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Abstract 

The conversion of the concept and the teaching of approximation function for analog low pass filter to computer aided 
numerical class project as an active learning strategy is presented. Governing equations for five approximation functions 
are presented and discussed. It is recommended that students are tasked to develop computer programs in any 
convenient computer programming language to make the pole-zero plot, obtain the transfer function, and plot the 
frequency response of low pass filters. Steps for such programs are suggested. Typical programs were developed and 
tested. The pole-zero plots and frequency response graphs generated are good illustrative and innovative teaching aids. 
Linear-phase response over the passband is a characteristic of Bessel approximation function but suffers less amplitude 
discrimination in the stopband. Chebyshev and Inverse Chebyshev approximation functions have the same order 
requirement which is usually greater than that of Elliptic approximation function but less than that of Butterworth 
approximation function. Elliptic approximation function is the best choice although it is more complex than the others. 
Through this computer aided numerical class project, the authors themselves gained more insight in the subject matter; 
certainly, students will learn actively.  

Keywords: Active learning; Filter design; Approximation functions; Pole-zero plot; Transfer function; Frequency 
response; Teaching aids 

1. Introduction

Attention is shifting from passive learning or teacher centered learning to active learning or student centered learning. 
Active learning requires the students to be actively engaged in the learning process. Active learning attracts 
commitment, focus, and attention of students. No dull moment in active learning classes. Active learning strategies are 
classroom-based activities designed to engage students in their learning through answering questions, solving 
problems, discussing content, or teaching others, individually or in groups [1, 2, 3]. 

Active learning involves setting goals and objective learning outcomes. There is reciprocity and cooperation among 
peers. There is feedback via meaningful interactions between learners, peers and educators. Students learn faster and 
are able to retain and apply the knowledge acquired. Active learning has been found to be effective in all disciplines [4, 
5, 6, 7, 8, 9]. Passive learning enables students to learn at the lower levels of Bloom’s taxonomy of Fig. 1 [10]. Active 
learning achieves students’ learning at both the lower and higher levels of Bloom’s taxonomy.  

Engineering Education transform engineering students from being novices to being experts [11]. With respect to the 
concept students learn, students are groomed to remember, to understand, to be able to apply, to be able to analyse, to 
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be able to evaluate and to be able to create. Part of the strategy to achieve these objectives is to create class projects or 
opportunity for the students to solve problems. Development of innovative teaching aids has also been recommended 
[12].  

Figure 1 Bloom’s Taxonomy [10] 

In this paper, the concept of approximation function for analog low pass filter is converted to a computer aided 
numerical class project as an active learning strategy. Diagrams are also generated as teaching aids for the concept. The 
class project is based on computer programming and Engineering Mathematics. Why Engineering Mathematics? Why 
Computer Programming? Asking questions is part of active learning strategies. Making students to find out “what”, 
“why”, and “how” ensures students’ active participation and active learning in class. What is the concept and what is the 
concept all about? Why must the student learn the concept? The “why” is about the significance, the relevance, and 
applications of the concept. “How” is the technical know-how of the concept.  

Engineering components, devices, and system have mathematical expressions relating their parameters, inputs and 
outputs. These components, devices, and systems have ordinary or differential or difference equations that describe 
them. The branch of mathematics consisting of mathematical methods and techniques which are applied in engineering 
and industry is known as engineering mathematics.  

The analysis and design of engineering systems requires computations. At times, these computations may be complex, 
tedious, cumbersome, repetitive or iterative. The assistance of a digital computer is helpful in such situations. Computer 
programming is the design of a sequence of instructions in a particular computer programming language to be executed 
by a digital computer to solve a given problem. 

What is a filter? Why is filtering necessary? A filter is a frequency selective network which passes some frequencies and 
blocks some frequencies. Filtering is necessary to extract a desired signal from the available mixture of signals. Analog 
filter processes analog signals while digital filter processes discrete time signals. A low pass filter passes low frequency 
signals and blocks high frequency signals.  

What are approximation functions and why are they necessary? The ideal low pass filter frequency response of Fig. 2 is 
not realizable with components or combination of components such as resistors, inductors, capacitors, and operational 
amplifiers (Op Amp). An approximation function provides a realizable frequency response of Fig. 3 which is 
approximate to the ideal frequency response. The filter function or response H(s) is the ratio of the Laplace transform 
of the output signal to the Laplace transform of the input signal with all initial conditions assumed to be zero.  

Fig. 4 shows the first order and second order passive networks which have approximate low pass filter responses. 
Suppose that R1 and R2 are 1 MΩ resistors. Suppose C1 and C2 are 1 µF capacitors. The Analysis of the first order circuit 
of Fig. 4(a) leads to Eqns. (1) and (2) in the time domain and the frequency domain respectively [13,14,15]. Eqn. (2) 
leads to the transfer function H(s), H(jw), and the magnitude response |H(w)| of Eqns. (3), (4), and (5) respectively. The 
frequency response for the first order network of Fig. 4 (a) is shown in Fig. 5 and is an approximation to that of the ideal 
low pass filter as in Fig. 3. This network has a pole at 𝑠 = −1 and a zero at infinity. 

https://wordpressua.uark.edu/wp-content/uploads/sites/315/2013/09/Blooms_Taxonomy_pyramid_cake-style-use-with-permission.jpg
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Figure 2 Ideal low pass filter frequency response 

Figure 3 Approximate low pass filter frequency response 

Figure 4 Passive network implementation of low pass filters 

𝑣𝑖𝑛(𝑡) = 𝑅1𝐶1
𝑑𝑣𝑜𝑢𝑡

𝑑𝑡
+ 𝑣𝑜𝑢𝑡(t) …………………. (1)

𝑉𝑖𝑛(𝑠) = 𝑅1𝐶1𝑠𝑉𝑜𝑢𝑡(𝑠) + 𝑉𝑜𝑢𝑡(s) …………………. (2) 
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𝐻(𝑠) =
𝑉𝑜𝑢𝑡(s)

𝑉𝑖𝑛(𝑠)
=

1

𝑅1𝐶1𝑠+1
 =

1

𝑠+1
…………………. (3) 

𝐻(𝑤) =
1

𝑗𝑤+1
…………………. (4) 

|𝐻(𝑤)| =
1

√(1+𝑤2)
…………………. (5) 

Figure 5 The frequency response of the first and second order networks of Fig. 4 

What is a pole? What is a zero? A pole of a transfer function is the value of s which makes the transfer function tends to 
infinity. A zero of a transfer function is the value of s which makes the transfer function tends to zero. The pole-zero plot 
of a network defines the properties and characteristics of that network. A pole is represented by x while a zero is 
represented by o on the s-plane. A zero at infinity is not indicated on the pole-zero plot. 

The Analysis of the second order circuit of Fig. 4(b) leads to Eqns. (6) and (7) in the time domain and the frequency 
domain respectively [13, 14, 15]. Eqn. (7) leads to the transfer function H(s), H (jw), and the magnitude response |H(w)| 
of Eqns. (8), (9), and (10) respectively. The frequency response for the second order network of Fig. 4(b) is also shown 
in Fig. 5 and is an approximation to that of the ideal low pass filter as in Fig. 3. This network has two poles at 𝑠 = −1 
and a zero at infinity. The higher the order of the network, the higher the attenuation in the stopband and the narrower 
the transition band.  

𝑣𝑖𝑛(𝑡) = 𝑅1𝐶1𝑅2𝐶2
𝑑2𝑣𝑜𝑢𝑡

𝑑𝑡2 +(𝑅1𝐶1 + 𝑅2𝐶2)
𝑑𝑣𝑜𝑢𝑡

𝑑𝑡
+ 𝑣𝑜𝑢𝑡(t) …………………. (6) 

𝑉𝑖𝑛(𝑠) =  𝑠2𝑉𝑜𝑢𝑡(𝑠) + 2𝑠𝑉𝑜𝑢𝑡(𝑠) + 𝑉𝑜𝑢𝑡(𝑠) …………………. (7) 

𝐻(𝑠) =
𝑉𝑜𝑢𝑡(s)

𝑉𝑖𝑛(𝑠)
=

1

𝑠2++2𝑠+1
 …………………. (8) 

𝐻(𝑤) =
1

𝑗2𝑤+(1−𝑤2)
…………………. (9) 

|𝐻(𝑤)| =
1

√[(1−𝑤2)2+4𝑤2]
…………………. (10) 

The approximation functions are therefore functions which are approximate to the frequency response of an ideal filter 
and which can be realized with passive and or active circuit components. Approximation functions introduce transition 
band in between the passband and the stopband as illustrated in Fig. 3. Five approximation functions are considered in 
this work.  
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Fig. 6 gives the performance specification of a non-ideal low pass filter. An explicit specification of the performance 
requirement is provided in terms of the frequency response characteristics, the desired amplitude and/or phase 
responses, and their tolerances. 

Figure 6 Low pass filter specifications 

휀 is the passband ripple parameter, 𝛿𝑝 is the passband deviation, 𝛿𝑠 is stopband deviation, 𝑤𝑝𝑎𝑠𝑠  is the passband edge 

frequency, and 𝑤𝑠𝑡𝑜𝑝  is the stopband edge frequency. The band edge frequencies are in standard frequency unit of 

rad/sec and can also be expressed in Hertz (Hz). Passband deviation and stopband deviation may be expressed as 
ordinary numbers or in decibels as described in Eqns. (11) and (12) respectively [16]. Apass and Astop are the passband 
Gain and the stopband Gain in decibels respectively. 

𝐴𝑝𝑎𝑠𝑠 = 10𝑙𝑜𝑔10(1 + 휀2) = −20𝑙𝑜𝑔10(1 − 𝛿𝑝) …………………. (11) 

𝐴𝑠𝑡𝑜𝑝 = -20𝑙𝑜𝑔10(𝛿𝑠) …………………. (12) 

2. Methodology

2.1. Butterworth Approximation 

The Butterworth approximation function is often called the maximally flat response because no other approximation 
has a smoother transition through the passband to the stopband [17]. The phase response also is very smooth, which is 
important when considering distortion. The lowpass Butterworth polynomial has an all-pole transfer function with no 
finite zeros present. It is the approximation method of choice when low phase distortion and moderate selectivity are 
required. 

Eqn. (13) gives the Butterworth approximation’s magnitude response where ω𝑝𝑎𝑠𝑠  is the passband edge frequency for 

the filter, n is the order of the approximation function, and ε is the passband Gain adjustment factor [18]. The transfer 
functions carry subscripts for identification. In this case, the subscript B indicates a Butterworth filter, and n indicates 
an nth-order transfer function. 

|𝐻𝐵,𝑛(𝑗𝑤)| =
1

√1+𝜀2.(𝑤/𝑤𝑝𝑎𝑠𝑠)2𝑛
…………………. (13) 

where 

휀 = √10−0.1𝐴𝑝𝑎𝑠𝑠 − 1 …………………. (14) 
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With 휀  set to 1 and ω𝑝𝑎𝑠𝑠  set to 1, the filter will have a Gain of 1/√2 or −3.01 dB at the normalized passband edge 
frequency of 1 rad/sec. The Gain is simply 20Log[|H(jw)|].The Butterworth approximation has a number of interesting 
properties. First, the response will always have unity Gain (0 dB) at ω = 0, no matter what value is given to ε. However, 
the Gain at the normalized passband edge frequency of ω = 1 rad/sec will depend on the value of ε. Furthermore, the 
response Gain decreases by a factor of −20n dB per decade of frequency change [19]. The order of the Butterworth filter 
to meet given specifications is given by Eqn. (15). 

𝑛𝐵 =
log [(10

−0.1𝐴𝑠𝑡𝑜𝑝−1)/(10−0.1𝐴𝑝𝑎𝑠𝑠−1)]

2log (𝑤𝑠𝑡𝑜𝑝/𝑤𝑝𝑎𝑠𝑠)
…………………. (15) 

The transfer function can be developed from the filter’s poles and zeros in the left half of the s-plane. Butterworth filter 
is an all-pole filer with no zero. The poles for a Butterworth approximation function are equally spaced around a 
semicircle in the s-plane and are symmetrical about the real axis. The number of poles is equal to the order number and 
the radius of the semicircle is given by Eqn. (16). Once the radius of the circle is known, the pole positions are 
determined by calculating the necessary angles 𝜃0, 𝜃1, … , 𝜃𝑚 in the second quadrant in accordance with Eqns. (17) and 
(18) for even-order and odd-order respectively. Any complex pole in the second quadrant has a conjugate pair in the 
third quadrant. The real part and the imaginary part of the pole for each θ𝑚  are determined by Eqns. (19) and (20) 
respectively. For odd-order functions, there is a pole on the real axis at 𝜎 = −𝑅. 

R = 휀−1/𝑛 …………………. (16) 

𝜃𝑚 =
𝜋(2𝑚+𝑛+1)

2𝑛
 , m = 0, 1,…, (n/2)-1 (n even) …………………. (17) 

𝜃𝑚 =
𝜋(2𝑚+𝑛+1)

2𝑛
 , m = 0, 1,…, [(n-1)/2]-1 (n odd) …………………. (18) 

𝜎𝑚 = 𝑅𝑐𝑜𝑠(𝜃𝑚) …………………. (19) 

𝑤𝑚 = 𝑅𝑠𝑖𝑛(𝜃𝑚) …………………. (20) 

The complete Butterworth approximation transfer function can be determined from a combination of a first-order 
factor (for odd orders) presented in Eqn. (21) and quadratic factors presented in Eqn. (22) and explained in Eqns. (23) 
and (24). Each of these factors will have a constant in the numerator to adjust the Gain to unity (0 dB) at ω = 0. The 
complete Butterworth transfer function can now be defined as in Eqns. (25) and (26) for even-order and odd-order 
respectively. 

𝐻0(𝑆) =
𝑅

𝑆+𝑅
…………………. (21) 

𝐻𝑚(𝑆) =
𝐵2𝑚

𝑆2+𝐵1𝑚𝑆+ 𝐵2𝑚
…………………. (22) 

where 

𝐵1𝑚 = −2𝜎𝑚 …………………. (23) 

𝐵2𝑚 = 𝜎𝑚
2 + 𝑤𝑚

2  …………………. (24) 

𝐻𝐵,𝑛(𝑆) =
∏ (𝐵2𝑚)

(𝑛/2)−1 
𝑚=0

∏ (𝑆2(𝑛/2)−1
𝑚=0 + 𝐵1𝑚𝑆+𝐵2𝑚)

 , (n even) …………………. (25) 

𝐻𝐵,𝑛(𝑆) =
𝑅 ∏ (𝐵2𝑚

[(𝑛−1)/2]−1
𝑚=0 )

(𝑆+𝑅) ∏ (𝑆2[(𝑛−1)/2]−1
𝑚=0 + 𝐵1𝑚𝑆+𝐵2𝑚)

 , (n odd) …………………. (26) 

As a class project, students should be tasked to develop a computer program to make the pole-zero plot, obtain the 
transfer function, and plot the frequency response for Butterworth low pass filter in any computer programming 
language of their choice. In this work, a program was developed in Matlab working environment [20,21]; the steps are 
presented in Table 1.  
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2.2. Chebyshev Approximation 

The Chebyshev polynomial is a powerful function in approximation theory. Although the function is a polynomial, it is 
best defined and developed in terms of trigonometric functions [22]. The Chebyshev approximation function also has 
an all-pole transfer function. The Chebyshev filter allows variation or ripple in the passband of the filter. The transition 
characteristics of the Chebyshev is steeper than that of the Butterworth. However, the phase response is not as linear 
as that of Butterworth, and therefore if low phase distortion is a priority, the Chebyshev approximation may not be the 
best choice [17]. 

Table 1 Program to make the pole-zero diagram, obtain the transfer function, and plot the frequency response of 
Butterworth low pass filter 

Step Description 

1 Input 𝐴𝑝𝑎𝑠𝑠 , A𝑠𝑡𝑜𝑝, ω𝑝𝑎𝑠𝑠 , and ω𝑠𝑡𝑜𝑝 

2 Calculate 휀, n, and R using Eqns. (14), (15), and (16) respectively; n is rounded 
up to the next higher whole number using the code “ceil” in Matlab [20]. 

3 Plot a circle of radius R on the s-plane. The following sub-program is suggested. 

nn1=0; 

for t=0:2*pi/10000:2*pi 

 nn1=nn1+1; 

 y(nn1)=R*sin(t); 

 x(nn1)=R*cos(t); 

end 

plot(x,y,'m--') 

4 If n is odd, get the real pole at 𝜎 = −𝑅. Plot the pole on the s-plane. 

5 Set m=-1. 

6 Increase m by 1. 

7 Calculate 𝜃𝑚, 𝜎𝑚, 𝑤𝑚, 𝐵1𝑚 , and 𝐵2𝑚 , using Eqns. (17 or 18), (19), (20), (23) and 
(24) respectively. Plot the pole and its conjugate pair on the s-plane. 

8 Is 𝑚 < (𝑛/2) − 1 for even order or is 𝑚 < [(𝑛 − 1)/2] − 1  for odd order? If 
Yes, go back to Step 6. If No, proceed to Step 9. 

9 Obtain the transfer function using Eqn. (25) or (26). 

10 Plot the frequency response 

The magnitude response function for the Chebyshev approximation is given by Eqn. (27). Cn(ω), the Chebyshev 
polynomial of the first kind of degree n, is defined as in Eqn. (28). The order of the Chebyshev filter is given by Eqn. (29). 

|𝐻𝐶,𝑛[𝑗(𝑤/𝑤0)]| = 
1

√1+𝜀2𝐶𝑛
2(𝑤/𝑤0)

…………………. (27) 

Where the definition of ε is again as given by Eqn. (14). 

𝐶𝑛(𝑤) = cosh[𝑛 cosh−1(𝑤)], 𝑤 > 0 …………………. (28) 

𝑛𝐶 =
cosh−1[√(10

−0.1𝐴𝑠𝑡𝑜𝑝−1)/(10−0.1𝐴𝑝𝑎𝑠𝑠−1)]

cosh−1(𝑤𝑠𝑡𝑜𝑝/𝑤𝑝𝑎𝑠𝑠)
…………………. (29) 

The poles for a Chebyshev approximation function are located on an ellipse. The ellipse is centered at the origin of the 
s-plane with its major axis along the jω axis with intercepts of ± cosh(D), while the minor axis is along the real axis with 
intercepts of ± sinh(D). The variable D is defined as 
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D = 
sinh−1 𝜀−1

𝑛
…………………. (30) 

The pole positions are determined by calculating the necessary angles 𝜃0, 𝜃1, … , 𝜃𝑚 in the first quadrant in accordance 
with Eqns. (31) and (32) for even-order and odd-order respectively. The real part and the imaginary part of the pole 
for each θ𝑚 are determined by Eqns. (33) and (34) respectively. The negative sign in Eqn. (33) translates the angles in 
the first quadrant to the second quadrant. Any complex pole in the second quadrant has a conjugate pair in the third 
quadrant. For odd-order functions, there is a pole on the real axis at 𝜎 = − sinh(𝐷). 

θ𝑚 =
𝜋(2𝑚+1)

2𝑛
 , m=0,1,…,(n/2)-1 (n even) …………………. (31) 

θ𝑚 =
𝜋(2𝑚+1)

2𝑛
 , m=0,1,…,[(n-1)/2]-1 (n odd) …………………. (32) 

𝜎𝑚 =  − sinh(𝐷) sin(θ𝑚) …………………. (33) 

𝑤𝑚 =  cosh(𝐷) cos(θ𝑚) …………………. (34) 

The complete Chebyshev approximation transfer function can be determined from a combination of a first-order factor 
(for odd orders) presented in Eqn. (35) and quadratic factors presented in Eqn. (36) and explained in Eqns. (37) and 
(38). Each of these factors will have a constant in the numerator to adjust the Gain to unity (0 dB) at ω = 0. Furthermore, 
a Gain constant G given by Eqn. (39) must be included for even-order transfer functions to adjust the Gain to unity (0 
dB) at ω = 0. The complete Chebyshev transfer function can now be defined as shown in Eqns. (40) and (41) for even-
order and odd-order respectively. 

𝐻0(𝑆) =
sinh(𝐷)

𝑆+ sinh(𝐷)
…………………. (35) 

𝐻𝑚(𝑆) =
𝐵2𝑚

𝑆2+𝐵1𝑚𝑆+𝐵2𝑚
…………………. (36) 

𝐵1𝑚 = −2𝜎𝑚 …………………. (37) 

𝐵2𝑚 = 𝜎𝑚
2 + 𝑤𝑚

2  …………………. (38) 

G = 100.05𝐴𝑝𝑎𝑠𝑠 …………………. (39) 

𝐻𝐶,𝑛(𝑆) =
𝐺 ∏ (𝐵2𝑚)

(𝑛/2)−1
𝑚=0

∏ (𝑆2+𝐵1𝑚𝑠+𝐵2𝑚)
(𝑛/2)−1
𝑚=0

, (𝑛 𝑒𝑣𝑒𝑛) …………………. (40) 

𝐻𝐶,𝑛(𝑆) =  
sinh (𝐷) ∏ (𝐵2𝑚)

[(𝑛−1)/2]−1
𝑚=0

(𝑆+sinh (𝐷)) ∏ (𝑆2+𝐵1𝑚𝑠+𝐵2𝑚)
[(𝑛−1)/2]−1
𝑚=0

, (𝑛 𝑜𝑑𝑑) …………………. (41) 

As a class project, students should be tasked to develop a computer program to make the pole-zero plot, obtain the 
transfer function, and plot the frequency response for Chebyshev low pass filter. In this work, a program was developed 
in Matlab working environment [20, 21]; the steps are presented in Table 2. 

2.3. Inverse Chebyshev Approximation 

The Inverse Chebyshev approximation function, also called the Chebyshev type II approximation function, is a rational 
approximation with both poles and zeros in its transfer function. This approximation has a smooth, maximally flat 
response in the passband but has ripple in the stopband caused by the zeros of the transfer function [23]. The Inverse 
Chebyshev approximation provides better transition characteristics than the Butterworth filter and better phase 
response than the standard Chebyshev. The Inverse Chebyshev approximation requires more computations to design.  

The name “Inverse Chebyshev” is well-deserved as many of the computations are based on inverse or reciprocal values 
from the standard computations of Chebyshev. The magnitude frequency response function is shown in Eqn. (42). 
Cn(ω) still represents the Chebyshev polynomial of the first kind of degree n as defined in (28) but ωo/ω is used in 
Eqn. (42) instead of ω/ωo used in Eqn. (28). 휀𝑖 is used instead of ε. 휀𝑖 is defined in Eqn. (43). The calculation of the 
order for 
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an Inverse Chebyshev filter is given by Eqn. (44) but it is exactly the same as for the standard Chebyshev filter given by 
Eqn. (29). 

Table 2 Program to make the pole-zero plot, obtain the transfer function, and plot the frequency response of Chebyshev 
low pass filter 

Step Description 

1 Input 𝐴𝑝𝑎𝑠𝑠 , A𝑠𝑡𝑜𝑝, ω𝑝𝑎𝑠𝑠 , and ω𝑠𝑡𝑜𝑝 

2 Calculate 휀 , n, and D using Eqns. (14), (29), and (30) respectively; n is 
rounded up to the next higher whole number using the code “ceil” in Matlab 
[20]. 

3 Plot an ellipse with major axis ± cosh(D) along the jω axis and minor axis  ± 
sinh(D) along the real axis on the s-plane. The following sub-program is 
suggested.  

nn1=0; 

for t=0:2*pi/10000:2*pi 

 nn1=nn1+1; 

 x(nn1)=-sinh(D)*sin(t); 

 y(nn1)=cosh(D)*cos(t); 

end 

plot(x,y,'m--') 

4 If n is odd, get the real pole at 𝜎 = −𝑠𝑖𝑛ℎ(𝐷). Plot the pole on the s-plane. 

If n is even, obtain G from Eqn. (39). 

5 Set m=-1. 

6 Increase m by 1. 

7 Calculate 𝜃𝑚, 𝜎𝑚, 𝑤𝑚, 𝐵1𝑚 , and 𝐵2𝑚 , using Eqns. (31 or 32), (33), (34), (37) 
and (38) respectively. Plot the pole and its conjugate pair on the s-plane. 

8 Is 𝑚 < (𝑛/2) − 1 for even order or is 𝑚 < [(𝑛 − 1)/2] − 1 for odd order? If 
Yes, go back to Step 6. If No, proceed to Step 9. 

9 Obtain the transfer function using Eqn. (40) or (41). 

10 Plot the frequency response 

|𝐻𝐼,𝑛[𝑗(𝑤/𝑤0)]| = 
√𝜀𝑖

2𝐶𝑛
2(𝑤0/𝑤)

√1+𝜀𝑖
2𝐶𝑛

2(𝑤0/𝑤)

…………………. (42) 

where 

휀𝑖 =
1

√10
−0.1𝐴𝑠𝑡𝑜𝑝−1

…………………. (43) 

𝑛𝐼 =
cosh−1[√(10

−0.1𝐴𝑠𝑡𝑜𝑝−1)/(10−0.1𝐴𝑝𝑎𝑠𝑠−1)]

cosh−1(𝑤𝑠𝑡𝑜𝑝/𝑤𝑝𝑎𝑠𝑠)
…………………. (44) 

The determination of the pole locations for the normalized Inverse Chebyshev approximation is based on techniques 
similar to those used for the standard normalized Chebyshev approximation. The Inverse Chebyshev poles are the 
reciprocals of the standard Chebyshev poles. 

For example, if there exists a standard Chebyshev pole at 
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p = σ + jω …………………. (45) 

Then, the reciprocal of p gives the Inverse Chebyshev pole position as 

𝑝−1 =
𝜎−𝑗𝑤

(𝜎+𝑗𝑤)(𝜎−𝑗𝑤)
=

𝜎

𝜎2+𝑤2 − 𝑗
𝑤

𝜎2+𝑤2 …………………. (46) 

If a pole’s distance from the origin is greater than one, the reciprocal’s distance will be less than one and vice versa. 
Furthermore, the position of the pole is reflected across the real axis; if the original pole position is in the second 
quadrant, the reciprocal is located in the third quadrant. The mathematical equations necessary to determine the pole 
locations for the Inverse Chebyshev approximation function are similar to those for the standard Chebyshev case. First, 
Di  is defined as 

𝐷𝑖 =
sinh−1(𝜀𝑖

−1)

𝑛
…………………. (47) 

The pole locations in the second quadrant are obtainable using Eqns. (48) to (51). The prime values must still be 
inverted to get the actual Inverse Chebyshev poles as in Eqns. (52) and (53). For odd-order functions, there is a pole on 
the real axis at 𝜎′ = − sinh(𝐷𝑖 ).

𝜎𝑚
′ = − sinh(𝐷𝑖)sin (θ𝑚) …………………. (48) 

𝑤𝑚
′ = cosh(𝐷𝑖) cos(θ𝑚) …………………. (49) 

θ𝑚 =
𝜋(2𝑚+1)

2𝑛
, 𝑚 = 0,1, … , (𝑛/2) − 1(n even) …………………. (50) 

θ𝑚 =
𝜋(2𝑚+1)

2𝑛
, 𝑚 = 0,1, … , [(𝑛 − 1)/2] − 1 (n odd) …………………. (51) 

𝜎𝑚 =
𝜎𝑚

′

𝜎𝑚
′2+𝑤𝑚

′2 …………………. (52) 

𝑤𝑚 =
−𝑤𝑚

′

𝜎𝑚
′2+𝑤𝑚

′2 …………………. (53) 

A pair of complex conjugate poles will create a pair of finite complex conjugate zeros on the jω axis. These zeros are 
given by Eqns. (54) and (55). A real pole will create a zero at infinity. 

σ𝑧𝑚  = 0.0 …………………. (54) 
ω𝑧𝑚= sec (θ𝑚) …………………. (55) 

The complete Inverse Chebyshev approximation transfer function can be determined from a combination of a first-
order factor (for odd orders) presented in Eqn. (56) and quadratic factors presented in Eqn. (57) and explained in Eqns. 
(58) to (61). Each of these pole factors will have a constant in the numerator and each of these zero factors will have a 
constant in the denominator to adjust the Gain to unity (0 dB) at ω = 0. The complete Inverse Chebyshev transfer 
function can now be defined as shown in Eqns. (62) and (63) for even-order and odd order-respectively. 

𝐻0(𝑆) =
[sinh 𝐷𝑖]−1

𝑆+[sinh 𝐷𝑖]−1 …………………. (56) 

𝐻𝑚(𝑠) =
𝐵2𝑚(𝑆2+𝐴1𝑚𝑆+𝐴2𝑚)

𝐴2𝑚(𝑆2+𝐵1𝑚𝑆+𝐵2𝑚)
…………………. (57) 

𝐵1𝑚 = −2𝜎𝑚 …………………. (58) 

𝐵2𝑚 = 𝜎𝑚
2 + 𝑤𝑚

2  …………………. (59) 

𝐴1𝑚 = −2𝜎𝑧𝑚 = 0.0 …………………. (60) 

𝐴2𝑚 = 𝜎𝑧𝑚
2 + 𝑤𝑧𝑚

2 = 𝑤𝑧𝑚
2  …………………. (61) 
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𝐻𝐼,𝑛(𝑆) =
∏ (𝐵2𝑚) ∏ (𝑆2+𝐴1𝑚𝑠+𝐴2𝑚)

(𝑛/2)−1
𝑚=0

(𝑛/2)−1
𝑚=0

∏ (𝐴2𝑚) ∏ (𝑆2+𝐵1𝑚𝑠+𝐵2𝑚)
(𝑛/2)−1
𝑚=0

(𝑛/2)−1
𝑚=0

, (n even) …………………. (62) 

𝐻𝐼,𝑛(𝑆) =
[sinh 𝐷𝑖]−1 ∏ (𝐵2𝑚) ∏ (𝑆2+𝐴1𝑚𝑠+𝐴2𝑚)

[(𝑛−1)/2]−1
𝑚=0

[(𝑛−1)/2]−1
𝑚=0

(𝑆+[sinh 𝐷𝑖]−1) ∏ (𝐴2𝑚) ∏ (𝑆2+𝐵1𝑚𝑠+𝐵2𝑚)
[(𝑛−1)/2]−1
𝑚=0

[(𝑛−1)/2]−1
𝑚=0

, (n odd) …………………. (63) 

As a class project, students should be tasked to develop a computer program to make the pole-zero plot, obtain the 
transfer function, and plot the frequency response for Inverse Chebyshev low pass filter. In this work, a program was 
developed in Matlab working environment [20,21]; the steps are presented in Table 3.  

Table 3 Program to make the pole-zero plot, obtain the transfer function, and plot the frequency response of Inverse 
Chebyshev low pass filter 

Step Description 

1 Input 𝐴𝑝𝑎𝑠𝑠, A𝑠𝑡𝑜𝑝, ω𝑝𝑎𝑠𝑠 , and ω𝑠𝑡𝑜𝑝 

2 Calculate 휀𝑖, n, and 𝐷𝑖  using Eqns. (43), (44), and (47) respectively; n is rounded up to 
the next higher whole number using the code “ceil” in Matlab [20]. 

3 Plot the Chebyshev ellipse with major axis ± cosh(𝐷𝑖 ) along the jω axis and minor axis 

± sinh(𝐷𝑖 ) along the real axis on the s-plane. For each point on the Chebyshev ellipse, 

find the reciprocal (Eqn. (46)) and plot the Inverse Chebyshev ellipse on the same s-

plane using a different colour. The following sub-program is suggested.  

nn1=0; 

for t=0:2*pi/10000:2*pi 

 nn1=nn1+1; 

 x(nn1)=-sinh(Di)*sin(t); 

 y(nn1)=cosh(Di)*cos(t); 

 yy1(nn1)=-y(nn1)/((x(nn1))^2+(y(nn1))^2); 

 xx1(nn1)=x(nn1)/((x(nn1))^2+(y(nn1))^2); 

end 

plot(x,y,'g--') 

hold 

plot(xx1,yy1,'m--') 

4 If n is odd, get the real pole at𝜎 = −𝑠𝑖𝑛ℎ(𝐷). Plot the Chebyshev real pole on the   s-
plane. Plot its reciprocal as Inverse Chebyshev real pole. 

5 Set m=-1. 

6 Increase m by 1. 

7 Calculate𝜃𝑚, using Eqn. (50) or (51). 

Calculate and plot Chebyshev pole 𝜎𝑚
′  and 𝑤𝑚

′  using Eqns. (48) and (49). 

Obtain the reciprocal pole (the desired Inverse Chebyshev pole) 𝜎𝑚 , 𝑤𝑚 , 𝐵1𝑚 , and 
𝐵2𝑚using Eqns. (52), (53), (58), and (59) respectively.  

Plot the Chebyshev pole and its conjugate on the s-plane. Also plot the Inverse 
Chebyshev pole and its conjugate on the s-plane. 

Obtain the Inverse Chebyshev zero σ𝑧𝑚 , ω𝑧𝑚, 𝐴1𝑚, and 𝐴2𝑚 using Eqns. (54), (55), (60), 
and (61) respectively. Plot the Inverse Chebyshev zero and its conjugate on the same s-
plane.  

8 Is 𝑚 < (𝑛/2) − 1 for even order or is 𝑚 < [(𝑛 − 1)/2] − 1 for odd order? If Yes, go back 
to Step 6. If No, proceed to Step 9. 

9 Obtain the transfer function using Eqn. (62) or (63). 

10 Plot the frequency response 
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2.4. Elliptic Approximation 

The elliptic or Cauer approximation function provides the best selectivity characteristic compared with other 
approximation functions [17]. No other approximation method will be able to provide a lower-order filter for any given 
set of specifications. The elliptic filter combines ripple in the passband and stopband in order to accomplish this feat. 
There are elliptic functions that have no trigonometric counterparts [23]. 

The elliptic approximation’s magnitude frequency response function is given by Eqn. (63). Rn is the Chebyshev rational 
function of order n. Rn is composed of both numerator and denominator portions, which allow an equiripple response 
in both the passband and stopband. The Chebyshev rational function Rn and much of elliptic approximation theory is 
based on the elliptic integral and the Jacobian elliptic functions.  

|𝐻𝐸,𝑛[𝑗(𝑤/𝑤0)]| = 
1

√1+𝜀2𝑅𝑛
2(𝑤0/𝑤)

…………………. (63) 

The order of the elliptic approximation function required to meet the specifications for a filter is given as 

𝑛𝐸 =
𝐶𝐸1(𝑟𝑡)𝐶𝐸𝐼(√1−𝑘𝑛2)

𝐶𝐸𝐼(√1−𝑟𝑡2)𝐶𝐸𝐼(𝑘𝑛)
…………………. (64) 

where the ratio rt and the kernel kn are defined as 

rt=𝑤𝑝𝑎𝑠𝑠/𝑤𝑠𝑡𝑜𝑝 …………………. (65) 

kn=√(10−0.1𝐴𝑝𝑎𝑠𝑠 − 1)/(10−0.1𝐴𝑠𝑡𝑜𝑝 − 1) …………………. (66) 

CEI refers to the Complete Elliptic Integral. CEI is defined as in Eqn. (67). Numerical Integration is used to evaluate the 
integral [24]. The area under the curve of f(x) between 𝑥 = 0 and 𝑥 = ϕ is divided into small elements of width Δx as 
illustrated in Fig. 7 [24]. The sum of the areas of the elements tends to be equal to the integral as Δx approaches 0 as 
described by Eqn. (68). 

𝑢(ϕ, 𝑘) = ∫ √(1 − 𝑘2𝑠𝑖𝑛2𝑥) 𝑑𝑥
ϕ

0
 …………………. (67) 

𝑢(ϕ, 𝑘) = ∫ √(1 − 𝑘2𝑠𝑖𝑛2𝑥) 𝑑𝑥 = ∫ 𝑓(𝑥)𝑑𝑥 = limit
∆𝑥→0

(𝑓1 + 𝑓2 + 𝑓3+. . . +𝑓𝑁)∆𝑥
ϕ

0

ϕ

0
 …………………. (68) 

Figure 7 Numerical integration [24] 

To locate the poles and zeros of the Elliptic approximation filter, this integral CEI is used in two approaches. The forward 
approach is used to determine CEI (k). In this case take ϕ to be π/2, integrate between the lower limit 0 and upper limit 
π/2. A subprogram was developed to perform this numerical integration as presented in Table 4. To evaluate 𝐶𝐸1(𝑟𝑡) 

in Eqn. 64, run the CEI forward approach subprogram of Table 4 with 𝑘 = 𝑟𝑡. To evaluate 𝐶𝐸𝐼(√1 − 𝑘𝑛2) in Eqn. 64, run 
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the CEI forward approach subprogram of Table 4 with 𝑘 = √1 − 𝑘𝑛2 . What value of k should be used to evaluate 

𝐶𝐸𝐼(√1 − 𝑟𝑡2? What value of k should be used to evaluate 𝐶𝐸𝐼(kn)?  

Table 4 Subprogram for numerical integration of CEI (forward approach) 

Step Description 

1 Input k. Set phai (ϕ) to π/2. 

2 sum=0; 

for x=0:phai/1000000:phai 

 sum=sum+((1-k^2*(sin(x))^2)^-0.5)*phai/1000000; 

end 

3 Output sum as CEI(k) 

The reverse approach is used to handle the quantities in Eqns. (69) to (73). Here, the value of the integral CEI is given 
as u and the constant k is also given, the value of ϕ the upper limit of the integral is required before finding its sine or 
cosine or tangent as the case may be. A subprogram was developed to perform this numerical integration as presented 
in Table 5. The required ϕ is the value of x that gives the value of the integral as u.  

𝑠𝑛(𝑢, 𝑘) = 𝑠𝑖𝑛(ϕ) …………………. (69) 

𝑐𝑛(𝑢, 𝑘) = 𝑐𝑜𝑠(ϕ) …………………. (70) 

𝑠𝑐(𝑢, 𝑘) = 𝑡𝑎𝑛(ϕ) …………………. (71) 

𝑠𝑐−1(𝑢, 𝑘) = 𝑡𝑎𝑛−1(ϕ) …………………. (72) 

𝑑𝑛(𝑢, 𝑘) =
𝑑ϕ

𝑑𝑥
= √(1 − 𝑘2𝑠𝑛2(𝑢, 𝑘) =√(1 − 𝑘2𝑠𝑖𝑛2(ϕ) …………………. (73) 

Table 5 Subprogram for numerical integration of CEI (reverse approach) 

Step Description 

1 Input u and k. 

2 sum=0; 

cnt=0; 

for x=0:1/100000:5*pi 

 sum=sum+((1-k^2*(sin(x))^2)^-0.5)*1/100000; 

 cnt=cnt+1; 

if sum==u 

break 

elseif sum>u 

break 

end 

End 

phai=x; 

3 Output ϕ. Compute its sine, cosine, tangent or tan-1 as may be required. 

A variable v0 which is used in the calculation of the pole and zero locationsis defined as 
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𝑣0 =
𝐶𝐸𝐼(𝑟𝑡).𝑠𝑐−1(𝜀−1,𝑘𝑛)

𝑛.𝐶𝐸𝐼(𝑘𝑛)
…………………. (74) 

Next, the pole’s real and imaginary components are determined as 

𝜎𝑚 = −
𝑐𝑛[𝑓(𝑚),𝑟𝑡].𝑑𝑛[𝑓(𝑚),𝑟𝑡].𝑠𝑛(𝑣0,√1−𝑟𝑡2).𝑐𝑛(𝑣0,√1−𝑟𝑡2)

1−𝑑𝑛2[𝑓(𝑚),𝑟𝑡].𝑠𝑛2(𝑣0,√1−𝑟𝑡2)
 ………………….  (75) 

𝑤𝑛 =  
𝑠𝑛[𝑓(𝑚),𝑟𝑡].𝑑𝑛(𝑣0,√1−𝑟𝑡2)

1−𝑑𝑛2[𝑓(𝑚),𝑟𝑡].𝑠𝑛2(𝑣0,√1−𝑟𝑡2)
…………………. (76) 

where 

𝑓(𝑚) =
𝐶𝐸𝐼(𝑟𝑡)(2𝑚+1)

𝑛
, 𝑚 = 0,1, … , (𝑛/2) − 1 (n even) …………………. (77) 

𝑓(𝑚) =
𝐶𝐸𝐼(𝑟𝑡)(2𝑚+2)

𝑛
, 𝑚 = 0,1, … , [(𝑛 − 1)/2] − 1(𝑛 𝑜𝑑𝑑) …………………. (78) 

Note the negative sign for σm, which effectively moves the pole location from the first quadrant to the second quadrant. 
For odd-order functions, there is a pole on the real axis at 

𝜎𝑅 = −
𝑠𝑛(𝑣0,√1−𝑟𝑡2).𝑐𝑛(𝑣0,√1−𝑟𝑡2))

1−𝑠𝑛2(𝑣0,√1−𝑟𝑡2)
…………………. (79) 

The location of the zeros that will be purely imaginary on the jω axis are given by 

𝜎𝑧𝑚 = 0.0 …………………. (80) 

𝑤𝑧𝑚 =
1

𝑟𝑡.𝑠𝑛[𝑓(𝑚),𝑟𝑡]
…………………. (81) 

To evaluate 𝑠𝑐−1(휀−1, 𝑘𝑛) in Eqn. (74), run the subprogram of the reverse approach in Table 5 with 𝑘 = 𝑘𝑛 and 𝑢 = 휀−1 

to get ϕ, then compute 𝑡𝑎𝑛−1(ϕ). To evaluate 𝑠𝑛(𝑣0, √1 − 𝑟𝑡2) in Eqn. (75), run the CEI reverse approach subprogram

of Table 5 with 𝑘 = √1 − 𝑟𝑡2 and 𝑢 = 𝑣0 to get ϕ, then compute 𝑠𝑖𝑛(ϕ). Square the value obtained for 𝑠𝑛(𝑣0, √1 − 𝑟𝑡2) 

to get 𝑠𝑛2(𝑣0, √1 − 𝑟𝑡2). To evaluate 𝑑𝑛[𝑓(𝑚), 𝑟𝑡] in Eqn. (75), run the CEI reverse approach subprogram of Table 5

with 𝑘 = 𝑟𝑡  and 𝑢 = 𝑓(𝑚)to get ϕ, then compute √(1 − 𝑘2𝑠𝑖𝑛2(ϕ)  in accordance with Eqn. (73). Square the value 

obtained for 𝑑𝑛[𝑓(𝑚), 𝑟𝑡] to get 𝑑𝑛2[𝑓(𝑚), 𝑟𝑡] in Eqn. (76). 

The complete Elliptic approximation transfer function can be determined from a combination of a first-order factor (for 
odd orders) presented in Eqn. (82) and quadratic factors presented in Eqn. (83) and explained in Eqns. (84) to (87). 
Each of these pole factors will have a constant in the numerator and each of these zero factors will have a constant in 
the denominator to adjust the Gain to unity (0 dB) at ω = 0. The complete Elliptic transfer function can now be defined 
as shown in Eqns. (88) and (89) for even-order and odd-order respectively. Furthermore, a Gain constant G given by 
Eqn. (39) must be included for even-order transfer functions to adjust the Gain to unity (0 dB) at ω = 0. 

As a class project, students should be tasked to develop a computer program to make the pole-zero plot, obtain the 
transfer function, and plot the frequency response for the Elliptic low pass filter. In this work, a program was developed 
in Matlab working environment [20,21]; the steps are presented in Table 6.  

𝐻0(𝑆) =
𝜎𝑅

𝑆+𝜎𝑅
…………………. (82) 

𝐻𝑚(𝑠) =  
𝐵2𝑚(𝑆2+𝐴1𝑚𝑆+𝐴2𝑚)

𝐴2𝑚(𝑆2+𝐵1𝑚𝑆+𝐵2𝑚)
…………………. (83) 

𝐵1𝑚 =  −2𝜎𝑚 …………………. (84) 

𝐵2𝑚 =  𝜎𝑚
2 + 𝑤𝑚

2  …………………. (85) 



Global Journal of Engineering and Technology Advances, 2022, 12(01), 038–063 

52 

Table 6 Program to make the pole-zero plot, obtain the transfer function, and plot the frequency response of Elliptic 
low pass filter 

Step Description 

1 Input 𝐴𝑝𝑎𝑠𝑠, A𝑠𝑡𝑜𝑝, ω𝑝𝑎𝑠𝑠 , and ω𝑠𝑡𝑜𝑝 

2 Calculate 휀, 𝑟𝑡, 𝑘𝑛, √1 − 𝑘𝑛2, √1 − 𝑟𝑡2; CEI(rt), 𝐶𝐸𝐼(kn), 𝐶𝐸𝐼(√1 − 𝑟𝑡2), 𝐶𝐸𝐼(√1 − 𝐾𝑛2), and n; n is 
rounded up to the next higher whole number using the code “ceil” in Matlab [20]. 

3 u=휀^-1; 

k=kn; 

Run the Subprogram Table 5 

x1=x; 

vo=CEI(rt)*atan(x1)/(n*CEI(kn)); 

u=vo; 

k=√1 − 𝑟𝑡2; 

Run Subprogram Table 5 

x2=x; 

4 Plot the ellipse on the s-plane. m is varied from 0, 0.1, 0.2, 0.3, …, to 2n . The upper limit of 2n was 
obtained by trial and error. 

nn=0; 

figure 

for m=0:0.1:2*n 

 nn=nn+1; 

 f(nn)=CEI(rt)*(2*m+2)/n; 

u=f(nn); 

 k=rt; 

Run the Subprogram Table 5 

 x3=x; 

 xx1(nn)=-cos(x3)*(1-(rt*sin(x3))^2)^0.5*sin(x2)*cos(x2)/(1-(1-(rt*sin(x3))^2)*(sin(x2))^2); 

 yy1(nn)=sin(x3)*(1-(rtt*sin(x2))^2)^0.5/(1-(1-(rt*sin(x3))^2)*(sin(x2))^2); 

end 

plot(xx1,yy1,'m--') 

5 If n is odd, get the real pole at 𝜎𝑅  from Eqn. (79). Plot the Elliptic real pole on the s-plane.  

If n is even, obtain G from Eqn. (39). 

6 Set m=-1. 

7 Increase m by 1. 

8 Calculate 𝑓𝑚, using Eqns. (77) or (78). Compute v0 using Eqn. (74) 

Calculate the Elliptic pole 𝜎𝑚, 𝑤𝑚, 𝐵1𝑚 , and 𝐵2𝑚using Eqns. (75), (76), (84), and (85) respectively.  

Plot the Elliptic pole and its conjugate on the s-plane.  

Obtain the Elliptic zero σ𝑧𝑚 , ω𝑧𝑚, 𝐴1𝑚, and 𝐴2𝑚using Eqns. (80), (81), (86), and (87) respectively. 
Plot the Elliptic zero and its conjugate on the s-plane.  

9 Is 𝑚 < (𝑛/2) − 1 for even order or is 𝑚 < [(𝑛 − 1)/2] − 1 for odd order? If Yes, go back to Step 7. 
If No, proceed to Step 10. 

10 Obtain the transfer function. 

11 Plot the frequency response  
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𝐴1𝑚 =  −2𝜎𝑧𝑚 = 0.0 …………………. (86) 

𝐴2𝑚 =  𝜎𝑧𝑚
2 + 𝑤𝑧𝑚

2 = 𝑤𝑧𝑚
2  …………………. (87) 

𝐻𝐸,𝑛(𝑆) =  
𝐺 ∏ (𝐵2𝑚) ∏ (𝑆2+𝐴1𝑚𝑆+𝐴2𝑚)

(𝑛/2)−1
𝑚=0

(𝑛/2)−1
𝑚=0

∏ (𝐴2𝑚) ∏ (𝑆2+𝐵1𝑚𝑆+𝐵2𝑚)
(𝑛/2)−1
𝑚=0

(𝑛/2)−1
𝑚=0

, (n even) …………………. (88) 

𝐻𝐸,𝑛(𝑆) =  
𝜎𝑅 ∏ (𝐵2𝑚) ∏ (𝑆2+𝐴1𝑚𝑆+𝐴2𝑚)

[(𝑛−1)/2]−1
𝑚=0

[(𝑛−1)/2]−1
𝑚=0

(𝑆+𝜎𝑅) ∏ (𝐴2𝑚) ∏ (𝑆2+𝐵1𝑚𝑆+𝐵2𝑚)
[(𝑛−1)/2]−1
𝑚=0

[(𝑛−1)/2]−1
𝑚=0

, (n odd) …………………. (89) 

2.5. Bessel Approximation 

The Bessel filter is optimized to obtain better transient response due to a linear phase (constant delay) in the passband. 
This means that there will be relatively poorer frequency response (less amplitude discrimination) [25]. Bessel filter 
has a wider transition band, but its phase is linear within the passband [26]. Bessel filters are a class of all-pole filters 
[27]. The transfer function is given as 

H(s) = 
𝐵0

𝐵𝑛(𝑆)
 …………………. (90) 

where 𝐵𝑛(𝑆) is the nth order Bessel polynomial. 

This polynomial can be expressed as in Eqn. (91) [27]. 

𝐵𝑛(𝑆) = ∑ 𝑎𝑘𝑠𝑘𝑛
𝑘=0  …………………. (91) 

where the coefficients 𝑎𝑘  are given as 

𝑎𝑘 =
(2𝑛−𝑘)!

2𝑛−𝑘𝑘!(𝑛−𝑘)!
, 𝑘 = 0,1, … , 𝑛 …………………. (92) 

The coefficients are obtainable by a simple program. The transfer function of Eqn. (90) has a constant B0 in the 
numerator to adjust the Gain to unity (0 dB) at ω = 0. The poles are obtainable by finding the roots of Bn(s) using existing 
methods in [20] or [28].  

3. Results and Discussions 

Programs were developed for the five approximation functions. The programs were subjected to tests. The results for 
two sets of low pass filter specifications for each approximation function are presented and discussed in this section. 

3.1. Butterworth Approximation 

The first set of specifications is 𝑤𝑝𝑎𝑠𝑠 = 1 rad/sec, 𝑤𝑠𝑡𝑜𝑝 = 2rad/sec, 𝐴𝑝𝑎𝑠𝑠 = −1 dB, and 𝐴𝑠𝑡𝑜𝑝 = −20 dB. The results 

are presented in Table 7 and Fig. 8. In the pole-zero plot of Fig. 8(a), the poles are represented with x in colour blue and 
the conjugate poles are represented with x in colour red. Other corresponding points which have equal but opposite 
real part with the poles are represented with * in colour black. These points represented with * are not poles and they 
are in the right half of the s-plane. These representations are adopted in other pole-zero plots in this section. The 
response in Fig. 8(b) is flat in the passband 0 to 1 rad/sec. At the stopband edge frequency of 2 rad/sec, the Gain is less 
than -20 dB as specified. 

The second set of specifications is 𝑤𝑝𝑎𝑠𝑠 = 1 rad/sec, 𝑤𝑠𝑡𝑜𝑝 = 2 rad/sec, 𝐴𝑝𝑎𝑠𝑠 = −1  dB, and 𝐴𝑠𝑡𝑜𝑝 = −25  dB. The 

results are presented in Table 8 and Fig. 9. The response in Fig. 9(b) is flat in the passband 0 to 1 rad/sec. At the stopband 
edge frequency of 2 rad/sec, the Gain is less than -25 dB as specified.  

Generally for Butterworth approximation, the locus of the poles is a circle. Lines linking the poles with the origin are 
separated by equal angles. 
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Table 7 Parameters, poles, and transfer function of Butterworth low pass filter with the first set of specifications: 
𝒘𝒑𝒂𝒔𝒔 = 𝟏 rad/sec, 𝒘𝒔𝒕𝒐𝒑 = 𝟐rad/sec, 𝑨𝒑𝒂𝒔𝒔 = −𝟏 dB, and 𝑨𝒔𝒕𝒐𝒑 = −𝟐𝟎 dB 

𝜺 = 𝟎. 𝟓𝟎𝟖𝟖 𝑹 = 𝟏. 𝟏𝟒𝟒𝟕 𝒏 = 𝟓 

𝑃𝑟𝑒𝑎𝑙 = −1.1447, 𝑃0 = −0.3537 + 𝑗1.0887, 𝑃1 = −0.9261 + 𝑗0.6728 

𝐻(𝑠) =
(1.1447)(1.3103)(1.3103)

(𝑠 + 1.1447)(𝑠2 + 0.7074𝑠 + 1.3103)(𝑠2 + 1.8521𝑠 + 1.3103)
 

𝐻(𝑠) =
1.9652

𝑠5 + 3.7042𝑠4 + 6.8607𝑠3 + 7.8533𝑠2 + 5.5558𝑠 + 1.9652
 

 

 

Figure 8 Pole-zero plot and frequency response for Butterworth low pass filter with the first set of specifications: 
𝒘𝒑𝒂𝒔𝒔 = 𝟏 rad/sec, 𝒘𝒔𝒕𝒐𝒑 = 𝟐rad/sec, 𝑨𝒑𝒂𝒔𝒔 = −𝟏 dB, and 𝑨𝒔𝒕𝒐𝒑 = −𝟐𝟎 dB [n obtained as 5] 

 

 

Figure 9 Pole-zero plot and frequency response for Butterworth low pass filter with the second set of 
specifications:𝒘𝒑𝒂𝒔𝒔 = 𝟏 rad/sec, 𝒘𝒔𝒕𝒐𝒑 = 𝟐rad/sec, 𝑨𝒑𝒂𝒔𝒔 = −𝟏 dB, and 𝑨𝒔𝒕𝒐𝒑 = −𝟐𝟓 dB [n obtained as 6] 
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Table 8 Parameters, poles, and transfer function of Butterworth low pass filter with the second set of specifications: 
𝒘𝒑𝒂𝒔𝒔 = 𝟏 rad/sec, 𝒘𝒔𝒕𝒐𝒑 = 𝟐rad/sec, 𝑨𝒑𝒂𝒔𝒔 = −𝟏 dB, and 𝑨𝒔𝒕𝒐𝒑 = −𝟐𝟓 dB 

𝜺 = 𝟎. 𝟓𝟎𝟖𝟖 𝑹 = 𝟏. 𝟏192 𝒏 = 𝟔 

𝑃0 = −0.2897 + 𝑗1.0811, 𝑃1 = −0.7914 + 𝑗0.7914, 𝑃2 = −1.0811 + 𝑗0.2897 

𝐻(𝑠) =
(1.2526)(1.2526)(1.2526)

(𝑠2 + 0.5793𝑠 + 1.2526)(𝑠2 + 1.5828𝑠 + 1.2526)(𝑠2 + 2.1621𝑠 + 1.2526)
 

𝐻(𝑠) =
1.9652

𝑠6 + 4.3242𝑠5 + 9.3494𝑠4 + 12.8153𝑠3 + 11.7108𝑠2 + 6.7844𝑠 + 1.9652
 

 

3.2. Chebyshev approximation  

The first set of specifications is 𝑤𝑝𝑎𝑠𝑠 = 1 rad/sec, 𝑤𝑠𝑡𝑜𝑝 = 2rad/sec, 𝐴𝑝𝑎𝑠𝑠 = −1 dB, and 𝐴𝑠𝑡𝑜𝑝 = −40 dB. The results 

are presented in Table 9 and Fig. 10. The response in Fig. 10(b) shows ripples in the passband 0 to 1 rad/sec. At the 
stopband edge frequency of 2 rad/sec, the Gain is less than -40 dB as specified. 

Table 9 Parameters, poles, and transfer function of Chebyshev low pass filter with the first set of specifications: 𝒘𝒑𝒂𝒔𝒔 =

𝟏 rad/sec, 𝒘𝒔𝒕𝒐𝒑 = 𝟐rad/sec, 𝑨𝒑𝒂𝒔𝒔 = −𝟏 dB, and 𝑨𝒔𝒕𝒐𝒑 = −𝟒0 dB 

𝜺 = 𝟎. 𝟓𝟎𝟖𝟖 𝑫 = 𝟎. 𝟐𝟖95 𝒏 = 𝟓 

𝑃𝑟𝑒𝑎𝑙 = −0.2895, 𝑃0 = −0.0895 + 𝑗0.9901, 𝑃1 = −0.2342 + 𝑗0.6119 

𝐻(𝑠) =
(0.2895)(0.9883)(0.4293)

(𝑠 + 0.2895)(𝑠2 + 0.1789𝑠 + 0.9883)(𝑠2 + 0.4684𝑠 + 0.4293)
 

𝐻(𝑠) =
0.1228

𝑠5 + 0.9368𝑠4 + 1.6888𝑠3 + 0.9744𝑠2 + 0.5805𝑠 + 0.1228
 

 

 

Figure 10 Pole-zero plot and frequency response for Chebyshev low pass filter with the first set of specifications: 
𝒘𝒑𝒂𝒔𝒔 = 𝟏 rad/sec, 𝒘𝒔𝒕𝒐𝒑 = 𝟐rad/sec, 𝑨𝒑𝒂𝒔𝒔 = −𝟏 dB, and 𝑨𝒔𝒕𝒐𝒑 = −𝟒𝟎 dB [n obtained as 5] 

The second set of specifications is 𝑤𝑝𝑎𝑠𝑠 = 1 rad/sec, 𝑤𝑠𝑡𝑜𝑝 = 2 rad/sec, 𝐴𝑝𝑎𝑠𝑠 = −1  dB, and 𝐴𝑠𝑡𝑜𝑝 = −50  dB. The 

results are presented in Table 10 and Fig. 11. The response in Fig. 11(b) shows ripples in the passband 0 to 1 rad/sec. 
At the stopband edge frequency of 2 rad/sec, the Gain is less than -50 dB as specified. 

Generally for Chebyshev approximation, the locus of the poles is an ellipse. Lines linking the poles with the origin are 
separated by equal angles.  



Global Journal of Engineering and Technology Advances, 2022, 12(01), 038–063 

56 

Table 10 Parameters, poles, and transfer function of Chebyshev low pass filter with the second set of specifications: 
𝒘𝒑𝒂𝒔𝒔 = 𝟏 rad/sec, 𝒘𝒔𝒕𝒐𝒑 = 𝟐rad/sec, 𝑨𝒑𝒂𝒔𝒔 = −𝟏 dB, and 𝑨𝒔𝒕𝒐𝒑 = −𝟓𝟎 dB 

𝜺 = 𝟎. 𝟓𝟎𝟖𝟖 𝑫 = 𝟎. 𝟐𝟑𝟖𝟎 𝒏 = 𝟔 

𝑃0 = −0.0622 + 𝑗0.9934, 𝑃1 = −0.1699 + 𝑗0.7272, 𝑃2 = −0.2321 + 𝑗0.2662 

𝐻(𝑠) =
(0.8913)(0.9907)(0.5577)(0.1247)

(𝑠2 + 0.1244𝑠 + 0.9907)(𝑠2 + 0.3398𝑠 + 0.5577)(𝑠2 + 0.4641𝑠 + 0.1247)
 

𝐻(𝑠) =
0.0614

𝑠6 + 0.9283𝑠5 + 1.9308𝑠4 + 1.2021𝑠3 + 0.9393𝑠2 + 0.3071𝑠 + 0.0689
 

 

 

Figure 11 Pole-zero plot and frequency response for Chebyshev low pass filter with the second set of specifications: 
𝒘𝒑𝒂𝒔𝒔 = 𝟏 rad/sec, 𝒘𝒔𝒕𝒐𝒑 = 𝟐rad/sec, 𝑨𝒑𝒂𝒔𝒔 = −𝟏 dB, and 𝑨𝒔𝒕𝒐𝒑 = −𝟓𝟎 dB [n obtained as 6] 

3.3. Inverse Chebyshev approximation 

The first set of specifications is 𝑤𝑝𝑎𝑠𝑠 = 1 rad/sec, 𝑤𝑠𝑡𝑜𝑝 = 2rad/sec, 𝐴𝑝𝑎𝑠𝑠 = −1 dB, and 𝐴𝑠𝑡𝑜𝑝 = −40 dB. The results 

are presented in Table 11 and Fig. 12. The zeros are represented with o in colour blue. The zeros occur in conjugate 
pairs. The response in Fig. 12(b) is flat in the passband 0 to 1 rad/sec and there are ripples in the stopband. At the 
stopband edge frequency of 2 rad/sec, the Gain is less than -40 dB as specified.  

 

Figure 12 Pole-zero plot and frequency response for Inverse Chebyshev low pass filter with the first set of 
specifications: 𝒘𝒑𝒂𝒔𝒔 = 𝟏 rad/sec, 𝒘𝒔𝒕𝒐𝒑 = 𝟐rad/sec, 𝑨𝒑𝒂𝒔𝒔 = −𝟏 dB, and 𝑨𝒔𝒕𝒐𝒑 = −𝟒𝟎 dB [n obtained as 5] 
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Table 11 Parameters, poles, zeros, and transfer function of Inverse Chebyshev low pass filter with the first set of 
specifications: 𝒘𝒑𝒂𝒔𝒔 = 𝟏 rad/sec, 𝒘𝒔𝒕𝒐𝒑 = 𝟐rad/sec, 𝑨𝒑𝒂𝒔𝒔 = −𝟏 dB, and 𝑨𝒔𝒕𝒐𝒑 = −𝟒𝟎 dB 

𝜺𝒊 = 𝟎. 𝟎𝟏𝟎 𝑫𝒊 = 𝟏. 𝟎𝟓𝟗𝟕 𝒏 = 𝟓 

𝑃𝑟𝑒𝑎𝑙 = −0.7878, 𝑃0 = −0.1559 − 𝑗0.6109, 𝑃1 = −0.5248 − 𝑗0.48541 

𝑍0 = 0 + 𝑗1.0515, 𝑍1 = 0 + 𝑗1.7013 

𝐻(𝑠) =
(0.7878)(0.3975)(0.5110)(𝑠2 + 1.1056)(𝑠2 + 2.8944)

(1.1056)(2.8944)(𝑠 + 0.7878)(𝑠2 + 0.3118𝑠 + 0.3975)(𝑠2 + 1.0496𝑠 + 0.5110)
 

𝐻(𝑠) =
0.05(𝑠4 + 4𝑠2 + 3.2)

𝑠5 + 2.1492𝑠4 + 2.3083𝑠3 + 1.5501𝑠2 + 0.6573𝑠 + 0.16
 

 

The second set of specifications is 𝑤𝑝𝑎𝑠𝑠 = 1 rad/sec, 𝑤𝑠𝑡𝑜𝑝 = 2 rad/sec, 𝐴𝑝𝑎𝑠𝑠 = −1  dB, and 𝐴𝑠𝑡𝑜𝑝 = −50  dB. The 

results are presented in Table 12 and Fig. 13. The response in Fig. 13(b) is flat in the passband 0 to 1 rad/sec and there 
are ripples in the stopband. At the stopband edge frequency of 2 rad/sec, the Gain is less than -50 dB as specified. 

Table 12 Parameters, poles, zeros, and transfer function of Inverse Chebyshev low pass filter with the second set of 
specifications: 𝒘𝒑𝒂𝒔𝒔 = 𝟏 rad/sec, 𝒘𝒔𝒕𝒐𝒑 = 𝟐rad/sec, 𝑨𝒑𝒂𝒔𝒔 = −𝟏 dB, and 𝑨𝒔𝒕𝒐𝒑 = −𝟓𝟎 dB 

𝜺𝒊 = 𝟎. 𝟎𝟎𝟑𝟐 𝑫𝒊 = 𝟏. 𝟎𝟕𝟒𝟗 𝒏 =6 

𝑃0 = −0.1284 − 𝑗0.6057, 𝑃1 = −0.4208 − 𝑗0.5317, 𝑃2 = −0.7176 − 𝑗0.2430 

𝑍0 = 0 + 𝑗1.0353, 𝑍1 = 0 + 𝑗1.4142, 𝑍2 = 0 + 𝑗3.8637 

𝐻(𝑠) =
(0.3834)(0.4598)(0.5740)(𝑠2 + 1.0718)(𝑠2 + 2)(𝑠2 + 14.9282)

𝐴0𝐴1𝐴2(𝑠2 + 0.2569𝑠 + 0.3834)(𝑠2 + 0.8415𝑠 + 0.4598)(𝑠2 + 1.4353𝑠 + 0.5740)
 

where 𝐴0𝐴1𝐴2 = (1.0718)(2)(14.9282) 

𝐻(𝑠) =
3.1625 𝑥10−3(𝑠6 + 18𝑠4 + 48𝑠2 + 32)

𝑠6 + 2.5336𝑠5 + 3.2098𝑠4 + 2.5917𝑠3 + 1.417𝑠2 + 0.5060𝑠 + 0.1012
 

 

 

Figure 13 Pole-zero plot and frequency response for Inverse Chebyshev low pass filter with the second set of 
specifications:𝒘𝒑𝒂𝒔𝒔 = 𝟏 rad/sec, 𝒘𝒔𝒕𝒐𝒑 = 𝟐rad/sec, 𝑨𝒑𝒂𝒔𝒔 = −𝟏 dB, and 𝑨𝒔𝒕𝒐𝒑 = −𝟓𝟎 dB [n obtained as 6] 

Generally for Inverse Chebyshev approximation, the locus of the poles is an ellipse. There are two ellipses. Chebyshev 
poles 𝑃0

′ , 𝑃1
′,  𝑃2

′ , … are on the Chebyshev ellipse. There corresponding reciprocals 𝑃0, 𝑃1, 𝑃2, … are the actual Inverse 
Chebyshev poles which are on the Inverse Chebyshev ellipse. Lines linking the Inverse Chebyshev poles with the origin 
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are separated by equal angles. The number of minimums (turning points) in the response in the stopband increases 
with n; there are two turning points for 𝑛 = 5 as shown in Fig. 12(b) but there are three turning points for 𝑛 = 6 as 
shown in Fig. 13(b). 

3.4. Elliptic approximation 

The first set of specifications is 𝑤𝑝𝑎𝑠𝑠 = 1 rad/sec, 𝑤𝑠𝑡𝑜𝑝 = 2rad/sec, 𝐴𝑝𝑎𝑠𝑠 = −1 dB, and 𝐴𝑠𝑡𝑜𝑝 = −60 dB. The results 

are presented in Table 13 and Fig. 14. There are zeros in conjugate pairs. There are ripples in both the passband and 
stopband as shown in Fig. 14(b). At the stopband edge frequency of 2 rad/sec, the Gain is less than -60 dB as specified. 

Table 13 Parameters, poles, zeros, and transfer function of Elliptic low pass filter with the first set of specifications: 
𝒘𝒑𝒂𝒔𝒔 = 𝟏 rad/sec, 𝒘𝒔𝒕𝒐𝒑 = 𝟐rad/sec, 𝑨𝒑𝒂𝒔𝒔 = −𝟏 dB, and 𝑨𝒔𝒕𝒐𝒑 = −𝟔𝟎 dB 

𝜺 = 𝟎. 𝟓𝟎𝟖𝟖 𝒓𝒕 = 𝟎. 𝟓 𝒌𝒏 = 𝟓. 𝟎𝟖𝟖𝟓 𝒙𝟏𝟎−𝟒 𝒗𝟎 = 𝟎. 𝟐𝟑𝟔𝟏 𝒏 = 𝟓 

𝑃𝑟𝑒𝑎𝑙 = −0.2389, 𝑃0 = −0.1782 + 𝑗0.6336, 𝑃1 = −0.0599 + 𝑗0.9784 

𝑍0 = 0 + 𝑗3.2508, 𝑍1 = 0 + 𝑗2.0892 

𝐻(𝑠) =
(0.2389)(0.4332)(0.9609)(𝑠2 + 10.5677)(𝑠2 + 4.3650)

(10.5677)(4.3650)(𝑠 + 0.2389)(𝑠2 + 0.3565𝑠 + 0.4332)(𝑠2 + 0.1197𝑠 + 0.9609)
 

𝐻(𝑠) =
2.1549 𝑥10−3(𝑠4 + 14.9327𝑠2 + 46.1278)

𝑠5 + 0.7151𝑠4 + 1.5506𝑠3 + 0.7376𝑠2 + 0.5105𝑠 + 0.0994
 

 

 

Figure 14 Pole-zero plot and frequency response for Elliptic low pass filter with the first set of specifications: 𝒘𝒑𝒂𝒔𝒔 =

𝟏 rad/sec, 𝒘𝒔𝒕𝒐𝒑 = 𝟐rad/sec, 𝑨𝒑𝒂𝒔𝒔 = −𝟏 dB, and 𝑨𝒔𝒕𝒐𝒑 = −𝟔𝟎 dB [n obtained as 5] 

The second set of specifications is 𝑤𝑝𝑎𝑠𝑠 = 1 rad/sec, 𝑤𝑠𝑡𝑜𝑝 = 2 rad/sec, 𝐴𝑝𝑎𝑠𝑠 = −1  dB, and 𝐴𝑠𝑡𝑜𝑝 = −70  dB. The 

results are presented in Table 14 and Fig. 15. At the stopband edge frequency of 2 rad/sec, the Gain is less than -70 dB 
as specified.  

Generally for Elliptic approximation, the locus of the poles is an ellipse. Lines linking the Elliptic poles with the origin 
are separated by non-equal angles. The number of minimums (turning points) in the response in the stopband increases 
with n; there are two for 𝑛 = 5 as shown in Fig. 14(b) but there are three turning points for 𝑛 = 6 as shown in Fig. 15(b).  
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Table 14 Parameters, poles and transfer function of Elliptic low pass filter with the second set of specifications: 𝒘𝒑𝒂𝒔𝒔 =

𝟏 rad/sec, 𝒘𝒔𝒕𝒐𝒑 = 𝟐rad/sec, 𝑨𝒑𝒂𝒔𝒔 = −𝟏 dB, and 𝑨𝒔𝒕𝒐𝒑 = −𝟕𝟎 dB 

𝜺 = 𝟎. 𝟓𝟎𝟖𝟖 𝒓𝒕 = 𝟎. 𝟓 𝒌𝒏 = 𝟏. 𝟔𝟎𝟗𝟏 𝒙𝟏𝟎−𝟒 𝒗𝟎 = 𝟎. 𝟏𝟗𝟔𝟖 𝒏 = 𝟔 

𝑃0 = −0.1887 + 𝑗0.2829, 𝑃1 = −0.1251 + 𝑗0.7460, 𝑃2 = −0.0415 + 𝑗0.9850 

𝑍0 = 0 + 𝑗7.2360, 𝑍1 = 0 + 𝑗2.7321, 𝑍2 = 0 + 𝑗2.0611 

𝐻(𝑠) =
(0.1157)(0.5722)(0.9719)(0.8913)(𝑠2 + 52.3603)(𝑠2 + 7.4642)(𝑠2 + 4.2482)

𝐴0𝐴1𝐴2(𝑠2 + 0.3773𝑠 + 0.1157)(𝑠2 + 0.2502𝑠 + 0.5722)(𝑠2 + 0.0831𝑠 + 0.9719)
 

Where 𝐴0𝐴1𝐴2 = (52.3603)(7.4642)(4.2482) 

𝐻(𝑠) =
3.4512 𝑥10−5(𝑠6 + 64.1𝑠4 + 645𝑠2 + 1660.3)

𝑠6 + 0.7106𝑠5 + 1.8063𝑠4 + 0.9197𝑠3 + 0.8468𝑠2 + 0.2435𝑠 + 0.0643
 

 

 

Figure 15 Pole-zero plot and frequency response for Elliptic low pass filter with the second set of specifications: 
𝒘𝒑𝒂𝒔𝒔 = 𝟏 rad/sec, 𝒘𝒔𝒕𝒐𝒑 = 𝟐rad/sec, 𝑨𝒑𝒂𝒔𝒔 = −𝟏 dB, and 𝑨𝒔𝒕𝒐𝒑 = −70 dB [n obtained as 6] 

3.5. Bessel approximation 

Bessel approximation function is different from the others as there is no formulae relating the order number n with 
𝑤𝑝𝑎𝑠𝑠 , 𝑤𝑠𝑡𝑜𝑝 , 𝐴𝑝𝑎𝑠𝑠, and 𝐴𝑠𝑡𝑜𝑝. 𝑛 = 5 was used as the first input. The results are presented in Table 15 and Fig. 16. There 

are no zeros. Values of the Gain for certain frequencies are also tabulated in Table 15. There is a wider transition 
bandwidth. Passband Gain is -0.4865 dB at passband edge frequency of 1 rad/sec. A reasonable stopband Gain of -
41.2426 dB is achievable at 10 rad/sec; a decade wide transition band. 

Table 15 Poles and transfer function of Bessel low pass filter with 𝒏 = 𝟓 

𝒘 𝟎  𝟏  𝟐  𝟓  𝟏𝟎  𝟐𝟎 rad/sec 

𝐴 0 −0.4865 −2.0012 −14.9409 −41.2426 −70.7628 dB 

𝑃𝑟𝑒𝑎𝑙 = −3.6467, 𝑃0 = −2.3247 + 𝑗3.5710, 𝑃1 = −3.3520 + 𝑗1.7427 

𝐻(𝑠) =
945

𝑠5 + 15𝑠4 + 105𝑠3 + 420𝑠2 + 945𝑠 + 945
 

 

𝑛 = 6 is used as the second input. The results are presented in Table 16 and Fig. 17. Passband Gain is -0.3968 dB at 
passband edge frequency of 1 rad/sec. A reasonable Stopband Gain of -40.7959 dB is achievable at 10 rad/sec; a decade 
wide transition band. 
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Figure 16 Pole-zero plot and frequency response for Bessel low pass filter with  𝒏 = 𝟓 

Table 16 Parameters, poles and transfer function of Bessel low pass filter with 𝒏 = 𝟔 

𝒘 𝟎  𝟏  𝟐  𝟓  𝟏𝟎  𝟐𝟎 rad/sec 

𝐴 0 −0.3968 −1.6137 −11.8495 −40.7959 −76.0266 dB 

𝑃0 = −2.5159 + 𝑗4.4927, 𝑃1 = −3.7357 + 𝑗2.6263, 𝑃2 = −4.2484 + 𝑗0.8675 

𝐻(𝑠) =
10395

𝑠6 + 21𝑠5 + 210𝑠4 + 1260𝑠3 + 4725𝑠2 + 10395𝑠 + 10395
 

 

 

Figure 17 Pole-zero plot and frequency response for Bessel low pass filter with with  𝒏 = 𝟔 

Generally for Bessel approximation, the locus of the poles is neither a circle nor an ellipse. Lines linking the Bessel poles 
with the origin are separated by non-equal angles.   

3.6. Comparison of approximation functions 

Bessel function approximation was further investigated by studying the values of the Gain over the frequency range 0 
to 100 rad/sec for order 1, 2, 3, 4, 5, 6, 7, and 12 as presented in Table 17. The trend in Table 17 confirmed the decade 
wide transition band characteristics of Bessel function approximation. Generally, reasonable stopband Gain is 
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achievable at a stopband edge frequency of 10 rad/sec; a decade away from the passband edge frequency of 1 rad/sec. 
Linear-phase response over the passband is a characteristic of Bessel function approximation but suffers poor 
attenuation in the stopband. 

Table 17 Results of further investigation of Bessel approximation function 

w(rad/sec) 0 1 2 5 10 20 50 100 

order (n) Gain (dB) 

1 0 -3.01 -6.99 -14.15 -20.04 -26.03 -33.98 -40.00 

2 0 -1.60 -6.14 -18.96 -30.59 -42.53 -58.42 -70.46 

3 0 -0.90 -4.00 -19.64 -36.75 -54.61 -78.43 -96.48 

4 0 -0.63 -2.67 -17.91 -40.05 -63.77 -95.51 -119.58 

5 0 -0.49 -2.00 -14.94 -41.24 -70.76 -110.41 -140.50 

6 0 -0.40 -1.61 -11.85 -40.80 -76.03 -123.58 -159.67 

7 0 -0.34 -1.36 -9.46 -39.05 -79.85 -135.29 -177.40 

12 0 -0.19 -0.76 -4.85 -22.09 -83.31 -177.89 -250.03 

 

The response of the other four approximation functions for the same set of specifications are recorded and compared 
in Table 18. Observation of the trends in Table 18 confirmed the following facts. For any set of specifications, Elliptic 
approximation requires less order number while Butterworth approximation requires highest order number; 
Chebyshev and Inverse Chebyshev approximations have the same order number requirement which is usually greater 
than that of Elliptic approximation but less than that of Butterworth approximation. Higher 𝑤𝑝𝑎𝑠𝑠 𝑤𝑠𝑡𝑜𝑝⁄  ratio which 

means wider transition band requires less order number. Higher negative stopband Gain requires higher order number. 

Table 18 Comparison of four approximation functions for the same set of specifications 

 𝒘𝒑𝒂𝒔𝒔 = 𝟏 rad/sec 

𝒘𝒔𝒕𝒐𝒑 = 𝟐rad/sec 

𝒘𝒔𝒕𝒐𝒑 𝒘𝒑𝒂𝒔𝒔⁄  = 𝟐 

𝑨𝒑𝒂𝒔𝒔 = −𝟑 dB 

𝑨𝒔𝒕𝒐𝒑 = −𝟕𝟎 dB 

𝒘𝒑𝒂𝒔𝒔 = 𝟏 rad/sec 

𝒘𝒔𝒕𝒐𝒑 = 𝟒rad/sec 

𝒘𝒔𝒕𝒐𝒑 𝒘𝒑𝒂𝒔𝒔⁄  = 𝟒 

𝑨𝒑𝒂𝒔𝒔 = −𝟑 dB 

𝑨𝒔𝒕𝒐𝒑 = −𝟕𝟎 dB 

𝒘𝒑𝒂𝒔𝒔 = 𝟏 rad/sec 

𝒘𝒔𝒕𝒐𝒑 = 𝟑rad/sec 

𝒘𝒔𝒕𝒐𝒑 𝒘𝒑𝒂𝒔𝒔⁄  = 𝟑 

𝑨𝒑𝒂𝒔𝒔 = −𝟑 dB 

𝑨𝒔𝒕𝒐𝒑 = −𝟏𝟎𝟎 dB 

Approximation order (n) 

Elliptic 5 4 6 

Chebyshev 7 5 7 

Inverse Chebyshev 7 5 7 

Butterworth 12 6 11 

4. Conclusion 

The governing equations of five approximation functions have been reviewed, studied and compared. Recommendation 
for computer aided numerical class project as an active learning strategy in the teaching of filter design has been 
presented and tested. Pole-zero plots and frequency response graphs have been generated as teaching aids. These plots 
and graphs provide more insight into the subject matter and will be very helpful for active learning. Bessel 
approximation is not recommendable for most applications as it suffers poor amplitude discrimination in the stopband 
except when linear-phase response over the passband is required. Butterworth approximation requires higher order 
number for any given set of filter specifications. Chebyshev and Inverse Chebyshev approximations are good but Elliptic 
approximation is the best as it requires the least order number although it is more complex than the others. 



Global Journal of Engineering and Technology Advances, 2022, 12(01), 038–063 

62 

Compliance with ethical standards 

Acknowledgments 

The authors would wish to acknowledge the Electrical and Electronic Engineering Department, University of Ibadan, 
Ibadan, Nigeria where the authors met as Supervisor and M.Sc. Student. 

Disclosure of conflict of interest 

There are no conflicts of interest in this manuscript. 

References 

[1] Lamon S, Knowles O, Hendy A, Story I, Currey J. Active Learning to Improve Student Learning Experiences in an 
Online Postgraduate Course. Frontiers in Education. 2020; 5(598560): 1-10. 

[2] Bonwell CC, Eison JA. Active Learning: Creating Excitement in the Classroom. ASHE-ERIC Higher Education 
Report, 1991. 

[3] Meyers C, Jones, TB.P romoting Active Learning Strategies for the College Classroom. San Francisco, CA: Jossey-
Bass Inc; 1993.CA:  

[4] Freeman S, Eddy SL, McDonough M, Smith MK, Okoroafor N, Jordta H, Wenderoth MP. Active learning increases 
student performance in science, engineering, and mathematics. In: Alberts B, eds. Proc. Natl. Acad. Sci. 2014: 
111(23): 8410–8415. 

[5] Phillips JM. Strategies for Active Learning in Online Continuing Education. The Journal of Continuing Education 
in Nursing. 2005; 36(2): 77-83. 

[6] Nguyen KA, Borrego M, Finelli CJ, DeMonbrun M, Crockett C, Sneha Tharayil S, Shekhar P, Waters C, Rosenberg R. 
Instructor strategies to aid implementation of active learning: a systematic literature review. International 
Journal of STEM Education. 2021; 8(9): 2-18. 

[7] Lund TJ, Stains M. The importance of context: An exploration of factors influencing the adoption of student-
centered teaching among chemistry, biology, and physics faculty. International Journal of STEM Education. 2015; 
2(13): 1-21.  

[8] Theobald EJ, Hill MJ, Tran E, Agrawal S, Arroyo EN, Behling S, et al. Active learning narrows achievement gaps for 
underrepresented students in undergraduate science, technology, engineering, and math. In: Fiske ST, eds. Proc. 
Natl. Acad. Sci. 2020; 117(12): 6476–6483.  

[9] Gleason BL, Peeters MJ, Resman-Targoff BH, Karr S, McBane S, Kelley K, Thomas T, Denetclaw TH. An Active-
Learning Strategies Primer for Achieving Ability-Based Educational Outcomes. American Journal of 
Pharmaceutical Education. 2011; 75(9): 186: 1-12. 

[10] Shabatura J, University of Arkansas Tips - Using Bloom’s Taxonomy to Write Effective Learning Objectives 
{Internet]. Fayetteville, AR: University of Arkansas, © 2013 [cited 2022 April 1]. Available from 
https://tips.uark.edu/using-blooms-taxonomy/. 

[11] Zubair AR, Ahmed YK. Engineering Education: Computer-Aided Engineering with MATLAB; Discrete Wavelet 
Transform as a Case Study.International Journal of Computer Applications.2019; 182(46): 6-17. 

[12] Zubair AR, Folorunso SS. Education during COVID-19 lockdown and Social Distancing: Programmable Teaching 
Aid for Amplitude Modulation Theory as a Case Study. International Journal of Computer Applications. 2020; 
175(33): 11-29. 

[13] Zubair AR. Towards Understanding and Expertise in Applied Electricity: (Part 1) Fundamentals of Electrical and 
Electronic Engineering made simple. Estonia: LAP LAMBERT Academic Publishing; 2021. 

[14] Hughes E. Electrical and Electronic Technology.10th Ed. England: Pearson Education Limited; 2008.  

[15] Theraja BL, Theraja AK. A Text Book of Basic Electrical Engineering. 1st Multicolour Ed. New Delhi: S. Chand & 
Company LTD; 2005.  

[16] Orfanidis SJ. Introduction to Signal Processing. Rutgers: Prentice Hall; 2010. 

[17] Thede L. Practical Analog and Digital Filter Design. Ohio: Artech House, Inc; 2004. 

https://tips.uark.edu/using-blooms-taxonomy/


Global Journal of Engineering and Technology Advances, 2022, 12(01), 038–063 

63 

[18] Rice JR, Usow KH. The lawson algorithm and extensions. Mathematics of Computation. 1968; 22: 118-127. 

[19] Smith SW. The Scientist and Engineer's guide to Digital Signal Processing. California: California Technical 
Publishing; 1999. 

[20] MATLAB Documentation - Mathworks, © 2018 [cited 2022  March 8]. Available from 
https://www.mathworks.com/help/matlab/ 

[21] Ingle VK, Proakis JG. Digital Signal Processing Using MATLAB.3rd Ed. Stamford, CT: Global Engineering; 2010.  

[22] Rader BG. Digital Processing of Signals. New York: McGrawHill; 1969. 

[23] Abramowitz M, Stegun IA. (Eds.) Handbook of Mathematical Functions with Formulas. New York: Dover 
Publications; 1965. 

[24] Zubair AR. Numerical Integration Based Analysis of Pulse Width Modulated Voltage Source Inverter. In: 2nd IEEE 
International Conference on Adaptive Science and Technology (ICAST). Accra: IEEE; 2009. 

[25] Zumbahlen, Hank. Chapter 8. Analog Filters in Linear Circuit Design Handbook, Newnes - Elsevier, Oxford, UK. 
2008; 581-679. 

[26] Anirudh S. Filter Design: Analysis and Review. Int. Journal of Engineering Research and Applications. 2014; 4(1): 
236–259. 

[27] Proakis JG, Manolakis DG. Digital Signal Processing Principles, Algorithms, and Applications. New Jersey: 
Prentice-Hall; 1996. 

[28] Zubair AR, Olatunbosun A. Computer Aided Root-Locus Numerical Technique. Nigerian Journal of Technology. 
2014; 33(1): 1-13. 

https://www.mathworks.com/help/matlab/
http://www.edictech.com/ICAST09/
http://www.edictech.com/ICAST09/



