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Abstract

Explosive Ordnance Disposal (EOD) robots are useful in military applications like the safe disposal of explosives.
However, many of these robots do not have the capability to identify threat objects using their onboard vision system
due to data unavailability for training an improvised explosive device (IED) detector. As a solution, this study used image
processing and object detection algorithms to detect and analyze threat objects inside the baggage. A threat object
detector was developed and composed of two separate modules such as baggage detection and [ED detection and
analysis modules. The experiments showed that baggage detection achieved 22.82% mean average precision (mAP)
using Single Shot Detector (SSD) in the Microsoft Common Objects in Context (COCO) dataset, while IED detection
achieved 77.59% mAP using Faster R-CNN in the X-ray dataset. The threat objects from the X-ray image were also
analyzed using image processing techniques to get the dimension of the object and the distance from a reference object.
Also, the baggage detection module was successfully deployed in Jetson TX2, which runs at a frame rate of 12 frames
per second (FPS).
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1. Introduction

Explosive Ordnance Disposal (EOD) robot, also known as a bomb disposal robot, is a robot that is used to disarm or
dispose of improvised explosive devices (IEDs) and other hazardous materials by controlling it at a safe distance. It is
crucial in military applications because instead of bringing a human to complete a dangerous task, robots can be
assigned to do this without risking any life. However, several bomb disposal robots such as [1, 2, 3, 4] do not have the
capability to analyze and detect threat objects. It always depends on the expert to decide whether a given object poses
a threat or not. Currently, researchers have already developed a mobile robot that has object recognition capabilities
[5, 6]. This capability can be useful in some other tasks; however, there are few studies that are concerned with the
detection of threat objects for EOD robots. Most of them focus on the specific part of the robot, like the robot arm [7, 8,
9], instead of its vision system, which is also a vital part of the robot design. The vision system serves as the guide of the
robot operator in navigating the environment and in detecting unknown objects.

Threats can be identified using computer vision [10], unintended radiated emission (URE) [11], ground-penetrating
radar [12], [13], and autoencoder [14]. However, identifying threats using computer vision is challenging due to the lack
of available data needed to implement the task. In this study, a threat object detector is proposed that can be used to
detect potential threats and aid human experts in examining unknown objects. The authors concentrated on the vision
system of the robot because this part plays an important role in explosive detection and disposal.
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2. Material and methods

The threat object detector in this study consists of two separate modules, such as the baggage detection module and the
IED detection and analysis module, as shown in the threat object detector framework in Figure 1. The inputs are the live
camera feed from the Jetson TX2 and the X-ray image from the X-ray machine. Two different object detection
architectures were used in these modules, such as SSD and Faster R-CNN. The outputs are predictions about the classes
of baggage and IED components.
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Figure 1 Threat object detector framework

2.1. Single Shot Detector (SSD)

SSD was selected for the detection of baggage (e.g., backpack, handbag, suitcase). This method is particularly useful in
the real-time detection of objects due to its fast inference speed. SSD was introduced by [15] to address the slow
inference problem of previous object detectors such as R-CNN [16], Fast R-CNN [17], and Faster R-CNN [18]. In SSD,
both localization and detection are performed in a single forward pass of the network. This is similar to YOLO by [19],
which scans the image only once during inference. The advantage of SSD is that it eliminates bounding box proposals
and subsampling of pixels [15]. Figure 2 shows the SSD architecture. SSD initially used VGG-16 [20] as a base network,
but in this paper, MobileNet by [21] was used to extract low-level features from the input image. It is followed by several
convolutional layers that decrease in size to allow detection at multiple scales. Each convolutional layer is connected to
the output fully connected layer, followed by a non-maximum suppression to prune the excess bounding box and obtain

final detections.
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Figure 2 SSD architecture

2.2. Faster R-CNN

In this study, Faster R-CNN was chosen for [ED detection because of its state-of-the-art performance in object detection
tasks. Figure 3 shows Faster R-CNN architecture. ResNet-101 by [22] was used as a base network to extract features
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from the input image. Faster R-CNN consists of two primary modules, namely Region Proposal Network (RPN) and
Region of Interest (ROI) pooling. RPN accepts anchor boxes (bounding boxes with different scales and aspect ratios)
and determines their objectness. The output of the RPN is bounding box proposals. On the other hand, the ROI pooling
module accepts all the proposals from the RPN and extracts its ROI features from the feature map. The features are then
resized before sending them to the fully connected (FC) layers. The final output is class labels and bounding box
predictions.

RPN L »
proposals -
* FC » Class labels
Input image —»  Base network , Rol , FC
feature maps pocling layers
Bounding
FC > box
(S predictions

Figure 3 Faster R-CNN architecture

2.3. Baggage Detection Dataset

The images used in the study came from the MS COCO dataset (2014 train-val). Three classes were chosen such as a
backpack, handbag, and suitcase. The dataset was collected individually using a Python script by looking for each
category ID and downloading the image that matches the desired ID, e.g, [‘backpack’]. Then, annotations were
downloaded using another script. It contains extensible markup language (XML) files of each image. After this, the XML
files were converted to a comma-separated value (CSV) format to extract the ground truth bounding boxes and finally
converted to TFrecord file format for efficient data storage. The baggage dataset was divided into train and test data.
Training data consists of 8,461 images (90%), while testing data consists of 960 images (10%). The total number of
annotations (ground truth bounding boxes) was 21,466 for both training and testing. Figure 4 shows the sample dataset
with labeled ground truth bounding boxes.

Figure 4 Baggage dataset from MS COCO [23]
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2.4. IED Detection and Analysis Dataset

IEDXray dataset by [24], [25] was used in IED detection and analysis. Figure 5 shows the sample dataset with labeled
ground truth bounding boxes. These are composed of X-ray images of IED replicas scanned from an X-ray machine.
Because these are replicas, the explosive material is not present in the IED. The study only focuses on three IED
components such as battery, mortar, and wires.

Figure 5 IED Xray dataset

The data was annotated manually using an image labeling tool. The annotations were also converted from XML file to
TFrecord format, as discussed previously in the baggage dataset. Training data consists of 1,209 images (90%), while
testing data consists of 134 images (10%). The total number of annotations for this dataset was 3,939 for both training
and testing. The summary of the datasets used in the study is shown in Table 1.

Table 1 Dataset summary

Baggage IED Xray
annotations
backpack | handbag suitcase | battery mortar wires
Training 6200 8778 4251 1159 529 1872
Testing 728 946 563 158 29 192
images
Training 8461 1209
Testing 960 134
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2.5. Training and Evaluation

The baggage detector was trained using RMSprop with exponential decay learning rate. The values of the
hyperparameter are the following: initial learning rate = 0.001, decay steps = 5000, decay factor = 0.8, momentum = 0.9,
decay = 0.9, epsilon = 1, batch size = 10, number of steps = 100,000. Data augmentation was also applied such as
horizontal flip, and random crop. In contrast, the IED detector was trained using stochastic gradient descent (SGD) with
momentum. The values of the hyperparameter are the following: learning rate = 0.0003, momentum = 0.9, batch size =
1.

Both detectors were evaluated using mean average precision (mAP) following the PASCAL VOC metric by [26] at 0.5
intersection over union (/0U) threshold defined using Eq. (1). Where X, is the ground truth bounding box, X, is the
predicted bounding box, and 4 is the area.

A(Xen Xp)
A(Xc u Xp)

IOU = (1)

2.6. IED Analysis

IED analysis consists of measuring the size and the distance between objects. The contour in an image was used to
analyze the X-ray image [27]. Contours are curves joining all the consecutive points that have the same color and
intensity. It is useful for tasks like shape approximation and analysis [28]. Image binarization was applied using a Canny
edge detector in order to find the contour. Then, morphological transformations were applied, specifically erosion and
dilation. Erosion erodes away the boundaries of the foreground object, therefore shrinking the foreground and
removing small white noise in the image. On the other hand, dilation is the opposite of erosion. It increases the size of
the foreground object. Dilation followed by erosion was applied to close gaps in between the object edges.

The first step in measuring the size of the object is to sort the contours in the image from left to right. This ensures that
the left-most contour corresponds to the reference object. Then, each contour was examined. If the contour size is small,
this is discarded to avoid noises in the image. After examining the contours, the rotated bounding box is drawn around
the object. Then, the midpoints M in Eq. (2) and Euclidean distances d between midpoints in Eq. (3) are computed.
Finally, the pixel per metric P in Eq. (4) is used to obtain the object size. Where w, is the width of the object in pixels,
while w, is the known width of the reference object in millimeters (mm). The same idea was used to measure the
distance from a reference object to another object, except that the Euclidean distance between the reference object and
the object location was calculated instead of the Euclidean distance between midpoints previously [29].

_ai+az bi+be
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3. Results and discussion

3.1. Baggage Detection

Figure 6 shows the detection output using SSD in the Jetson TX2 development kit. The S5MP fixed focus MIPI CSI camera
of the Jetson TX2 was used to test the performance of the baggage detector. As can be seen in the figure, the two
backpacks and the suitcase were detected successfully. However, false positives are still present, especially if the object
or the camera is moving. Regarding the evaluation performance, SSD achieves 22.82% mAP on the test data and runs
on the average frame rate of 12 FPS on Jetson TX2.
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Figure 6 Sample detection on Jetson TX2 development kit using SSD

3.2. IED Detection and Analysis

The comparison between the ground truth bounding box and predicted bounding box using Faster R-CNN in the
detection of IED components is shown in Figure 7. As can be seen from the figure, the model successfully detected the
threat objects (2 batteries and 1 wire) but failed to detect the other objects due to occlusion. The model achieved 77.59%
mAP in all categories using 900x1536 resolution of the training images. The Faster R-CNN took 208.96 milliseconds
(ms) per image to evaluate the test data. The test data can be evaluated faster by decreasing the resolution of the input

image. However, there is a tradeoff in the mAP.

(a) (b)

Figure 7 Sample IED detection using Faster R-CNN: (a) ground truth bounding box; (b) predicted bounding box

Figure 8 shows the sample image analysis of the X-ray dataset. The right side of the figure shows the resulting edges of
the image using a Canny edge detector. The left side of the figure shows the measurements of the object. Object
measurements such as area = 1,130.13 mm, contour number = 23, length = 47.22 mm, and width = 23.94 mm are
displayed in the top left corner of the image. The contour number represents the contour ID of the object, which is
unique in every given image. There were 31 contours found in the image, but only 5 objects were measured, while small
objects were discarded. In the image, the measured object is a battery.
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Area: 1130.13 mm  W=23.94 mm
Contour no.23 L=47.22 mm

Figure 8 Analysis of IED components (battery)

Figure 9 shows another sample image analysis in a cellphone object showing its area = 4,941.71 mm, contour number
= 29, length =107.32 mm, and width = 46.05 mm. This information from the X-ray image is useful in estimating the
possible blast radius of the I[ED and identifying the components used.

Arec: 4941.71 mm  W=46.05 mm
Contour no.29 L=107.32 mm

Figure 9 Analysis of IED components (cellphone)

In the measurement of the distance between a reference object to another object, the sample image analysis of the X-
ray dataset is shown in Figure 10. The right image shows the edges detected on the X-ray image, while the left image
shows the object measurements in millimeters (mm). There was a total of 31 contours found in the image, but only 4
objects were analyzed. The reference object is a battery, which is the left-most object in the image. The distance between
the respective corners and centroids of the object was measured using the Euclidean distance defined previously in
Section 2. The centroid to centroid distance between the battery and cellphone measures approximately 430.33 mm
(the value of E in the figure). While the corner to corner distance is A = 422.62 mm, B = 444.25 mm, C = 439.44 mm, and
D =418.96 mm.

A=422.62 mm Contour no.29
B=444.25 mm

C=439.44 mm
D=418.96 mm
E=430.43 mm

Figure 10 Distance measurement between battery and cellphone
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Figure 11 shows another measurement using a different X-ray dataset. The right image shows the edges detected on the
X-ray image, while the left image shows the object measurements in millimeters (mm). A total of 21 contours were
found in the image, but only 2 objects were analyzed. The reference object is a cellphone, which is again the left-most
object in the image. The centroid to centroid distance between the cellphone and battery is approximately 25.96 mm
(the value of E in the figure). On the other hand, the corner to corner distance is A = 23.44 mm, B = 25 mm, C = 29.70
mm, and D = 28.36 mm. This information is important to know the exact location of the objects with reference to other
objects so that the operator of the EOD robot can easily disable the IED circuitry.

B image - o x wiesqes

A=23.44 mm Contour no.12
B=25.00 mm
C=29.70 mm
D=28.36 mm
E=25.96 mm

Figure 11 Distance measurement between cellphone and battery

4. Conclusion

The aim of the research was to develop a threat object detector for the EOD robot. This study has shown the possibility
of using object detection algorithms and image processing to identify and analyze threat objects. One of the algorithms,
i.e., the SSD, was successfully deployed in Jetson TX2 that can detect three types of baggage. In addition, the Faster R-
CNN was able to identify IED components in an X-ray image correctly. These results will help experts in decision-making
whether an unknown object poses a threat or not. The major limitation of this study is that the threat object detector
can only be used effectively if the image is not heavily occluded. Therefore, future research should focus on minimizing
the effect of occlusion in identifying threat objects and improving the detection performance of the threat object
detector. Additional training data is recommended to improve the mAP results reported in this study.
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