracy, we will consider first the large amplitude oscillations, and approximated 
by Eq.(9), and secondly the weak amplitude  given by Eq.(11): 

4.1. Case of the large amplitude oscillations: Discontinuous perturbed case 

for this particular case, Eq.(9) can be rewritten as: 

�
  �̈�𝑋 + 𝜖𝜖𝜎𝜎10�̇�𝑋 + 2𝜔𝜔12𝑋𝑋 − 2𝜔𝜔12𝐹𝐹1 + 𝜖𝜖𝛾𝛾10(𝑋𝑋 − 𝜀𝜀1𝑌𝑌) − 𝜖𝜖𝛽𝛽10�̇�𝑍  = 0,

�̈�𝑌 + 𝜖𝜖𝜎𝜎20�̇�𝑌 + 2𝜔𝜔2
2𝑌𝑌 − 2𝜔𝜔2

2𝐹𝐹2 + 𝜖𝜖𝛾𝛾20(𝜀𝜀1 𝑌𝑌 −  𝑋𝑋)   = 0,
�̈�𝑍 − 𝜖𝜖𝜎𝜎30�1 − 𝛼𝛼0�̇�𝑍2��̇�𝑍 + 𝑍𝑍 − 𝜖𝜖𝛼𝛼10𝑍𝑍3 + 𝜖𝜖𝛼𝛼20𝑍𝑍5 + 𝜖𝜖\𝑏𝑏𝑒𝑒𝑡𝑡𝑡𝑡20�̇�𝑋   = 𝜖𝜖𝐸𝐸0𝑐𝑐𝑐𝑐𝑐𝑐(Ω𝑡𝑡),

 ,                                                                      (21) 

with 

𝐹𝐹𝑖𝑖 = 1
2
�𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛�𝑋𝑋𝑖𝑖 + 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃)� + 𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛�𝑋𝑋𝑖𝑖 − 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃)�� = �

−1  𝑖𝑖𝑓𝑓 𝑋𝑋𝑖𝑖 < − cos(𝜃𝜃)
0 𝑖𝑖𝑓𝑓 − cos(𝜃𝜃) <  𝑋𝑋𝑖𝑖 < cos(𝜃𝜃)

1 𝑖𝑖𝑓𝑓  𝑋𝑋𝑖𝑖 > cos(𝜃𝜃)
                                                          (22) 

where 𝑋𝑋1 = 𝑋𝑋 and 𝑋𝑋2 = 𝑌𝑌. Let us set 

𝑋𝑋(𝑡𝑡) = 𝑋𝑋0(𝑇𝑇0,𝑇𝑇1) + 𝜖𝜖 𝑋𝑋1 (𝑇𝑇0,𝑇𝑇1 ) + 0(𝜖𝜖2),𝑌𝑌(𝑡𝑡) = 𝑌𝑌0(𝑇𝑇0,𝑇𝑇1) + 𝜖𝜖 𝑌𝑌1 (𝑇𝑇0,𝑇𝑇1) + 0(𝜖𝜖2),  
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𝑍𝑍(𝑡𝑡) = 𝑍𝑍0(𝑇𝑇0,𝑇𝑇1) + 𝜖𝜖 𝑍𝑍1 (𝑇𝑇0,𝑇𝑇1) + 0(𝜖𝜖2 ),                                                                                                                                            (23) 

with  𝑇𝑇0 = 𝑡𝑡, 𝑇𝑇1 = 𝜖𝜖𝑡𝑡, 𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐷𝐷0 + 𝜖𝜖𝐷𝐷1,  and  𝐷𝐷𝑖𝑖 = 𝜕𝜕
𝜕𝜕𝑇𝑇𝑖𝑖.

 Substituting Eqs.(23)  into the set of Eqs.(21) and equating 
coefficients of like powers of $\epsilon$, one obtains the following set of ordinary differential equations: 

Equations at order 𝜖𝜖0, then we have : 

�
𝐷𝐷02𝑋𝑋0 + 2𝜔𝜔12𝑋𝑋0 = 2𝜔𝜔12𝐹𝐹1,
𝐷𝐷02𝑌𝑌0 + 2𝜔𝜔2

2𝑌𝑌0 = 2𝜔𝜔2
2𝐹𝐹2,

𝐷𝐷02𝑍𝑍0 + 𝑍𝑍0 = 0
                                                                                                                                     (24) 

admitting as solution: 

𝑋𝑋0 = 𝐹𝐹1 + 𝐴𝐴1(𝑇𝑇1)\𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔1√2𝑇𝑇0) + 𝑛𝑛1(𝑇𝑇1)𝑐𝑐𝑖𝑖𝑛𝑛(𝜔𝜔1√2𝑇𝑇0),  

𝑌𝑌0 = 𝐹𝐹2 + 𝐴𝐴2(𝑇𝑇1)𝑐𝑐𝑐𝑐𝑐𝑐�𝜔𝜔2√2𝑇𝑇0� + 𝑛𝑛2(𝑇𝑇1)𝑐𝑐𝑖𝑖𝑛𝑛�𝜔𝜔2√2𝑇𝑇0�,  

𝑍𝑍0 = 𝐴𝐴3(𝑇𝑇1)𝑐𝑐𝑐𝑐𝑐𝑐(𝑇𝑇0) + 𝑛𝑛3(𝑇𝑇1)𝑐𝑐𝑖𝑖𝑛𝑛(𝑇𝑇0),                                                                      (25) 

At the order 𝜖𝜖1, one has: 

   𝐷𝐷02𝑋𝑋1 + 2𝜔𝜔12𝑋𝑋1 = −2𝐷𝐷0𝐷𝐷1𝑋𝑋0 − 𝜎𝜎10𝐷𝐷0𝑋𝑋0 − 𝛾𝛾10(𝑋𝑋0 − 𝜀𝜀1𝑌𝑌0) + 𝛽𝛽10𝐷𝐷0𝑍𝑍0 ,   

  𝐷𝐷02𝑌𝑌1 + 2𝜔𝜔12𝑌𝑌1 = −2𝐷𝐷0𝐷𝐷1𝑌𝑌0 − 𝜎𝜎20𝐷𝐷0𝑌𝑌0 − 𝛾𝛾20(𝜀𝜀1 𝑌𝑌0 −  𝑋𝑋0)  ,   

  𝐷𝐷02𝑍𝑍1 + 𝑍𝑍1 = −2𝐷𝐷0𝐷𝐷1𝑍𝑍0 + 𝜎𝜎30(1 − 𝛼𝛼0(𝐷𝐷0𝑍𝑍0)2)𝐷𝐷0𝑍𝑍0 + 𝛼𝛼10𝑍𝑍03 − 𝛼𝛼20𝑍𝑍05 − 𝛽𝛽20𝐷𝐷0𝑋𝑋0 + 𝐸𝐸0𝑐𝑐𝑐𝑐𝑐𝑐(Ω𝑡𝑡),                               (26) 

  leading by taking into account (25) to 

𝐷𝐷02𝑋𝑋1 + 2𝜔𝜔12𝑋𝑋1 = −(2𝜔𝜔1√2𝐷𝐷1𝑛𝑛1 + 𝛾𝛾10𝐴𝐴1 + 𝜎𝜎10𝑛𝑛1𝜔𝜔1√2)cos (𝜔𝜔1√2𝑇𝑇0) + (2𝐷𝐷1𝐴𝐴1𝜔𝜔1√2 + 𝜎𝜎10𝐴𝐴1𝜔𝜔1√2 −
𝛾𝛾10𝑛𝑛1sin (𝜔𝜔1√2𝑇𝑇0) + 𝛾𝛾10(𝜖𝜖1𝐹𝐹2 − 𝐹𝐹1) + 𝛾𝛾_10𝜖𝜖1�𝐴𝐴2 cos�𝜔𝜔2√2𝑇𝑇0� + 𝑛𝑛2 sin�𝜔𝜔2√2𝑇𝑇0�� + 𝛽𝛽10 (𝑛𝑛3cos (𝑇𝑇0) − 𝐴𝐴3sin (𝑇𝑇0)),  

𝐷𝐷02𝑌𝑌1 + 2𝜔𝜔2
2𝑌𝑌1 = −(2𝜔𝜔2√2𝐷𝐷1𝑛𝑛2 + 𝛾𝛾20𝐴𝐴2 + 𝜎𝜎20𝑛𝑛2𝜔𝜔2√2)𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔2√2𝑇𝑇0) + (2𝐷𝐷1𝐴𝐴2𝜔𝜔2√2 + 𝜎𝜎_20𝐴𝐴2𝜔𝜔2√2 −

𝛾𝛾20𝑛𝑛2)𝑐𝑐𝑖𝑖𝑛𝑛(𝜔𝜔2√2𝑇𝑇0) + 𝛾𝛾20(𝐹𝐹1 − 𝜖𝜖1𝐹𝐹2) + 𝛾𝛾20(𝐴𝐴1𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔1√2𝑇𝑇0) + 𝑛𝑛1𝑐𝑐𝑖𝑖𝑛𝑛(𝜔𝜔1√2𝑇𝑇0)),  

𝐷𝐷02𝑍𝑍1 + 𝑍𝑍1 = [2𝐷𝐷1𝐴𝐴3 − 𝜎𝜎30𝐴𝐴3 −
5
8
𝑛𝑛3𝑅𝑅34𝛼𝛼20 + 3

4
(𝛼𝛼10𝑛𝑛3 + 𝜎𝜎30𝛼𝛼0𝐴𝐴3)𝑅𝑅32]𝑐𝑐𝑖𝑖𝑛𝑛(𝑇𝑇0) + 𝛽𝛽20𝜔𝜔1√2(𝐴𝐴1𝑐𝑐𝑖𝑖𝑛𝑛(𝜔𝜔1√2𝑇𝑇0) −

𝑐𝑐𝑐𝑐𝑐𝑐�𝜔𝜔1√2𝑇𝑇0�𝑛𝑛1) + 𝐸𝐸0𝑐𝑐𝑐𝑐𝑐𝑐(Ω 𝑡𝑡) − [2𝐷𝐷1𝑛𝑛3 − 𝜎𝜎30𝑛𝑛3 + 5
8
𝐴𝐴3𝑅𝑅34𝛼𝛼20 + 3

4
(−𝛼𝛼10𝐴𝐴3 + 𝛼𝛼0𝑛𝑛3𝜎𝜎30)𝑅𝑅32 ]𝑐𝑐𝑐𝑐𝑐𝑐(𝑇𝑇0) + 1

4
[𝜎𝜎30𝑛𝑛3(3𝐴𝐴32 −

𝑛𝑛32)𝛼𝛼0 −
1
4
𝐴𝐴3(𝐴𝐴32 − 3𝑛𝑛32)(5𝛼𝛼20𝑅𝑅32 − 4𝛼𝛼10)]𝑐𝑐𝑐𝑐𝑐𝑐(3𝑇𝑇0) − 1

4
[𝜎𝜎30𝐴𝐴3(𝐴𝐴32 − 3𝑛𝑛32)𝛼𝛼0 + 1

4
𝑛𝑛3(3𝐴𝐴32 − 𝑛𝑛32)(5𝛼𝛼20𝑅𝑅32 −

4𝛼𝛼10)]𝑐𝑐𝑖𝑖𝑛𝑛(3𝑇𝑇0) − 1
16
𝑛𝑛3𝛼𝛼20(5𝐴𝐴34 − 10𝑛𝑛32𝐴𝐴32 + 𝑛𝑛34)𝑐𝑐𝑖𝑖𝑛𝑛(5𝑇𝑇0) − 1

16
𝐴𝐴3𝛼𝛼20(5𝑛𝑛34 − 10𝑛𝑛32𝐴𝐴32 + 𝐴𝐴34)𝑐𝑐𝑐𝑐𝑐𝑐(5𝑇𝑇0)                                                                                                                                                         

,                                                                                 (27) 

with 𝑅𝑅32 = 𝐴𝐴32 + 𝑛𝑛32.  The unknown amplitudes 𝐴𝐴𝑖𝑖 ,𝑛𝑛𝑖𝑖, 𝑖𝑖 = 1,2,3 may now be determined by eliminating secular terms in 
Eqs.(27). However, because of the high dimensionality of the system, it is impossible to obtain unambiguously a set of 
secular equations valid for all frequencies. This is why it is necessary to find the solution near the unique possible 
resonance √2𝜔𝜔1 = √2𝜔𝜔2 = Ω = 𝜔𝜔𝑒𝑒 , with 𝜔𝜔𝑒𝑒 = 1. Let us then set 

√2𝜔𝜔1 = 1 + 𝜖𝜖𝜉𝜉1,√2𝜔𝜔2 = 1 + 𝜖𝜖𝜉𝜉2, Ω1 = 1 + 𝜖𝜖𝜉𝜉,                                                                                                                                 (28) 

where 𝜉𝜉1 , 𝜉𝜉2 and 𝜉𝜉 are are the tuning parameters expressing the quantitative nearness of the resonance frequencies 
√2𝜔𝜔1,√2𝜔𝜔2𝑡𝑡𝑛𝑛𝑑𝑑 Ω with the fixed electric natural frequency 𝜔𝜔𝑒𝑒 = 1. Then, accounting Eqs.(28) into Eq.(31) leads to the 
following solvability conditions: 

2√2𝜔𝜔1 𝑅𝑅1 𝐷𝐷1𝜙𝜙1 + 𝛾𝛾10𝑅𝑅1 − 𝛾𝛾10𝜖𝜖1𝑅𝑅2𝑐𝑐𝑐𝑐𝑐𝑐(𝜓𝜓1) − 𝛽𝛽10𝑅𝑅3𝑐𝑐𝑖𝑖𝑛𝑛(𝜓𝜓2) = 0,  
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2√2𝜔𝜔1 𝐷𝐷1𝑅𝑅1 + 𝜎𝜎10𝑅𝑅1𝜔𝜔1√2 + 𝛾𝛾10𝜖𝜖1𝑅𝑅2𝑐𝑐𝑖𝑖𝑛𝑛(𝜓𝜓1) − 𝛽𝛽10𝑅𝑅3𝑐𝑐𝑐𝑐𝑐𝑐(𝜓𝜓2) = 0,  

2√2𝜔𝜔2 𝐷𝐷1𝜙𝜙2𝑅𝑅2 − 𝛾𝛾20𝑅𝑅1 cos(𝜓𝜓1) + 𝛾𝛾20𝜖𝜖1𝑅𝑅2 = 0,  

2√2𝜔𝜔2 𝐷𝐷1𝑅𝑅2 + 𝜎𝜎20𝑅𝑅2𝜔𝜔2√2 − 𝛾𝛾20𝑅𝑅1𝑐𝑐𝑖𝑖𝑛𝑛(𝜓𝜓1) = 0,  

2𝑅𝑅3𝐷𝐷1𝜙𝜙3 − 𝛽𝛽20𝑅𝑅1𝜔𝜔1√2𝑐𝑐𝑖𝑖𝑛𝑛(𝜓𝜓2) − 3
4
𝛼𝛼10𝑅𝑅33 + 3

8
𝛼𝛼20𝑅𝑅3 

5 − 𝐸𝐸0𝑐𝑐𝑐𝑐𝑐𝑐(𝜓𝜓3) = 0,  

2𝐷𝐷1𝑅𝑅3 + 3
4
𝜎𝜎30𝑅𝑅33𝛼𝛼0 + 𝛽𝛽20𝑅𝑅1𝜔𝜔1√2𝑐𝑐𝑐𝑐𝑐𝑐(𝜓𝜓2) − 𝜎𝜎30𝑅𝑅3 − 𝐸𝐸0𝑐𝑐𝑖𝑖𝑛𝑛(𝜓𝜓_3 = 0,                                                                                       (29) 

with 

𝜓𝜓1 = 𝜙𝜙2 − 𝜙𝜙1 + (𝜉𝜉1 − 𝜉𝜉2)𝑇𝑇1, 𝜓𝜓2 = 𝜉𝜉1𝑇𝑇1 + 𝜙𝜙3 − 𝜙𝜙1, 𝜓𝜓3 = 𝜙𝜙3 + 𝜉𝜉 𝑇𝑇1.                                                                                      (30) 

These solvability conditions have a physical meaning if all phases are time independent, that is 𝐷𝐷1𝜓𝜓1 = 𝐷𝐷1𝜓𝜓2 = 𝐷𝐷1𝜓𝜓3 =
0, 𝐵𝐵𝑒𝑒𝑡𝑡𝑑𝑑𝑖𝑖𝑛𝑛𝑐𝑐 𝑡𝑡𝑐𝑐 𝐷𝐷1𝜙𝜙3 = −𝜉𝜉, 𝐷𝐷1𝜙𝜙1 = 𝜉𝜉1 − 𝜉𝜉 𝑡𝑡𝑛𝑛𝑑𝑑 𝐷𝐷1𝜙𝜙2 = 𝜉𝜉2 − 𝜉𝜉. Otherwise 𝐷𝐷1𝑅𝑅1 = 𝐷𝐷1𝑅𝑅2 = 𝐷𝐷1𝑅𝑅3 = 0. By solving the 
above set of equations, one has 

𝜓𝜓1 = 𝑡𝑡𝑛𝑛𝑐𝑐𝑡𝑡𝑡𝑡𝑛𝑛 �2𝜎𝜎20𝜔𝜔2
𝐾𝐾1

� , 𝜓𝜓2 = 𝑡𝑡𝑛𝑛𝑐𝑐𝑡𝑡𝑡𝑡𝑛𝑛 � 𝐾𝐾2
2𝐾𝐾3
� ,𝑅𝑅1 = 𝛽𝛽10�𝐾𝐾12+4𝜎𝜎202 𝜔𝜔22�√2

�𝐾𝐾22+4𝐾𝐾32
𝑅𝑅3,  

𝑅𝑅2 = 𝛾𝛾20√2

�𝐾𝐾12+4𝜎𝜎202 𝜔𝜔22
𝑅𝑅1, 𝐾𝐾1 = 4𝜔𝜔2(𝜉𝜉2 − 𝜉𝜉) + 𝛾𝛾20𝜀𝜀1√2, 𝜓𝜓3 = −𝑡𝑡𝑛𝑛𝑐𝑐𝑡𝑡𝑡𝑡𝑛𝑛 � 3𝜎𝜎30𝑁𝑁33𝛼𝛼0+8𝐾𝐾3𝜐𝜐−4𝜎𝜎30𝑁𝑁3

4𝐾𝐾2 𝑁𝑁3𝜐𝜐+8𝜉𝜉𝑁𝑁3+3𝛼𝛼10𝑁𝑁3
3−5𝛼𝛼20𝑁𝑁3

5/2
� , 

𝐾𝐾2 = 4(𝐾𝐾12 + 4𝜎𝜎202 𝜔𝜔2
2)(𝜉𝜉1 − 𝜉𝜉)𝜔𝜔1 + √2�4𝜎𝜎202 𝜔𝜔2

2 − √2𝛾𝛾20𝜀𝜀1𝐾𝐾1 + 𝐾𝐾12�𝛾𝛾10,  

 𝐾𝐾3 = 𝜎𝜎10𝜔𝜔1𝐾𝐾12 + 4𝜎𝜎10𝜔𝜔1𝜎𝜎202 𝜔𝜔2
2 + 2𝜀𝜀1𝛾𝛾10𝛾𝛾20𝜎𝜎20𝜔𝜔2,   𝜐𝜐 = 2𝛽𝛽20𝛽𝛽10�𝐾𝐾12+4𝜎𝜎202  𝜔𝜔22�

𝐾𝐾22+4𝐾𝐾32
𝜔𝜔1,                                                                        (31) 

while 𝑅𝑅3 is the solution of the following equation: 

25
64
𝛼𝛼202 𝑅𝑅310 −

15
16
𝛼𝛼10𝛼𝛼20𝑅𝑅38 + �− 5

4
(𝐾𝐾2𝜐𝜐 + 2𝜉𝜉)𝛼𝛼20 + 9

6
(𝛼𝛼102 + 𝜎𝜎302 𝛼𝛼02)� 𝑅𝑅36 + 3

2
�(𝐾𝐾2𝜐𝜐 + 2𝜉𝜉)𝛼𝛼10 − 𝜎𝜎302 𝛼𝛼0�𝑅𝑅34 + 3𝐾𝐾3𝜎𝜎30𝛼𝛼0𝜐𝜐 𝑅𝑅33 +

((𝐾𝐾2𝜐𝜐 + 2𝜉𝜉)2 + 𝜎𝜎302 )𝑅𝑅32 − 4𝐾𝐾3𝜎𝜎30𝜐𝜐 𝑅𝑅3 + 4𝐾𝐾32𝜐𝜐2 − 𝐸𝐸02 = 0                                                                                                                 (32) 

Taking into account the above constraints imposed by Eq.(29 the direct solution of Eq.(27) reads 

𝑋𝑋1 = 𝛾𝛾10
2𝜔𝜔12

 (𝜖𝜖1𝐹𝐹2 − 𝐹𝐹1),𝑌𝑌1 = − 𝛾𝛾20
2𝜔𝜔22(𝜖𝜖1𝐹𝐹2−𝐹𝐹1)

,  𝑍𝑍1  = 1
128

𝑅𝑅33�(5𝛼𝛼20𝑅𝑅32 − 4𝛼𝛼10)𝑐𝑐𝑐𝑐𝑐𝑐�3(𝑇𝑇0 − 𝜙𝜙3)� + 4𝜎𝜎30𝛼𝛼0𝑐𝑐𝑖𝑖𝑛𝑛3(𝑇𝑇0 − 𝜙𝜙3)� +
1
384

 𝑅𝑅35𝛼𝛼20𝑐𝑐𝑐𝑐𝑐𝑐(5(𝑇𝑇0 − 𝜙𝜙3)),                                                                                                                                                                       (33) 

 leading to the following solution: 

 𝑋𝑋(𝑡𝑡) = �1 − 𝛾𝛾1
2𝜔𝜔12

� 𝐹𝐹1 + 𝛾𝛾1
2𝜔𝜔12

𝜖𝜖1𝐹𝐹2 + 𝛽𝛽1�𝐾𝐾12+4𝜎𝜎202 𝜔𝜔22�√2

�𝐾𝐾22+4𝐾𝐾32
𝑅𝑅3𝑐𝑐𝑐𝑐𝑐𝑐(Ω𝑡𝑡 + 𝜓𝜓2 − 𝜓𝜓3),  

𝑌𝑌(𝑡𝑡) = �1 − 𝜖𝜖1𝛾𝛾1
2𝜔𝜔22

 �𝐹𝐹2 + 𝛾𝛾1
2𝜔𝜔22

𝐹𝐹1 + 2𝛽𝛽1𝛾𝛾1�
𝐾𝐾12+4𝜎𝜎22𝜔𝜔22

𝐾𝐾22+4𝐾𝐾32
 𝑅𝑅3𝑐𝑐𝑐𝑐𝑐𝑐(Ω𝑡𝑡 + 𝜓𝜓2𝑟𝑟 − 𝜓𝜓3),  

𝑍𝑍(𝑡𝑡) = 𝑅𝑅3𝑐𝑐𝑐𝑐𝑐𝑐(Ω𝑡𝑡 − 𝜓𝜓3) + 1
384

𝑅𝑅35𝛼𝛼2𝑐𝑐𝑐𝑐𝑐𝑐(5(Ω𝑡𝑡 − 𝜓𝜓3)) + 1
128

𝑅𝑅33�(5𝛼𝛼2𝑅𝑅32 − 4𝛼𝛼1)𝑐𝑐𝑐𝑐𝑐𝑐�3(Ω𝑡𝑡 − 𝜓𝜓3)� + 4𝜎𝜎3𝛼𝛼0𝑐𝑐𝑖𝑖𝑛𝑛�3(Ω 𝑡𝑡 −
𝜓𝜓3)��,                                                                                                                                                                                                          (34)      

  with now 

𝜓𝜓2𝑟𝑟 = 𝑡𝑡𝑛𝑛𝑐𝑐𝑡𝑡𝑡𝑡𝑛𝑛 �1
2
�𝐾𝐾2�  𝐾𝐾1�−4𝜔𝜔2𝜎𝜎2 𝐾𝐾3�  �

 𝐾𝐾1�𝐾𝐾3�  +𝐾𝐾2�𝜔𝜔2𝜎𝜎2
� , 𝜓𝜓2 = 𝑡𝑡𝑛𝑛𝑐𝑐𝑡𝑡𝑡𝑡𝑛𝑛 � 𝐾𝐾2

�

2𝐾𝐾3�
�,   𝜓𝜓3 = −𝑡𝑡𝑛𝑛𝑐𝑐𝑡𝑡𝑡𝑡𝑛𝑛 � 3𝜎𝜎3𝑁𝑁33𝛼𝛼0+8𝐾𝐾3�  𝜐𝜐−4𝜎𝜎3𝑁𝑁3

4𝐾𝐾2�𝑁𝑁3𝜐𝜐+8(Ω−1)𝑁𝑁3+3𝛼𝛼1𝑁𝑁3
3−5𝛼𝛼2𝑁𝑁3

5 /2
�, 
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𝐾𝐾2� = 4 �𝐾𝐾1�
2 + 4𝜎𝜎22𝜔𝜔2

2� �𝜔𝜔1√2 − Ω�𝜔𝜔1 + √2 �4𝜎𝜎22𝜔𝜔2
2 − √2𝛾𝛾2𝜀𝜀1𝐾𝐾1� + 𝐾𝐾1�

2�𝛾𝛾1,   

𝐾𝐾3�  = 𝜎𝜎1𝜔𝜔12𝐾𝐾1� + 4𝜎𝜎1𝜔𝜔1𝜎𝜎22𝜔𝜔2
2 + 2𝛾𝛾1𝜀𝜀1𝛾𝛾2𝜎𝜎2𝜔𝜔2, 𝜐𝜐 =

2𝛽𝛽2𝛽𝛽1�𝐾𝐾1�
2+4𝜎𝜎22𝜔𝜔22�

𝐾𝐾2�
2+4 𝐾𝐾3�

2 𝜔𝜔1,  

   𝐾𝐾1� = 4𝜔𝜔2(𝜔𝜔2√2 − Ω) + 𝛾𝛾2𝜀𝜀1√2.                                                                                                                                                  (35) 

 

Figure 5 Bifurcation of the solution of Eq.(32), obtained for    𝜔𝜔1 = 𝜔𝜔2 = 1
√2

, 𝛽𝛽10 = 𝛽𝛽20 = 0.5, 𝜎𝜎10 = 𝜎𝜎20 = 𝜎𝜎30 =
0.25, 𝛾𝛾10 = 𝛾𝛾20 = 1, 𝛼𝛼1 = 0.3, 𝛼𝛼2 = 0.1, 𝜉𝜉1 = 𝜉𝜉2 = 0, 𝜀𝜀1 = 1  𝑡𝑡𝑛𝑛𝑑𝑑 𝑓𝑓𝑐𝑐𝑛𝑛 (𝑡𝑡): 𝐸𝐸0 = 0.25, (𝑏𝑏): 𝐸𝐸0 = 0.4, (𝑐𝑐): 𝐸𝐸0 =
0.65, (𝑑𝑑):  𝐸𝐸0 = 2.9. 

4.2. Case of the weak amplitude oscillations: smooth case 

In order to study this case, let us take 𝜃𝜃1 and 𝜃𝜃2 such weak as 𝜃𝜃𝑖𝑖 = 𝜖𝜖1/2 𝜃𝜃𝑖𝑖0, meaning that 𝑐𝑐𝑖𝑖𝑛𝑛2(𝜃𝜃𝑖𝑖) ≈ 𝜖𝜖𝜃𝜃𝑖𝑖02 , and 𝑐𝑐𝑐𝑐𝑐𝑐2(𝜃𝜃𝑖𝑖) ≈
1 − 𝜖𝜖\𝑡𝑡ℎ𝑒𝑒𝑡𝑡𝑡𝑡𝑖𝑖02  leading Eq.(11) to 

�
�̈�𝑋 + 𝜖𝜖𝜎𝜎10�̇�𝑋 + 2𝜔𝜔12𝑋𝑋 − 2𝜖𝜖𝜔𝜔12𝜃𝜃12(𝑋𝑋 + 2𝑋𝑋3  + 3𝑋𝑋5) + 𝜖𝜖𝛾𝛾10(𝑋𝑋 − 𝜀𝜀1𝑌𝑌) − 𝜖𝜖𝛽𝛽10�̇�𝑍  = 0,

 �̈�𝑌 + 𝜖𝜖𝜎𝜎20�̇�𝑌 + 2𝜔𝜔2
2𝑌𝑌 − 2𝜖𝜖𝜔𝜔2

2𝜃𝜃22(𝑌𝑌 + 2𝑌𝑌3 + 3𝑌𝑌5)  + 𝜖𝜖𝛾𝛾20(𝜀𝜀1 𝑌𝑌 −  𝑋𝑋)   = 0,
 �̈�𝑍 − 𝜖𝜖𝜎𝜎30�1 − 𝛼𝛼0�̇�𝑍2��̇�𝑍 + 𝑍𝑍 − 𝜖𝜖𝛼𝛼10𝑍𝑍3 + 𝜖𝜖𝛼𝛼20𝑍𝑍5 + 𝜖𝜖𝛽𝛽20�̇�𝑋   = 𝜖𝜖 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐(Ω𝑡𝑡).

                                                            (36) 

By finding 𝑋𝑋,𝑌𝑌 and Z as outlined in Eq.(23), one obtains at order 𝜖𝜖0 the same equation as in (24), but with 𝐹𝐹1 = 𝐹𝐹2 = 0, 
admitting as solution: 

𝑋𝑋0 = 𝐴𝐴1(𝑇𝑇1)𝑐𝑐𝑐𝑐𝑐𝑐�𝜔𝜔1√2𝑇𝑇0� + 𝑛𝑛1(𝑇𝑇1)𝑐𝑐𝑖𝑖𝑛𝑛�𝜔𝜔1√2𝑇𝑇0�,  𝑌𝑌0 = 𝐴𝐴2(𝑇𝑇1)𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔2√2𝑇𝑇0) + 𝑛𝑛2(𝑇𝑇1)𝑐𝑐𝑖𝑖𝑛𝑛(𝜔𝜔2√2𝑇𝑇0), 

𝑍𝑍0 = 𝐴𝐴3(𝑇𝑇1)𝑐𝑐𝑐𝑐𝑐𝑐(𝑇𝑇0) + 𝑛𝑛3(𝑇𝑇1)𝑐𝑐𝑖𝑖𝑛𝑛(𝑇𝑇0),                                                                                                               (37) 
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Figure 6 Bifurcation of the solution of Eq.(32), obtained for the same parameters as in Fig. 5, but with 

  𝜶𝜶𝟏𝟏 = 𝟑𝟑,𝒂𝒂𝒂𝒂𝒂𝒂 𝜶𝜶𝟐𝟐 = 𝟏𝟏,   𝒐𝒐𝒐𝒐𝒐𝒐𝒂𝒂𝒐𝒐𝒂𝒂𝒐𝒐𝒂𝒂 𝒇𝒇𝒐𝒐𝒇𝒇 (𝒂𝒂): 𝑬𝑬𝟎𝟎 = 𝟎𝟎.𝟐𝟐𝟓𝟓, (𝒐𝒐): 𝑬𝑬𝟎𝟎 = 𝟎𝟎.𝟒𝟒, (𝒄𝒄): 𝑬𝑬𝟎𝟎 = 𝟎𝟎.𝟔𝟔𝟓𝟓, (𝒂𝒂):  𝑬𝑬𝟎𝟎 = 𝟐𝟐.𝟗𝟗. 

while at order 𝜖𝜖1  one has: 

  𝐷𝐷02𝑋𝑋1 + 2𝜔𝜔12𝑋𝑋1 = −2𝐷𝐷0𝐷𝐷1𝑋𝑋0 − 𝜎𝜎10𝐷𝐷0𝑋𝑋0 − 𝛾𝛾10(𝑋𝑋0 − 𝜀𝜀1𝑌𝑌0) + 𝛽𝛽10𝐷𝐷0𝑍𝑍0 + 2𝜔𝜔12𝜃𝜃12(𝑋𝑋0 + 2𝑋𝑋03  + 3𝑋𝑋05), 

  𝐷𝐷02𝑌𝑌1 + 2𝜔𝜔12𝑌𝑌1 = −2𝐷𝐷0𝐷𝐷1𝑌𝑌0 − 𝜎𝜎20𝐷𝐷0𝑌𝑌0 − 𝛾𝛾20(𝜀𝜀1 𝑌𝑌0 −  𝑋𝑋0) + 2𝜔𝜔2
2𝜃𝜃22(𝑌𝑌0 + 2𝑌𝑌03 + 3𝑌𝑌05),  

  𝐷𝐷02𝑍𝑍1 + 𝑍𝑍1 = −2𝐷𝐷0𝐷𝐷1𝑍𝑍0 + 𝜎𝜎30(1 − 𝛼𝛼0(𝐷𝐷0𝑍𝑍0)2)𝐷𝐷0𝑍𝑍0 + 𝛼𝛼10𝑍𝑍03 − 𝛼𝛼20𝑍𝑍05 − 𝛽𝛽20𝐷𝐷0𝑋𝑋0  

+ 𝐸𝐸0𝑐𝑐𝑐𝑐𝑐𝑐(Ω𝑡𝑡),                                                                                                                                                                                            (38) 

from where by proceeding as above, one has the following secularity conditions: 

2𝜔𝜔1√2𝐷𝐷1𝑅𝑅1 − 𝛽𝛽1𝑅𝑅3𝑐𝑐𝑐𝑐𝑐𝑐(𝜓𝜓2) + 𝜎𝜎1𝑅𝑅1𝜔𝜔_1√2 + 𝛾𝛾1𝜖𝜖1𝑅𝑅2𝑐𝑐𝑖𝑖𝑛𝑛(𝜓𝜓1) = 0,  

2𝑅𝑅1𝜔𝜔1√2𝐷𝐷1𝜙𝜙1 −
15
4
𝜔𝜔12𝜃𝜃12𝑅𝑅15 − 𝛾𝛾1𝜀𝜀1𝑅𝑅2𝑐𝑐𝑐𝑐𝑐𝑐(𝜓𝜓1) − 3𝜔𝜔12𝜃𝜃12𝑅𝑅13 − 2𝜔𝜔12𝜃𝜃12𝑅𝑅1 + 𝛾𝛾1𝑅𝑅1 − 𝛽𝛽1𝑅𝑅3𝑐𝑐𝑖𝑖𝑛𝑛(𝜓𝜓2) = 0,  

2𝜔𝜔2√2𝐷𝐷1𝑅𝑅2 + 𝜎𝜎2𝑅𝑅2𝜔𝜔2√2 − 𝛾𝛾2𝑅𝑅1𝑐𝑐𝑖𝑖𝑛𝑛(𝜓𝜓1) = 0,  

2𝑅𝑅2𝜔𝜔2√2𝐷𝐷1𝜙𝜙2 −
15
4
𝜔𝜔2
2𝜃𝜃22𝑅𝑅25 − 𝛾𝛾2𝑅𝑅1𝑐𝑐𝑐𝑐𝑐𝑐(𝜓𝜓1) − 3𝜔𝜔2

2𝜃𝜃22𝑅𝑅23 − 2𝜔𝜔2
2𝜃𝜃22𝑅𝑅2 + 𝜀𝜀1𝛾𝛾2𝑅𝑅2 = 0, 

2𝐷𝐷1𝑅𝑅3 + 3
4
𝜎𝜎30𝑅𝑅33𝛼𝛼0 + 𝛽𝛽20𝑅𝑅1𝜔𝜔1√2𝑐𝑐𝑐𝑐𝑐𝑐(𝜓𝜓2) − 𝜎𝜎30𝑅𝑅3 − 𝐸𝐸0𝑐𝑐𝑖𝑖𝑛𝑛(𝜓𝜓3) = 0  

2𝑅𝑅3𝐷𝐷1𝜙𝜙3 − 𝛽𝛽20𝑅𝑅1𝜔𝜔1√2𝑐𝑐𝑖𝑖𝑛𝑛(𝜓𝜓2) − 3
4
𝛼𝛼10𝑅𝑅33 + 5

8
𝛼𝛼20𝑅𝑅35 − 𝐸𝐸0𝑐𝑐𝑐𝑐𝑐𝑐(𝜓𝜓3) = 0.                                                                                  (39) 
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Figure 7 Profile of the solution given by Eq.(34), with parameters chosen as in Fig.6, with  𝜽𝜽𝟏𝟏 = 𝜽𝜽𝟐𝟐 = 𝟎𝟎.𝟎𝟎𝟐𝟐,𝑬𝑬𝟎𝟎 =

𝟎𝟎.𝟐𝟐𝟓𝟓,𝑹𝑹𝟑𝟑 = 𝟏𝟏.𝟖𝟖,𝒂𝒂𝒂𝒂𝒂𝒂 𝛀𝛀 = 𝟎𝟎.𝟎𝟎𝟐𝟐. As one can see the obtained solution is the bursting one. 

𝜓𝜓1,𝜓𝜓2 𝑡𝑡𝑛𝑛𝑑𝑑 𝜓𝜓3 being defined as in Eq.(30). The even lines lead to the following expressions for 𝜓𝜓𝑖𝑖 , 𝑖𝑖 = 1,2,3: 

𝜓𝜓1 = arcsin �𝜎𝜎2𝑁𝑁2𝜔𝜔2
𝛾𝛾2𝑁𝑁1

√2� ,𝜓𝜓2 = 𝑡𝑡𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 �𝜎𝜎1𝑁𝑁1
2𝜔𝜔1𝛾𝛾2+𝛾𝛾1𝜀𝜀1𝑁𝑁22𝜎𝜎2𝜔𝜔2

𝛽𝛽1𝑁𝑁3𝛾𝛾2𝑁𝑁1
√2�,  

𝜓𝜓3 = 𝑡𝑡𝑛𝑛𝑐𝑐𝑐𝑐𝑖𝑖𝑛𝑛 �3𝜎𝜎3𝑁𝑁3
4𝛼𝛼0𝛽𝛽1𝛾𝛾2+8𝛽𝛽2𝜔𝜔12𝜎𝜎1𝑁𝑁12𝛾𝛾2+8𝛽𝛽2𝜔𝜔1𝛾𝛾1𝜀𝜀1𝑁𝑁22𝜎𝜎2𝜔𝜔2−4𝜎𝜎3𝑁𝑁32𝛽𝛽1𝛾𝛾2

4𝐸𝐸0𝛽𝛽1𝑁𝑁3𝛾𝛾2
�,                                                                                                (40) 

while the odd lines lead to: 

𝑅𝑅1 = 𝑁𝑁2
𝛾𝛾2
�𝐾𝐾22 + 2𝜎𝜎22𝜔𝜔22  ;  𝐾𝐾2 = 3

4
𝜔𝜔2
2𝜃𝜃22𝑅𝑅22(5𝑅𝑅22 + 4) − 𝛿𝛿2,                                                                                                                  (41) 

according to the 4𝑑𝑑ℎ line, with 𝛿𝛿2 = 2𝜔𝜔2√2(𝜉𝜉2 − 𝜉𝜉) + 𝛾𝛾2𝜀𝜀1 − 2𝜔𝜔2
2𝜃𝜃22, while the 2𝑑𝑑ℎ line leads to 

𝑅𝑅3 = 𝑅𝑅1
�2Γ12𝛽𝛽12+�𝐾𝐾1−

𝛾𝛾1𝑅𝑅2
2

𝛾𝛾2𝑅𝑅1
2𝜀𝜀1𝐾𝐾2�

2

𝛽𝛽1
;  𝐾𝐾1 = 3

4
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,                                                          (42) 

With 𝛿𝛿1 = 2𝜔𝜔1√2(𝜉𝜉1 − 𝜉𝜉) + 𝛾𝛾1 − 2𝜔𝜔2
2𝜃𝜃22, The 6𝑑𝑑ℎ line yields 
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�
2

�𝑅𝑅32 = 𝐸𝐸02 .                           (43) 

This equation is numerically solved and plotted  in Fig.8 showing that the form of the obtained graph is different to that 
obtained in Fig.5. Meaning that the inclination angle could considerably affect the system's dynamics. 
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Figure 8 Bifurcation of the amplitude 𝑹𝑹𝟐𝟐  solution of Eq.(43) versus  𝝃𝝃,  and obtained for parameters chosen as in 
Fig.5, but  with 𝑬𝑬𝟎𝟎 = 𝟎𝟎.𝟓𝟓 𝒂𝒂𝒂𝒂𝒂𝒂 𝜽𝜽 = 𝟎𝟎.𝟏𝟏. 

5. Numerical investigations  

5.1. Preliminary 

In this section, we give numerical simulations results in order to confirm the theoretical results obtained in the previous 
sections and to find other new dynamics. The interesting problem is to analyze the parameter regions for which the 
system is regular or chaotic. The system having several parameters, each of them playing different and virtual roles on 
the system behavior, we will then limit our study by chosen both the driven frequency and inclination angles as control 
parameters. Otherwise the values of  other parameters are fixed as follow: 

𝜔𝜔1 = 𝜔𝜔2 = 1
√2

,𝛽𝛽1 = 𝛽𝛽2 = 0.5, 𝜎𝜎1 = 𝜎𝜎2 = 𝜎𝜎3 = 0.25, 𝛾𝛾1 = 𝛾𝛾2 = 1, 𝛼𝛼1 = 3𝛼𝛼2 = 1, 𝜀𝜀1 = 1, 𝐸𝐸0 = 0.25.                              (44) 

Using then these parameters, the system Eq.(7) is numerically solved by using the fourth order Runge Kutta scheme, 
with the time step always kept 𝜔𝜔𝑒𝑒𝛿𝛿𝑡𝑡 = 10−2. 

5.2. Effect of the driven frequency  𝛀𝛀 

To begin, let us mention that there are some tools to measure, predict, and quantify chaotic dynamics in mechanical 
systems. The queries are how to recognize chaos and predict their occurrence? The answer is that they can be 
recognized by looking period doubling and homoclinic bifurcations in the systems. They can also be quantified by 
Lyapunov exponents [15]. While the maximum Lyapunov exponent is positive, the systems remains chaotic. In this 
subsection we analyze the effects of the driven frequency Ω by keeping constant the other parameters as given in 
Eq.(44) including the inclination angles which are 𝜃𝜃1 = 𝜃𝜃2 = 𝜋𝜋/4. The first results in the such of case is plotted in Fig.(9), 
showing the regular behavior zones for 0.8 < Ω < 0.8926 and 0.94 < Ω < 0.96. Elsewhere we have the bifurcation 
bands, with some regular behaviors windows in the bifurcation band. As we can see Fig.(9), (a,b and c) are bifurcation 
diagrams for variables X,Y and Z, respectively which are in agreement with (d), that is the maximum Lyapunov exponent. 
In order to qualify the signals generated, we have plotted in Figs.(10,11 and 12), the signal profiles at the left column, 
the phase portraits at the middle, and the frequency spectrum at the right. In all these figures, the top lines are for 
variable X, the middles for Y and the bottoms for Z. Figs.(10 and 11) are obtained for Ω = 0.02 and Ω = 0.5, which belong 
to chaotic zones. The signals generated for X and Y are chaotic impulses, while that generated for Z are chaotic bursting. 
It is obvious that the bursting or impulses widths are more larger for Ω = 0.02 than Ω = 0.5. As one can see from the 
last columns of these figures, the spectrum frequency of these figures have two noisily bands, justifying then that the 
system is chaotic. Figure(12), obtained for  Ω = 0.85 chosen in the regular band frequency shows that X and Y are 
regular impulses signals, while Z is the regular bursting, even thought the bursting width for Z is too weak, but the phase 
portrait of (12)(𝑐𝑐2)  justifies our conclusion. The spectrum frequency of these figures presents some regular picks. 
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Figure 9 Bifurcation diagram obtained for parameters given in Eq.(44), for  𝜶𝜶𝟏𝟏 = 𝟑𝟑 𝒂𝒂𝒂𝒂𝒂𝒂 𝜽𝜽 = 𝝅𝝅/𝟒𝟒. 

 

 

Figure 10 Left: Solution, Middle: phase portrait, and right: frequency spectrum, obtained for parameters chosen as in 
Fig.( 9), and for Ω = 0:02 
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Figure 11 Left: Solution, Middle: phase portrait, and right: frequency spectrum, obtained for parameters chosen as in 
Fig.( 9), and for Ω = 0:5. 

 

Figure 12 Left: Solution, Middle: phase portrait, and right: frequency spectrum, obtained for 
 parameters chosen as in Fig.( 9), and for Ω = 0:85 
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5.3. Effect of the inclination angles 𝜽𝜽𝟏𝟏 = 𝜽𝜽𝟐𝟐 = 𝜽𝜽 

Let us analyze in this sub-section the effects of the inclination angles 𝜃𝜃1 = 𝜃𝜃2 = 𝜃𝜃 , by keeping constant the other 
parameters as given in Eq(44). In Figs.(13) and  (14), we have the bifurcation diagrams for Ω = 0.02, that is for the weak 
frequency value, and Ω = 0.85, that is for the large frequency value. 

In Fig.(13) obtained for weak value of Ω, the regular band is found for the inclination angle 0 ≤ 𝜃𝜃 < 0.239, that is for the 
less inclination. Otherwise for 𝜃𝜃 > 0.239, chaos is found, with the appearing of regular behavior windows. 

However for large value of Ω as shown in Fig.(14), the regular behavior is found for  𝜃𝜃 > 0.62, that is when springs are 
more inclined. Figure (15) shows the regular train of kink signal obtained for 𝜃𝜃1 = 𝜃𝜃2 = 𝜃𝜃 = 0.4 belonging to chaotic 
band of Fig.(13), agreeing the belonging of regular frequency windows inside the chaotic bands. In Fig.(16) we have the 
periodic signals generations for 𝜃𝜃1 = 𝜃𝜃2 = 𝜃𝜃 = 1.2 belonging to regular windows. 

 

Figure 13 Bifurcation diagram for parameters chosen as in Fig.(14) and for Ω = 0:02. 

6. Discussion 
From the above results, it is obvious that: 

The system is very sensitive for the varying values of the driven frequency Ω  and the inclination angles 𝜃𝜃1   and 𝜃𝜃2. The 
system is also sensitive to nonlinearity coefficients and the amplitude of the driven signal, but this last case is not 
investigated in the present work. 

The system can generate bursting-like signals for  very low frequencies, which are  regular or chaotic according to the 
inclination angles. 

 The system can also generate regular or chaotic periodic kinks for higher frequency, according also to the inclination 
angles. 
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Figure 14 (a,b,c): Bifurcations diagrams for variables X; Y and Z, respectively, while (d) is the 
maximum Lyapunov exponent. The parameters are taken as giving in Eq.(44) and for α1 = 3, 

and Ω = 0:85. 

 

Figure 15 Left: Solution, Middle: phase portrait, and right: frequency spectrum, obtained for 
parameters chosen as in Fig.( 14), and for θ1 = θ2 = θ = 0:4. 
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Figure 16 Left: Solution, Middle: phase portrait, and right: frequency spectrum, obtained for 
 parameters chosen as in Fig.( 14), and for θ1 = θ2 = θ = 1:2. 

7. Conclusion 
In this paper, we have investigated the dynamics of the nonlinear electromechanical device, consisting of the mechanical 
part with two outputs and the electrical part both couplet magnetically. The mechanical part consisted of two nonlinear 
elastically coupled oscillators with strong  irrational nonlinearities having smooth or discontinuous characteristics,  
where nonlinearity was  due to the geometric configuration,  while the electrical part is the 𝜙𝜙6- Rayleigh equation. By 
using the Lagrangian formulation, the model equations have been established and  used to   investigate the equilibrium 
points and their stabilities. Next by using the multiple time scales method, the analytical solutions have been found both 
for the case of large amplitude, and the weak amplitude, respectively  leading to an interesting  bifurcation sets of the 
equilibria for varying values of control parameters, that are the inclination angles and driven frequency.  Next through 
numerical investigations, the bifurcation diagrams, the maximum Lyapunov exponents, the frequency spectrums and 
phase   portraits have been plotted to demonstrate the complex transitions of the system to chaos. By plotting the output 
signals for the electrical and mechanical parts, it appeared that  chaotic impulses, chaotic bursting and the train of kink 
signals were generated by the system, according to the tuning parameters. 

From the above obvious results, it appeared that the use of the coupled oscillator constructed in the present work can 
represent an excellent way to multi-signal generations, allowing their possible applications as hammer, saw or sieve, 
with two outputs. However, our worry is what would be the effect of  the single-impact or vibro-impact energy on the 
system dynamics, is it possible to insert in the system a supplementary component   able to control chaos by annihilating 
them. The works is this light will constitute our future investigations. 
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