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Abstract 

The beamforming technique is an important factor in designing modern wireless communications systems. While 
Rotman lens is a vital method to achieve the ability to steer the radiation pattern at the desired locations. Besides, there 
are many contributions to enhancing the performance of such lens, however, a classification to review this development 
is required. The main objective in this study objective is to explain and discuss the historical evolution of the Rotman 
lens as a beamformer based on the simulation methods used to analyze the mathematical model of the Rotman lens. 
The study shows that the variety of the methods is to achieve accurate simulation results while the simulation time and 
hardware computer requirements are still a challenge.  
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1. Introduction

Rotman lens was created as a beamforming network (BFN) in the 1963s and was then used in numerous cutting-edge 
applications [1]. Rotman lens beamformer works on the assumption of geometric optics. Typically, such a beamforming 
network is used for a wide-band frequency operation[2], 5G wirelss system[3],and 6G applications [4]. The schematic 
drawing of a two-dimensional Rotman lens is shown in Figure 1. Where N is referred to the adjacent elements distance 
and Y is the receive distance from the x-axis. The beam port part includes several radiators in the transmission mode, 
and it works as receiving radiator in the receiving mode. Besides, each radiated beam is related to an input port. The 
array port surface consists of several receiving elements that are linked to the array elements through different length 
transmission lines to save the linearity of phase shifting.  

The principle of operation in order to generate the out beam in the desired direction can be explained as follow. The 
excitation is applied to the beam port. Each receiving port directs the received energy from the beam port to the element 
in the array port. The phase of the received signal is directly proportional to the path length (travelling distance) 
between the beam port radiator and the receiving element. This model produces a linear phase shift across the radiator 
elements. Thus, each beam port element is related to a beam at a unique scan angle.  

Many researchers are motivated to implement a Rotman lens to control the produced beam in the desired location. In 
radar surveillance systems, these lenses are usually used to see objectives in various directions owing to their 
multibeam capacity without physically shifting the antenna structure.  In the following, the main properties of the 
microstrip Rotman lens will be described.  
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The structure of the Rotman lens is derived from the geometric optic theory [1][5]. Therefore, the linear phase-shifting 
reached to the radiator elements is based on the different path lengths taken by the feeding signal to reach each element. 
Besides, its ability to generate multiple beams based on the concept of geometrical optics theory on other words, the 
location of the beam port, receiving port, radiator element, focal length, and the transmission line length produce the 
true time delay (TTD)[6][7]. Therefore, the produced beam scan angle is based on the path length difference without 
using a line coupler compared to the Butler matrix beamforming circuit [8][9]  

 

Figure 1 Schematic original Rotman lens [1] 

While Blass matrix is a beamforming circuit that is made up of several wave supply lines linked by rows with the linear 
array [10].  

2. Microwave lens: a brief review of developments history 

The microwave lens is the device that can generate multiples beams to scan the desired angle. Since 1946, the 
formulation of a microwave lens has started from evolving the geometric optics technique adopting in microwave 
applications such as concave parabolic antenna and lens antenna [11]. Numerical simulation methods development 

Precise analysis of Rotman lens must include computing the complete scattering lens matrix in terms of mutual coupling 
with internal reflections between feed ports, return loss, and phase coupling. Furthermore, the most common lens feed 
port and substrate configurations can be included. An analysis using fully rigorous methods such as Method of Moment 
(MoM), Finite Element (FE), Finite-difference Time Domain (FDTD) may not be feasible due to the wide electrical area 
on the lens (typically over 100 square wavelengths) [12].  In the following, the development of the numerical approaches 
used in the performance analysis calculations of the lens is explained. 

2.1. Ray structure method 

This approach is based on the calculation of coupling coefficients for each unique ray introduced by the source and 
interacts with the receiving elements, as explained in Figure 2. Then, the sum of these rays is close to the modal results 
[13]. 

 

N 

Side view 
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Figure 2 Ray structure method explanation [13] 

The coupling coefficients of the direct ray path 
0

,A BS  generated from the source port and the reflected ray path 

coefficient 
1

,A BS  can be determined from the following equations: 
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Where K is the wavenumber, λ is the wavelength inside the parallel plate of the lens cavity, dA is the width of the wave 
ports, and dB is the beam ports width. While, E(θ, d) is the radiation pattern of the port has width d and the angle θ 

normal to the port and Γ(θ
−

, d
−

) is referred to the active voltage reflection inside the lens inner junction has an angle equal 

to θ
−

. The method is proved the ability to calculate the coupling magnitude besides the phase coupling for the Rotman 
lens has 100 beam ports and 188 array ports at 10 GHz. However, more accuracy is needed for the determined results 
compared to full-wave simulation approaches while this method is considering the initial step to developing the hybrid 
ray-tracing approach, as it will be explained in the following section. 

2.2. Contour boundary integral hybrid function 

A full-wave method of moment technique (MoM) for ports that properly account for the fringed areas is used in this 
technique [14]. Besides, The Rao, Wilton and Glisson (RWG) triangle subdomain features are embedded, which can fit 
any multi-faceted port form [15]. Also, a broadband description of the stripline prospective features of the Green 
function is used, which numerically efficiently allows rigorous port assessment [16]. The approach is applied and 
validated by implementing it to prototype Rotman lens has 46 beam ports and 41 array ports in [17] and approved the 
accuracy besides the fast simulation time.  
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2.3.  Least-squares finite element method (LSFEM) 

A combination method combining the least-squares finite element technique (LSFEM) and the transfinite element 
approach is used to evaluate Rotman lens performance [18]. Using the LSFEM allows the process to yield both the 
distribution of electromagnetic fields in the lens structure and the commuting of the scattering matrix. The analysis 
technique starts to partition the structure of a Rotman lens into two main parts, the part of discontinuity due to 
impedance mismatching (including the region of the lens and the tapered microstrip lines) and the semi-infinite port 
area. The proposed method is based on solving first-order Maxwell equations because of the approximation of 
microstrip and strip Rotman lens as a planar multiport network structure. The proposed approach is examined to model 
a prototype microstrip lens 9×8 input-output ports, and it provides an accurate result which agrees with measurement 
results. The technique is suggested to be embedded in computer-aided software; furthermore, it can be extended to 
simulate a full-wave three dimensions environment as future work. 

2.4. Domain decomposition and distributed analysis 

A domain decomposition method that decreases the memory needed to compute major finite element issues is outlined 
[19][20]. It includes dividing a sizeable computational domain into several smaller subdomains and iteratively resolving 
the subdomain issues, as shown in Figure . While the subdomains are separated using Robin boundary conditions to 
guarantee the correct field between them [21]. Compared to the existing domain solution, the memory demands of the 
entire solution process are significantly decreased. Although, the full CPU time needed to solve the complete lens is 
larger than the full domain algorithm for the domain decomposition alternative. While it is considered more efficient to 
work in network parallel computer mode, this mode is used to solve the large computational problem, especially when 
a high memory random access memory (RAM) is required. 

 

Figure 3 Domain decomposition technique applied to Rotman lens [19] 

Besides, the number of calculation iterations needs to be reduced, especially to calculate the Z matrix, which is referred 
to the subdomain one time only. Therefore, this feature is suggested as future work. 

2.5. Hybrid ray tracing method 

 

Figure 4 Fast hybrid tracing for Rotman lens modelling [22] 
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A fast and straightforward ray tracing algorithm is suggested for the microwave lens design. The proposed technique 
constructs the lens structure and tests its performance in terms of the tapered ports, phase, and energy coupling 
between ports, besides the construction of the transmission line [22]. The proposed method is considered an extension 
for the work reported in [13] in terms of accuracy and less return loss ports. The approach is based on the modelling of 
the lens by multipath ray tracing using hybrid and more flexible port analyzing, as shown in  

Figure . 

The validation of the ray trace approach is carried out by comparing the predicted results to the full-wave simulation 
results and the measurement results. This approach can achieve a fast simulation environment.  However, the amplitude 
of the apertures for the edge ports shows a somewhat more significant error value than full-wave models and measures 
outcome, mainly because of irregular edge port constructions and alignment. Furthermore, phase centre estimation can 
be adopted to the approach to increase the accuracy of the phase prediction results. Besides, the method can be 
introduced as a toolkit to build a fast and accurate lens model. 

2.6. Two-dimensional finite difference time domain (2D-FDTD) approach 

The finite-difference time-domain (FDTD) approach is one of today's most common electromagnetic problem-solving 
techniques. It has been implemented to a wide range of issues, such as the calculation of scattering parameters for 
metal and dielectrics, antennas, microstrip circuits, and electromagnetics. Fast and accurate microstrip Rotman lens 
geometry is modelled using two dimensions finite difference time domain is reported in [23]. Furthermore, the model 
to estimate the conductor loss is proposed to provide more design accuracy. The suggested technique is based on solving 
Maxwell equations for the components as described in the following equations: 

{
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The proposed method was implemented to microstrip Rotman lens while the proposed method was contributed for 
saving the simulation time compared to another approach, as explained in the below table: 

Table 1 Comparative of time simulation for numerical methods [23] 

Solution type Number of mesh cell Simulation time 

HFSS (FEM) 1 236 676 3.5 hours 

 (3D-FDTD) 5 145 008 4 hours 

(2D-FDTD) 218 346 4 min. 

 

Long time saving for the proposed method can be indicated in Table . However, the proposed method is applied for the 
microstrip Rotman lens, and more investigation can be carried out to extend its work to other Rotman lenses, such as 
strip and waveguide models.  

3. Conclusion 

A review of the numerical simulation approaches used to solve Rotman lens mathematical model is discussed in this 
study. The comparison between types is based on the mathematical model and the simulation time. Besides, the 
requirements of the computer hardware are discussed. Full-wave simulation approaches provide more accurate results 
for the Rotman lens model. However, the complexity and the simulation time must be considered.  
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