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Abstract 

We will focus on the Schrodinger eigenvalue problem for a Gauss potential in this study. When high and relatively large 
values of the coupling constant g2 are involved, we will compare eigenvalues E determined numerically with those 
obtained using the asymptotic series. However, we were interested in the mathematical elements of this comparison 
throughout the course of this work and explored it for considerably larger, albeit no longer physically plausible, values 
of g2. Even for power potentials where the Gaussian is a common example, Muller's perturbation method shows some 
fascinating mathematical characteristics of the Schrodinger equation. The solution's overall analytic features are very 
similar to well-known periodic differential equations like the Mathieu equation.  
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1. Introduction

The theoretical laboratory of the Schrodinger equation and its solutions, both for the scattering as well as the bound 
states, have served an important purpose to shed some light on the much more complex phenomena of high energy 
particle collisions various potential functions were used in this equation where these potentials vary in their degree of 
singularities at the origin as well as at large distances. But ever since the field of potential scattering was recognized as 
a helpful testing ground for various particles physics model, one basic property of the solution was realized early. This 
was that very few potential models can have analytic form. This fact, however, is not uncommon in relativistic 
interactions. 

The Yukawa potential rArg /)exp(2   is most celebrated potential model for which the Schrodinger equation is not 

exactly solvable.  

The Gauss potential )exp( 22 Arg   is another important potential, adapted first by Bethe and Bacher [1] to investigate 

the ground state of the deuteron. Here again we have another interesting physical situation where the Schrodinger 
equation cannot be solved exactly.  

These two representatives of a large class of phenomenological physics potentials are heavily used in nuclear and 
particle physics. But the analytic properties of the solutions in the range or r (0 to ∞) are taken for granted. For the 
singular potential models, though much more complicated than the regular models, the local and global existence of the 
solutions are discussed in the ref. [2]. In his papers, Muller [3, 4, 5] discussed some basic properties of the solutions by 
a power series perturbation method for these two potentials. Muller uses expansions in the domain of large coupling 

constants
2g . He also obtains asymptotic solutions of the S-wave radial Schrodinger equation for these potentials. The 
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asymptotic are given in terms of parabolic cylinder functions and confluent hyper-geometric functions. Apart from the 
intrinsically interesting asymptotic solutions, Muller also obtained the associated expansions for the eigenvalues E.  

As a rule, the perturbation techniques employ power series methods were the power series solution is given in terms 
of some convenient small parameter. Despite the fact that these series solutions usually are divergent, the approximate 
solution obtained by cutting off the formal series at some ith term is quite adequate for a great many calculations. These 
solutions do not necessarily approach the exact solutions with increasing i ; instead, for fixed i , it tends to the exact 
solution as the parameter approaches zero. We caution, however, that one should not accept the series solutions without 
verifying the range of validity first.  

The scattering solutions have been amply discussed in literature. We intend to concentrate here on the Schrodinger 
eigenvalue problem for a Gauss potential. We shall compare eigenvalues E calculated numerically with those obtained 
by the asymptotic series where large and moderately large values of the coupling constant g2 are involved. In the course 
of this work, however, we took an interest in the mathematical aspects of this comparison and accordingly studied it for 
much larger, though no longer physical realistic values of g2. We found it advantageous to use some modifications a very 
simple numerical procedure developed independently by Canosa and de Oliveira [6], Ixaru [7], and Gordon [8] rather 
than follow more conventional algorithms such as Numerov,s step-by step scheme [9-12] or Rayleigh-Ritz [13] to solve 
the problem for the ground state ( 0L ) and excited states. For the asymptotic expansion approach, we use the 

perturbation technique previously introduced by Muller [3]. Although Muller's eigenvalue expansion is the only 
expression of interest of interest here for computational purposes, we examine and present the details of the derivation 
of the eigenfunctions series expansion also.  

It is noteworthy that Muller's perturbation method reveals some interesting mathematical features about the 
Schrodinger equation for even power potentials where the Gaussian is a typical example. The overall analytic 
characteristics of the solution are quite analogous to well-known periodic differential equations such as the Mathieu 
equation.                                                         

2. Numerical Solution for the Schrodinger Equation for a Gauss Potential  

We consider the one-dimensional radial Schrodinger equation for a Gauss potential in the form: 

0)())((
2

2




rrPE
dr

d
 ………………. (2.1)  

Where  

0)exp(
)1(
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2
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
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r

LL
rP  ……… (2.2) 

Is referred to as the "potential energy" function. Clearly, this is just the centrifugal force term lumped with a Gauss 

potential. We solve this eigenvalue problem, (2.1), (2.2), with the boundary conditions ,0)()0(   numerically 

by the Canosa-de-Oliveira-Gordon-Ixaru (COGI) method. 

The numerical algorithm has proved to be convenient and straightforward to carry out practice. In particular, a single 
computer program can be used to completely solve the problem, which is, any desired number of eigenvalues E, the 

corresponding normalized eigenfunctions , and their nodes for all allowed L values.  

2.1. Formulation of the COGI Method 

Equation (2.1) with a potential function (2.2) which vanishes at infinity has, for large values of r, eigenfunctions 

)exp()( Err   which reach infinitesimally small values. Therefore, we may use the approximate boundary 

conditions: 

0)0(   ,      0)(  R   ……… (2.3) 

For sufficiently large R.  
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Central to implementing the COGI technique is the approximation of the potential P(r) by a step function with an 

arbitrary number of steps n subintervals .0 Rr   There are an infinite variety of step functions which may be chosen 

to represent the potential over the n subintervals ,0 1rr  .,..., 121 Rrrrrrr nn    Canosa and de Oliveira 

[6] and Canosa [7] used constant steps for their sample problems while Gordon [8, 14] used a linear reference potential. 
The former results in simple trigonometric and hyperbolic solutions while the latter involves Airy functions or Bessel 
functions of order 1/3, since COGI has been shown to be a second order method for a constant as well as a linear step 
function [7], we follow Canosa and de Oliveira formulation and represent (2.2) by a step function with constants 

nppp ,...,, 21  appropriately defined in each corresponding subinterval. We need not have each subinterval of equal 

width. This permits us the flexibility of approximating the potential the potential for a given number of steps n with 
more steps near its minimum where it varies rapidly and thereby yields a better representation of the potential. 
However, note that no matter what step function is selected we can define the approximate problem to be as close as 
we wish to the exact problem by taking a sufficiently large number of steps.  

In each step, the resulting differential equation for any eigenvalue E  

0)()(
2

2




rPE
dr

d
i  ni ,...,2,1,0       ………. (2.4) 

Has constant coefficients and is integrated exactly in terms of hyperbolic or trigonometric functions. Thus, in each step 

1i  or n, the solution to Eq. (2.4) is  

)()( rSBrCA iiii      ii PE  , ii    . 1,...,3,2  ni   …. (2.5) 

Where Ai, Bi are integration constants and C and S are circular cosine and sine for 0i  and hyperbolic cosine and 

sine for 0i . So that the boundary conditions (2.3) are satisfied, the solutions for 1i and ni    are respectively. 

),( 11 rSB       ))(()(( RrSBrSB iinn    ……… (2.6) 

With B1, Bn integration constants, therefore, once the eigenvalues E and the integration constants are determined, the 
problem is solved. 

We obtain the eigenvalues and corresponding eigenfunctions by matching the solution (2.5) and (2.6) and its derivative 
at the interval boundaries. In this way, we derive a homogenous system of 2n-n equations for the 2n-2 integration 
constants. 

We write this system in the following form in matrix notation. 

 

……….. (2.7) 
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It is well known that the determinant of  must vanish for the existence of a  nontrivial solution. There are an infinite 

number of constants i  which are related to the eigenvalues of our approximate problem as defined by (2.5) and (2.6). 

This is guaranteed because (2.4) and (2.3) form a Strum-Liouville system, which is known to have an infinite number of 
eigenvalues. 

Instead of solving 0det  with  in the form of (2.7) for the eigenvalues, it is numerically advantageous to first 

perform some elementary matrix operations on  and group the elements of   in 22  matrices, getting 

)det(...)det()det( 2,21,1   nn  

                )...det( 1,1
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                 0      ………………………(2.8) 
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It is apparent from (2.9c) that ,1)det( ,  ii  .1,..,3,2,1  ni  Now, by making one more simplification where the 

elementary addition formulas of the circular and hyperbolic sine and cosine are used to multiply the 22 matrices of 

the form 
1

,,1



  iii  in Eq.(2.8) together so that, explicitly,  
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We will have the actual expression to be used to obtain the eigenvalues. This eigenvalue equation is 

  0...det)det( 1,11,23,22,11,1  







nnn   …… (2.11) 

Which represents a reduction in the evaluation of the determination of the original )22()22(  nn matrix to that 

of 22  matrix in Eq.(2.11). It is useful to consider the determinant in Eq. (2.11) simply as a function F whose 

arguments .approE  will be approximations to the energy eigenvalues for the bound states,  
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)det()( . approxEF  ………. (2.12) 

We derive an even simpler formula for obtaining the corresponding eigenfunctions. Consider again system (2.7), but 

now with the elements grouped in 22  matrices defined by (2.9) along with their associated two-row vectors 
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c ,     1,...,3,2  ni      …………… (2.13) 

In this way 

22,111,1 cc                                                 0                    

            33,222,2 cc                                    0  

                         .     . 

                          .     . 

                           .    . 

                                 011,222,2   nnnnnn cc  

   11,1 cn                                       011,1   nnn c   

                                                                                           …….. (2.14) 

For each eigenvalue determined from (2.11) the matrices ji ,  are known explicitly in (2.14). Hence, we need only 

determine the elements in the vectors c1. Our problem (2.1) - (2.3) has only one  arbitrary constant B1 or Bn  available 
to start  the integration so we must either solve from the last equation to the first in (2.14) or vice versa. By choosing 
some value for Bn, we have 

11,1

1
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  .            .           .           .          . 
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, ... cc nnnmmmmmmmm 









 
 

                                                                                                ……….. (2.15) 

The last equation in (2.15), for m=2, determines c2, and from this and the first equation in (2.14) we could, in principle, 
obtain the integration constant B1 to entirely solve the problem. However, stability difficulties were encountered 
resulting in unsatisfactory eigenfunctions values near the tail end of the interval Rr 0  when we used this 

procedure in solving completely in one direction. 

We correct this situation by the process of "matching in the middle".  Sine B1 is available to start our integration in the 
first equation in (2.14) and B2 to start at the last, we solve from both ends until a convenient matching point is reached 
in the middle. Possible matching points have been proposed by, for example, Blatt [9], Canosa and de Olivera [6], Coley 
[10], Fox [12], and Froese [11]. Each suggestion was made dependent on either the behaviour of P(r) or
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)()( rPEr  . The actual choice s not critical for a single equation since we simply want to reduce the unstable 

accumulation of error during the integration in either direction. Following Fox [12] and Froese [11], we choice the 

location of the last zero of )(r as our matching point. This effectively reduces the source of our difficulties for it is 

here that exponential type behaviour of )(r  begins and proceeds for the remainder of the interval. The eigenfunctions 

computed in the forward integration will differ from those of the backward by a factor. They are adjusted to match by 
multiplying each set by its reciprocal value at the middle.   

With m = matching point, we rewrite (2.15) as 
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                                                                                                ……….. (2.16) 

Except for the first matrix in the right hand side, ,1,1n  it is numerically convenient to group he others in Eq.(2.17) in 

pairs as 
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Only hyperbolic functions are involved since 0i  for all mnni ,..,2,1  . From Eqns. (2.5), (2.13) and (2.16) 

we can write the eigenfunction expressions in vector notation as 
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Equivalently, by using the elementary addition formulas for the hyperbolic and trigonometric functions in evaluating 
the inner product in Eq.(2.18), we have the desired eigenfunction formula 

 ))(sinh())(cosh()/1()( 21 rrvrrvr iiiiiiii

b    …………….. (2.19) 

Where vi1 and vi2 are the first and second elements, respectively, in the column vector v1 defined in Eq.(2.16). We 
emphasize, however, that Eq.(2.19) is valid only for backwards integration and .ni  . 

The corresponding eigenfunction formulas for forward integration of Eq.(2.14) are 

 ))}(sinh())(cosh(){/1()( 1211 rrvrrvr iiiiiiii

f   
,

0i  …. (2.20a)  

 ))}(sin())(cos(){/1()( 1211 rrvrrvr iiiiiiii

f   
,

0i  …. (2.20b)  

Where 1i  and vi1 and vi2 are now determined from  
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With numerical considerations again dictating that we first group all the matrices, except for the initial one, in Eq.(2.21) 
in pairs as  
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A complete derivation of Eq. (2.20) has been given previously by Canosa and de Oliveira [6]. 

2.2. Computational Details  

We summarize the computational procedures used to solve the Schrodinger equation for a Gauss potential. These are: 

 Chose an interval length Rr 0  reasonably approximating the boundary conditions. We found that 5R  
was adequate as the eigenfunctions already began approaching zero asymptotically.  

 Approximate )(rP in Eq. (2.1) with a suitably convenient step function )(rP  for an appropriate number of 

steps 1000(n and/or 500 in all cases considered) over the interval. 
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For 0L where each step is of equal width ;1 ii rrh   
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For 0L  where 2/nk   step sizes are of width nh /11   on 10  r  and k step sizes are of width nh /41   on 

50  r . Two separate programs were written; one, using step functions (2.23) and (2.24); the other, (2.23) and 

(2.25) to solve for all allowed L values. In each instance, these calculations are stored to be used in the remaining steps.  

2.2.1. Determination of the eigenvalues from the eigen values formula   

(2.11). No initial guesses are required for the eigenvalues in contrast to the conventional numerical methods mentioned 
earlier. We need only specify approximately where they lie, subdivide this range into a predetermined number of points, 
and substitute each of these endpoints of the sub-range as argument in (2.11), or (2.12). We obtained all desired 
eigenvalues by using the range 

),(
5

4
0 min. rPEapprox    ,0L     …………. (2.26 a) 

),(
4

3
0 min. rPEapprox    ,0L     …………. (2.26ba) 

Whenever a change of sign of )( .approxEF at two successive points is detected, we obtain the root (eigenvalue) by 

Muller's iteration method [15]. The eigenvalues obtained are stored. 

 Choose a convenient matching point. Our choice of the last zero of )(r makes our program quite general as it 

will handle any value of L and E. We deduce this by noting that the behavior of )(r  for L= 0 and 0L are 
quite similar. When the angular momentum term is absent we simply bypass that section of our algorithm 

concerned with )(r  initially negative.   
 Determination of the eigenfunctions by Eq. (2.19) or Eq. (2.20) depending on the direction of integration, for 

each eigenvalue found in step C.  We choice B1=B2 =1 to start our forward and backward integration. The vector 
VI given by Eq. (2.16) or Eq. (2.21) are calculated and stored first. For each set of the eigenfunctions calculated, 
we matched them in the middle by the procedure given in the discussion earlier.  

 Determination of the nodes of the eigenfunctions corresponding to the jth eigenvalues. Muller's iteration 
method is again used whenever a change of sign of the eigenfunction at two successive values of r is detected. 
Since the jth eigenvalues has j-1 nodes [12] we use this calculation as a check to make no desired eigenvalues 
are omitted.  

It is worth mentioning that the present method allows us a computer program which may be applied equally well to the 
Schrödinger equation potentials other than the Gaussian potential considered in this study with only minor changes. 

3. Muller's Solution by Asymptotic Expansions           

Throughout this section we consider a Gauss potential expanded as a power series in r2: 
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
 ……………….. (3.1) 

3.1. Asymptotic Solution near the origin 

Muller' [3] derived asymptotic expansion solutions of the Schrodinger equation for a Gauss potential, (2.1) and (2.2), in 

terms of (A) parabolic cylinder functions for L = 0, and (B) confluent hypergeometric, functions for 0L . Both 

eigenfunctions obtained are valid for r near the origin. A similar derivation of the asymptotic expansion of the Jost 
solution was also necessary in order to obtain an eigenfunctions that would be valid for large r. Then by analytic 
continuation of the solutions in their common range of validity a solution valid over the entire interval is obtained. 

Here, we reproduce Muller's result (B) and in the process we will end up with a useful eigenvalues can be calculated. 
We note that the perturbation method used to derive that Jost solution also leads us to the same expression from which 
we can calculate the eigenvalues. However, it is less desirable to arrive at eigenvalue expression in this way because it 
is more tedious.  

With Eq.(3.1) we write the radial Schrodinger equation for a Gauss potential as 
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Changing the independent variable to rgAz 2/1)2(  as 
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 ……. (3.3) 

Now for large values of the coupling constants g2, the right hand side of Eq.(3.3) is )./1( gO  Hence for ,g  the 

radial wave equation may be approximated by  

0
4

1)1(

2
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    ……….. (3.4) 

This Eq.(3.4) may be transformed into a standard mathematical form by the substitutions  

),(
4

1
exp)( 0

21

0 zxzzz L








 

    ……… (3.5a) 

2

2

1
zS   …………. (3.5b) 

Yielding as the differential equation for )(0 zx  

0)( 0

0

2

0

2

 ax
dS

dx
Sb

dS

xd
S ………….. (3.6) 

Where  
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1 2 gAgEa 







 ………….. (3.7a) 

2

3
 Lb   ……………. (3.7b) 

Eq.(3.6) is readily identified as a confluent hypergeometric equation whose solution is [16] 

);,()(0 SbaMzx      …………. (3.8) 

Where M is the confluent hypergeometric function, hence, the solution of Eq.(3.4) is  

,
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
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  zbaMzzz L

   …………….. (3.9) 

Or for convenience later, we let 

)();,( 0 zzba   ………….. (3.10) 

0   will be normalizable bound state wavefunction if  

na   for ,...,2,1,0n    …………. (3.11) 

  Then from Eq. (3.7a) and setting q = 4n+3 we have for Eq.(3.4) 

)2(2 qLgAgE   ………….. (3.12) 

 Or for 

 22 2)2( AqLgAgE  ……… (3.13) 

Where    is an expansion of )/1( gO . 

To obtain Muller's solution to Eq.(3.3) we subtract Eq.(3.13) into Eq.(3.3), thus deriving the fundamental equation 
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gAh /  …………. (3.16) 

To which the perturbation method is applied. Following the procedure shown by Eqns. (3.16)-(3.26) in ref.[3] 

successive contributions 
)(i , ,...,2,1i to the solution  )(z  of Eq.(3.14) are made. Each of 

)(i leaves 

uncompensated a sum of terms on right hand side of Eq.(3.14) from which the next contribution 
)1(  i
is dominated. 

This expression obtained by adding all 
)(i ,s together is  
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With coefficients ),( jaPi   defined by, for example, 
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Expansion Eq.(3.17) is the eigenfunction for Eq.(3.14) if the sum of all remaining uncompensated terms is set equal to 
zero. Explicitly, we have 
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Solving for   in Eq.(3.19), substituting into Eq.(3.13) and simplifying we thus obtain the desired eigenvalue expansion 
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                                                                                                                 (3.20) 

 For large values of the coupling constant g2, Eq.(3.20) is a proper asymptotic expansion with rapidly decreasing terms.  

3.2. Connection of results with expansion in terms of parabolic cylinder functions    

We note that, as expected, eigenvalues expansion (3.20) with L = 0 becomes 
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By setting gAh 4/ , this is Eq.(2.25) in [3]  even though  Muller derived  this letter expression independently by 

considering the zero angular momentum solution of the Schrodinger equation in terms of parabolic cylinder functions. 

We remark finally that Muller's eigenfunction of the Schrodinger equation for a Gauss potential with zero angular 
momentum is  
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With q   now the parabolic cylinder function and )4,( jqPi  defined as  
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)2110(
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……… (3.23) 

4. Computed Results and Discussion 

We considered terms up to )/1( 2gO  whenever Muller's eigenvalue expansion Eqns.(3.20) or  (3.21) was used. All 

calculations tabulated below assume the mass of the exchange particle A2 to be one. 

4.1. Eigenvalues Calculated for L = 0    

We present in Table (1) the eigenvalues 
COGIE0  and 

ME0  computed, respectively, by the numerical method of section 2 

and the perturbation method of section 3 which correspond to the energy levels associated with a bound system where 
centrifugal force does not act on the particles. Such a system can have only one energy level, the ground state E0. Both 
procedures produced this value (with q = 3 in Eq.(3.20) or eq. (3.21)) for each coupling constant considered.  

A comparison of the eigenvalues computed by the two methods for each g2 was made. The absolute difference 
MCOGI EE 00  for each pair of values was calculated and is listed in the last column of Table 1. Clearly, this shows 

that agreement between the eigenvalues of the COGI and Muller's procedure improve g2 increases. 

4.2. Eigenvalues Calculated for L = 1    

Table 2 shows the energy eigenvalues 
COGICOGI EE vu ,  and EM obtained using, respectively, uniform step function (2.24), 

variable step function (2.25), and Muller's (3.20). Although they physical system now being considered permits energy 
levels higher than the ground state, we find that with a Gauss potential there are no excited states. In fact, we obtained 
eigenvalues corresponding to the ground state only for large values of the coupling constant.  

The differences 
ME

u EuE
COGI

  and 
ME

v EvE
COGI

 are again calculated to measure the closeness between 

the eigenvalues obtained by the two methods. They don’t agree very well. However, the observation we made in the 

preceding subsection concerning the relationship between g2 and   appear to remain valid. In other words g2 must be 
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extremely large for this case before Muller's expansion approaches the numerically computed eigenvalues (see Tables 
3 and 4). 

4.3. Eigenvalues corresponding to very large g2    

Table 3 and Table 4 gives the eigenvalues obtained for L = 0 and L = 1, respectively, when very large though physically 
insignificant g2 are considered. It is noteworthy that the higher eigenvalues calculated with Muller's expansion tend to 
those obtained with the COGI procedure in a manner exactly like that for the lowest E0. 

4.4. Eigenfunctions calculated by COGI 

Numerical values of the eigenfunction  at selected points calculated by the COGI method are reported in Tables 5, 6, 

7, 8, and 9. Each set of values correspond to a coupling constant 162 g and either L = 0 or L=1. Tables 5 and 6 show 

the zero angular momentum case with step size 01.0h and 005.0h used in the calculations, respectively. Tables 7, 8 

and 9 considers the case L = 1 with these same uniform step sizes used for determining  in Table 7 and 9 respectively. 

Values in Table 8 were computed using variable step sizes 004.01 h  on 10  r  and 016.02 h  on 51  r  . We 

illustrate graphically the eigenvalues in Tables and using the values listed in Tables 4 and 5. The Tables behaviour shown 
is typical for the eigenfunctions obtained for all other coupling constant as well. 

5. Concluding Remarks 

The calculations indicate that at least for L = 0 cases both methods mentioned in this study give very good results in 
approximating the solution of the Schrodinger equation for a Gauss potential. 

We have reason to believe that the COGI solution is more accurate than Muller's for all cases considered, however. The 
numerical method has been applied previously too many problems similar in behaviour to the present one, but with 
known exact solutions [6, 7] and the results obtained were always very accurate. COGI is therefore, a reliable method, 
at least for problems of the present type.  

Table 1 Comparison of Eigenvalues computed by COGI and Muller's method for L = 0 

g2 steps in COGI COGIE0  
)(

0

aME
 

MCOGI EE 00 
 

6.0 500 -0.7379340 -0.7299476 -0.0079864 

7.0 500 -1.130848 -1.123055 -0.007793 

8.0 500 -1.567733 -1.560781 -0.006952 

9.0 500 -2.040577 -2.034505 -0.006072 

10.0 500 -2.543395 -2.538058 -0.005337 

11.0 500 -3.071584 -3.066872 -0.004712 

12.0 500 -3.621620 -3.6174428 -0.004192 

13.0 500 -4.190721 -4.186965 -0.003756 

14.0 500 -4.776641 -4.773258 -0.003383 

15.0 500 -5.377546 -5.374485 -0.003061 

15.0 1000 -5.377587 -5.364485 -0.003120 

16.0 500 -5.991916 -5.989136 -0.002780 

16.0 1000 -5.991967 -5.989136 -0.002831 

(a) q = 3 for all eigenvalues EM calculated with Eq. (3.21). 
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Table 2 Comparison of Eigenvalues
COGIEu , 

COGIEv with EM for L = 1 

g2 Steps in 
COGI  

COGIEu  
COGIEv  

EM (a) COGIE

u uE 
 

COGIE

v vE 
 

14.0 500 -0.4263363 -0.4269721 -0.2567219 -0.1696144 -0.1702502 

14.0 1000 -0.4269381 -0.2567219 -0.1702162 

15.0 500 -0.7197134 -0.7205267 -0.5751195 -0.1445939 -0.1454072 

15.0 1000 -0.7204489 -0.2567219 -0.1453294 

16.0 500 -1.042534 -1.043505 -0.9177456 -0.124789 -0.125760 

16.0 1000 -1.043405 -0.9177456 -0.125660 

(a) q = 3 in Eq. (3.21) for all eigenvalues EM calculated. 

 

Table 3 Difference between Eigenvalues
COGIEu and EM for very large g2, L =0(a) 

g2 )(

3,0

bE
 

7,1E
 11,2E

 15,3E
 

25.0 -0.00130 -0.3204714 - - 

40.0 -0.00026 -0.125567 - - 

50.0 -0.00017 -0.8317 (c ) - 

75.0 0.00101 -0.04045 -0.554289 - 

100.0 0.00156 -0.02437 -0.1260 (d) 

(a) All eigenvalues calculated COGI  involved n = 500 steps. 

                                                                               (b)  
M

i

COGI

i EE     
thii  Eigenvalues;  j=values of q used in Eq.(3.21)  

 

                                                                                (c ) ;1973158.0COGIE  196081.1ME  (Unexpected) 

                                                                                (d)    ;197602.1COGIE  038106.1ME  (Unexpected) 

 

Table 4 Difference between Eigenvalues
COGIEu and EM for very large g2, L = 1(a) 

g2 )(

3,0

bE  7,1E  11,2E  

25.0 -0.050047 - - 

50.0 -0.00629 -0.393194 - 

75.0 0.00681 -0.16188 - 

100.0 0.01527 -0.8091 -0.872626 

 
(a) Step function (2.24) with n = 500 steps was used in calculating all eigenvalues by   

                                                                    COGI method. 

(b) 
th

, ii  ,  M

i

COGI

iji EEE   Eigenvalues; j = value of q used in Eq. (3.20)  
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Table 5 Eigenfunction  calculated by COGI with n = 500 steps, L = 0, g2 = 16 

r  )(r  
r  )(r  

0.0 0.0 2.6 0.27152432D-01 

0.1 0.42196916D 00 2.7 0.21259947D-01 

0.2 0.80304015D 00 2.8 0.16645126D-01 

0.3 0.11099086D 01 2.9 0.13031484D-01 

0.4 0.13222685D 01 3.0 0.10202062D-01 

0.5 0.14347150D 01 3.1 0.79867705D-02 

0.6 0.14551345D 01 3.2 0.62523362D-02 

0.7 0.14006684D 01 3.3 0.48943702D-02 

0.8 0.12928195D 01 3.4 0.38311213D-02 

0.9 0.11530952D 01 3.5 0.29985717D-02 

1.0 0.10000000D 01 3.6 0.23465903D-02 

1.1 0.84933259D 00 3.7 0.18359172D-02 

1.2 0.70788080D 00 3.8 0.14358006D-02 

1.3 0.5809065D  00 3.9 0.11221462D-02 

1.4 0.47105028D 00 4.0 0.87606634D-03 

1.5 0.37839294D 00 4.1 0.68274220D-03 

1.6 0.30177893D 00 4.2 0.53053208D-03 

1.7 0.23937566D 00 4.3 0.41027004D-03 

1.8 0.18911793D 00 4.4 0.31471403D-03 

1.9 0.18497968D 00 4.5 0.23810977D-03 

2.0 0.11711932D 00 4.6 0.17584423D-03 

2.1 0.91941029D -01 4.7 0.12416784D-03 

2.2 0.72105350D-01 4.8 0.79968715D-03 

2.3 0.56512384D-01 4.9 0.40585218D-03 

2.4 0.44272646D-01 5.0 0.4058218D-03 

2.5 0.346744230D-01   

 

Table 6 Eigenfunction  calculated by COGI with n = 1000 steps, L = 0, g2 = 16 

r  )(r  r  )(r  

0.0 0.0 3.0 0.10077474D-01 

0.5 0.14237401D 01 3.5 0.29618933D-02 

1.0 0.99238016D 00 4.0 0.86520530D-03 

1.5 0.37418591D 00 4.5 0.23467554D-03 

2.0 0.11570976D 00 5.0 0.0 

2.5 0.34251716D-01   
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Table 7 Eigenfunction   calculated by COGI with n = 500 steps, L = 1, g2 = 16 

r  )(r  r  )(r  

0.0 0.0 2.6 0.27830849D 00 

0.1 0.46501485D -01 2.7 0.2485308D 00 

0.2 0.179270050D 00 2.8 0.22184999D 00 

0.3 0.37547531D  00 2.9 0.19811871D 00 

0.4 0.60410791D 00 3.0 0.17692314D 00 

0.5 0.83267262D 00 3.1 0.15796708D 00 

0.6 0.10335823D 00 3.2 0.14098953D 00 

0.7 0.11881991D 01 3.3 0.12576032D 00 

0.8 0.12879994D 01 3.4 0.11207611D 00 

0.9 0.13333453D 01 3.5 0.99756875D-00 

1.0 0.13308877D 01 3.6 0.88642824D-01 

1.1 0.12906505D 01 3.7 0.78591691D-01 

1.2 0.12235436D 01 3.8 0.96476423D-01 

1.3 0.11396490D 01 3.9 0.61183149D-01 

1.4 0.10473002D 01 4.0 0.53609415D-01 

1.5 0.95317184D 00 4.1 0.46662631D-01 

1.6 0.86136058D 00 4.2 0.40258717D-01 

1.7 0.77423844D 00 4.3 0.34320895D-01 

1.8 0.69331240D 00 4.4 0.28778615D-01 

1.9 0.61959006D 00 4.5 0.23566593D-01 

2.0 0.55288042D 00 4.6 0.18623939D-01 

2.1 0.49302411D 00 4.7 0.13893365D0-1 

2.2 0.43955767D 00 4.8 0.93204478D-01 

2.3 0.39192387D 00 4.9 0.4852953D-01 

2.4 0.34954124D 00 5.0 0.0 

2.5 0.31184496D 00   

 

Table 8 Eigenfunction  calculated by COGI with n = 500 (variable) step size 

r  )(r  r  )(r  

0.0 0.0 0.7 0.12059387D 01 

0.1 0.58866508D-01 0.8 0.2991245D   01 

0.2 0.20095835D 00 0.9 0.13382690D 01 

0.3 0.40321926D 00 1.0 0.13306013D 01 

0.4 0.63398006D 00 1.8 0.70471121D 01 

0.5 0.86095765D 00 2.6 0.28283470D 01 

0.6 0.10574299D 00 3.4 0.11382782D 00 
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Table 9 Eigenfunction  calculated by COGI with n = 1000 step, L=1, g2=16 

r  )(r  
r  )(r  

0.0 0.0 3.0 0.17581877D 00 

0.5 0.81842056D 00 3.5 0.99679816D-01 

1.0 0.13249084D 01 4.0 0.53198912D-01 

1.5 0.95315132D 00 4.5 0.23542563D-01 

2.0 0.54960487D 00 5.0 0.0 

2.5 0.31171617D 00   
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