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Abstract 

The Fractional Hamiltonian is used to investigate discrete systems in terms of Caputo’s fractional derivatives. Three 
models have been introduced and studied in order to apply the formalism presented here. The obtained Hamilton’s 
equations of motion are exactly in agreement with the classical Hamiltonian formulation equations. 
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1. Introduction

Fractional calculus is a generalization of usual calculus. In this branch of mathematics, meanings are established for 

integrals and derivatives of any non-integer (even complex) order, such as
2/1

2/1 )(

dt

tfd . It has started in 1695 when Leibniz

presented his investigation of the derivative of order
2

1
. During the last decades it was used to study numerous fields

of engineering and science [1-7].  Numerical investigation of fractional differential equations appeared in many 
researches [8-14], and it played an essential role in solving these equations numerically for several systems. 

Fractional calculus has been used to reformulate the Euler– Lagrange problems fractionally. Riewe investigated non-
conservative Lagrangian and Hamiltonian mechanics and for those cases formulated a version of the Euler–Lagrange 
equations (ELE’s) [11].  Other researches work on fractional Lagrangian and Hamiltonian approaches, see [16–21] and 
the references therein.  

In this paper we developed the fractional Hamiltonian equations of motion (FHEOM) for discrete systems in terms of 
Caputo’s fractional derivatives. The paper is prepared as follows:  

In Sect. 2, we discussed briefly the Caputo’s fractional Lagrangian mechanics. In Sect. 3, we present the Caputo’s 
fractional Hamiltonian formalism for discrete systems. In Sect. 4, illustrative examples are discussed using the 
formalism presented. Finally, we close this paper with a conclusion in Sec. 5. 

2. Basic Tools for Caputo’s Fractional Lagrangian

The left Caputo’s fractional derivative (i.e., LCFD), and the right Caputo’s fractional derivative (i.e., RCFD) read 
respectively as [1, 2]: 
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Note that  is the order of the derivative such that nn 1 , and it is not equal to zero. 

When  goes to an integer then, these two equations turned to the following two classical derivatives: 
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Now, let us consider the action of integral 

 dttDDLS b
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.                                                                                                          (5) 

The corresponding (ELE’s) are then obtained as: 
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As 1,  , we have 
dt

d
Dt

c

a 
, and 

dt

d
Db

c

t 
 , then (6) reduces to the classical ELE’s. 

3. Caputo’s Fractional Hamiltonian of Discrete Systems  

Consider the Lagrangian of discrete systems that depends on the Caputo’s fractional derivatives of coordinates with the 
following form: 

),,,( tDDLL b

c

tt

c

a   .                                                                                                               (7) 

with 1,0   . 

Introducing the generalized momenta: 




t

c

a D

L
P




 ; 




b

c

t D

L
P




 .                         (8) 

Thus, the Hamiltonian depending on Caputo’s fractional derivatives can be written as: 

LDPDPH b
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Taking the total differential of the above Hamiltonian: 
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Substituting (8) into (10), we get: 
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t
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Making use of (6), then (11) becomes: 
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t
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This means that the Hamiltonian is a function of 

),,,( tPPH  .                                                                                                                        (13) 

The total differential of (13) is: 
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Comparing (14) with (11), one gets the following FHEOM: 
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4. Illustrative Examples 

In this section, three examples (Mathematical and Physical) will be investigated using the formalism presented in Sec. 
3 above. 
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4.1. Firstly, let us consider the following Mathematical example as a first discrete system 
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The generalized momenta (8) read:  
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Then according (9) the Hamiltonian can be calculated as: 
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. 

As a result the HEM (15) read: 
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. 

 This result is in exact agreement with that obtained by Agrawal [17]. 

4.2.  Secondly, we study the following physical model 


1

0

LdtS

. 

where  
2

0 )(
2

1
t

cDL  . 

This fractional model is the analog of free motion in one- dimensional space. 

The generalized momenta (8) read:  

 t

cDP 0 ; 

0P . 

Now, making use of  (9) the Hamiltonian is calculated as: 
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The HEM (15) read: 
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As 1   the last equation reads the classical equation of motion for a free motion in a one dimensional space, i.e.,

0
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
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4.3. Finally, we study the following physical model 
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This is the fractional analog of the classical Harmonic Oscillator. 
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Again, as 1   the last equation reads the classical equation of motion for a Harmonic Oscillator, i.e.
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5. Conclusion 

Using the Caputo’s fractional derivatives, the fractional Hamiltonian of discrete systems has been constructed. The 
Hamilton’s equations have been attained for discrete systems, where some examples are studied. We note that as 

1 then the fractional Hamilton’s equations reduced to the classical equations. 

Finally, it is noted that the Hamiltonian formulation is in exact agreement with the Lagrangain formulation  
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