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Abstract 

Explosive Ordnance Disposal (EOD) robots are useful in military applications like the safe disposal of explosives. 
However, many of these robots do not have the capability to identify threat objects using their onboard vision system 
due to data unavailability for training an improvised explosive device (IED) detector. As a solution, this study used image 
processing and object detection algorithms to detect and analyze threat objects inside the baggage. A threat object 
detector was developed and composed of two separate modules such as baggage detection and IED detection and 
analysis modules. The experiments showed that baggage detection achieved 22.82% mean average precision (mAP) 
using Single Shot Detector (SSD) in the Microsoft Common Objects in Context (COCO) dataset, while IED detection 
achieved 77.59% mAP using Faster R-CNN in the X-ray dataset. The threat objects from the X-ray image were also 
analyzed using image processing techniques to get the dimension of the object and the distance from a reference object. 
Also, the baggage detection module was successfully deployed in Jetson TX2, which runs at a frame rate of 12 frames 
per second (FPS).  
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1. Introduction

Explosive Ordnance Disposal (EOD) robot, also known as a bomb disposal robot, is a robot that is used to disarm or 
dispose of improvised explosive devices (IEDs) and other hazardous materials by controlling it at a safe distance. It is 
crucial in military applications because instead of bringing a human to complete a dangerous task, robots can be 
assigned to do this without risking any life. However, several bomb disposal robots such as [1, 2, 3, 4] do not have the 
capability to analyze and detect threat objects. It always depends on the expert to decide whether a given object poses 
a threat or not. Currently, researchers have already developed a mobile robot that has object recognition capabilities 
[5, 6]. This capability can be useful in some other tasks; however, there are few studies that are concerned with the 
detection of threat objects for EOD robots. Most of them focus on the specific part of the robot, like the robot arm [7, 8, 
9], instead of its vision system, which is also a vital part of the robot design. The vision system serves as the guide of the 
robot operator in navigating the environment and in detecting unknown objects. 

Threats can be identified using computer vision [10], unintended radiated emission (URE) [11], ground-penetrating 
radar [12], [13], and autoencoder [14]. However, identifying threats using computer vision is challenging due to the lack 
of available data needed to implement the task. In this study, a threat object detector is proposed that can be used to 
detect potential threats and aid human experts in examining unknown objects. The authors concentrated on the vision 
system of the robot because this part plays an important role in explosive detection and disposal. 
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2. Material and methods 

The threat object detector in this study consists of two separate modules, such as the baggage detection module and the 
IED detection and analysis module, as shown in the threat object detector framework in Figure 1. The inputs are the live 
camera feed from the Jetson TX2 and the X-ray image from the X-ray machine. Two different object detection 
architectures were used in these modules, such as SSD and Faster R-CNN. The outputs are predictions about the classes 
of baggage and IED components.  

 

Figure 1 Threat object detector framework 

2.1. Single Shot Detector (SSD) 

SSD was selected for the detection of baggage (e.g., backpack, handbag, suitcase). This method is particularly useful in 
the real-time detection of objects due to its fast inference speed. SSD was introduced by [15] to address the slow 
inference problem of previous object detectors such as R-CNN [16], Fast R-CNN [17], and Faster R-CNN [18]. In SSD, 
both localization and detection are performed in a single forward pass of the network. This is similar to YOLO by [19], 
which scans the image only once during inference. The advantage of SSD is that it eliminates bounding box proposals 
and subsampling of pixels [15]. Figure 2 shows the SSD architecture. SSD initially used VGG-16 [20] as a base network, 
but in this paper, MobileNet by [21] was used to extract low-level features from the input image. It is followed by several 
convolutional layers that decrease in size to allow detection at multiple scales. Each convolutional layer is connected to 
the output fully connected layer, followed by a non-maximum suppression to prune the excess bounding box and obtain 
final detections.  

 

Figure 2 SSD architecture 

2.2. Faster R-CNN 

In this study, Faster R-CNN was chosen for IED detection because of its state-of-the-art performance in object detection 
tasks. Figure 3 shows Faster R-CNN architecture. ResNet-101 by [22] was used as a base network to extract features 
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from the input image. Faster R-CNN consists of two primary modules, namely Region Proposal Network (RPN) and 
Region of Interest (ROI) pooling. RPN accepts anchor boxes (bounding boxes with different scales and aspect ratios) 
and determines their objectness. The output of the RPN is bounding box proposals. On the other hand, the ROI pooling 
module accepts all the proposals from the RPN and extracts its ROI features from the feature map. The features are then 
resized before sending them to the fully connected (FC) layers. The final output is class labels and bounding box 
predictions. 

 

Figure 3 Faster R-CNN architecture

2.3. Baggage Detection Dataset 

The images used in the study came from the MS COCO dataset (2014 train-val). Three classes were chosen such as a 
backpack, handbag, and suitcase. The dataset was collected individually using a Python script by looking for each 
category ID and downloading the image that matches the desired ID, e.g., [‘backpack’]. Then, annotations were 
downloaded using another script. It contains extensible markup language (XML) files of each image. After this, the XML 
files were converted to a comma-separated value (CSV) format to extract the ground truth bounding boxes and finally 
converted to TFrecord file format for efficient data storage. The baggage dataset was divided into train and test data. 
Training data consists of 8,461 images (90%), while testing data consists of 960 images (10%). The total number of 
annotations (ground truth bounding boxes) was 21,466 for both training and testing. Figure 4 shows the sample dataset 
with labeled ground truth bounding boxes. 

 

Figure 4 Baggage dataset from MS COCO [23] 
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2.4. IED Detection and Analysis Dataset 

IEDXray dataset by [24], [25] was used in IED detection and analysis. Figure 5 shows the sample dataset with labeled 
ground truth bounding boxes. These are composed of X-ray images of IED replicas scanned from an X-ray machine. 
Because these are replicas, the explosive material is not present in the IED. The study only focuses on three IED 
components such as battery, mortar, and wires. 

 

Figure 5 IED Xray dataset 

The data was annotated manually using an image labeling tool. The annotations were also converted from XML file to 
TFrecord format, as discussed previously in the baggage dataset. Training data consists of 1,209 images (90%), while 
testing data consists of 134 images (10%). The total number of annotations for this dataset was 3,939 for both training 
and testing. The summary of the datasets used in the study is shown in Table 1. 

Table 1 Dataset summary 

 Baggage  IED Xray  

 annotations 

 backpack handbag suitcase battery mortar wires 

Training  6200 8778 4251 1159 529 1872 

Testing  728 946 563 158 29 192 

 images 

Training  8461 1209 

Testing  960 134 
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2.5. Training and Evaluation 

The baggage detector was trained using RMSprop with exponential decay learning rate. The values of the 
hyperparameter are the following: initial learning rate = 0.001, decay steps = 5000, decay factor = 0.8, momentum = 0.9, 
decay = 0.9, epsilon = 1, batch size = 10, number of steps = 100,000. Data augmentation was also applied such as 
horizontal flip, and random crop. In contrast, the IED detector was trained using stochastic gradient descent (SGD) with 
momentum. The values of the hyperparameter are the following: learning rate = 0.0003, momentum = 0.9, batch size = 
1. 

Both detectors were evaluated using mean average precision (mAP) following the PASCAL VOC metric by [26] at 0.5 
intersection over union (𝐼𝑂𝑈) threshold defined using Eq. (1). Where 𝑋𝐺  is the ground truth bounding box, 𝑋𝑃  is the 
predicted bounding box, and 𝐴 is the area. 
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2.6. IED Analysis 

IED analysis consists of measuring the size and the distance between objects. The contour in an image was used to 
analyze the X-ray image [27]. Contours are curves joining all the consecutive points that have the same color and 
intensity. It is useful for tasks like shape approximation and analysis [28]. Image binarization was applied using a Canny 
edge detector in order to find the contour. Then, morphological transformations were applied, specifically erosion and 
dilation. Erosion erodes away the boundaries of the foreground object, therefore shrinking the foreground and 
removing small white noise in the image. On the other hand, dilation is the opposite of erosion. It increases the size of 
the foreground object. Dilation followed by erosion was applied to close gaps in between the object edges. 

The first step in measuring the size of the object is to sort the contours in the image from left to right. This ensures that 
the left-most contour corresponds to the reference object. Then, each contour was examined. If the contour size is small, 
this is discarded to avoid noises in the image. After examining the contours, the rotated bounding box is drawn around 
the object. Then, the midpoints 𝑀 in Eq. (2) and Euclidean distances 𝑑 between midpoints in Eq. (3) are computed. 
Finally, the pixel per metric 𝑃 in Eq. (4) is used to obtain the object size. Where 𝑤𝑜 is the width of the object in pixels, 
while 𝑤𝑟  is the known width of the reference object in millimeters (mm). The same idea was used to measure the 
distance from a reference object to another object, except that the Euclidean distance between the reference object and 
the object location was calculated instead of the Euclidean distance between midpoints previously [29].  
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3. Results and discussion 

3.1. Baggage Detection 

Figure 6 shows the detection output using SSD in the Jetson TX2 development kit. The 5MP fixed focus MIPI CSI camera 
of the Jetson TX2 was used to test the performance of the baggage detector. As can be seen in the figure, the two 
backpacks and the suitcase were detected successfully. However, false positives are still present, especially if the object 
or the camera is moving. Regarding the evaluation performance, SSD achieves 22.82% mAP on the test data and runs 
on the average frame rate of 12 FPS on Jetson TX2.  
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 Figure 6 Sample detection on Jetson TX2 development kit using SSD  

3.2. IED Detection and Analysis 

The comparison between the ground truth bounding box and predicted bounding box using Faster R-CNN in the 
detection of IED components is shown in Figure 7. As can be seen from the figure, the model successfully detected the 
threat objects (2 batteries and 1 wire) but failed to detect the other objects due to occlusion. The model achieved 77.59% 
mAP in all categories using 900×1536 resolution of the training images. The Faster R-CNN took 208.96 milliseconds 
(ms) per image to evaluate the test data. The test data can be evaluated faster by decreasing the resolution of the input 
image. However, there is a tradeoff in the mAP. 

 

(a) (b) 

Figure 7 Sample IED detection using Faster R-CNN: (a) ground truth bounding box; (b) predicted bounding box 

Figure 8 shows the sample image analysis of the X-ray dataset. The right side of the figure shows the resulting edges of 
the image using a Canny edge detector. The left side of the figure shows the measurements of the object. Object 
measurements such as area = 1,130.13 mm, contour number = 23, length = 47.22 mm, and width = 23.94 mm are 
displayed in the top left corner of the image. The contour number represents the contour ID of the object, which is 
unique in every given image. There were 31 contours found in the image, but only 5 objects were measured, while small 
objects were discarded. In the image, the measured object is a battery. 
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 Figure 8 Analysis of IED components (battery)  

Figure 9 shows another sample image analysis in a cellphone object showing its area = 4,941.71 mm, contour number 
= 29, length =107.32 mm, and width = 46.05 mm. This information from the X-ray image is useful in estimating the 
possible blast radius of the IED and identifying the components used. 

 

Figure 9 Analysis of IED components (cellphone) 

In the measurement of the distance between a reference object to another object, the sample image analysis of the X-
ray dataset is shown in Figure 10. The right image shows the edges detected on the X-ray image, while the left image 
shows the object measurements in millimeters (mm). There was a total of 31 contours found in the image, but only 4 
objects were analyzed. The reference object is a battery, which is the left-most object in the image. The distance between 
the respective corners and centroids of the object was measured using the Euclidean distance defined previously in 
Section 2. The centroid to centroid distance between the battery and cellphone measures approximately 430.33 mm 
(the value of E in the figure). While the corner to corner distance is A = 422.62 mm, B = 444.25 mm, C = 439.44 mm, and 
D = 418.96 mm.  

 

Figure 10 Distance measurement between battery and cellphone 
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Figure 11 shows another measurement using a different X-ray dataset. The right image shows the edges detected on the 
X-ray image, while the left image shows the object measurements in millimeters (mm). A total of 21 contours were 
found in the image, but only 2 objects were analyzed. The reference object is a cellphone, which is again the left-most 
object in the image. The centroid to centroid distance between the cellphone and battery is approximately 25.96 mm 
(the value of E in the figure). On the other hand, the corner to corner distance is A = 23.44 mm, B = 25 mm, C = 29.70 
mm, and D = 28.36 mm. This information is important to know the exact location of the objects with reference to other 
objects so that the operator of the EOD robot can easily disable the IED circuitry. 

 

Figure 11 Distance measurement between cellphone and battery 

4. Conclusion 

The aim of the research was to develop a threat object detector for the EOD robot. This study has shown the possibility 
of using object detection algorithms and image processing to identify and analyze threat objects. One of the algorithms, 
i.e., the SSD, was successfully deployed in Jetson TX2 that can detect three types of baggage. In addition, the Faster R-
CNN was able to identify IED components in an X-ray image correctly. These results will help experts in decision-making 
whether an unknown object poses a threat or not. The major limitation of this study is that the threat object detector 
can only be used effectively if the image is not heavily occluded. Therefore, future research should focus on minimizing 
the effect of occlusion in identifying threat objects and improving the detection performance of the threat object 
detector. Additional training data is recommended to improve the mAP results reported in this study. 
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