
* Corresponding author: V.S Jivkov
Department of Mechanisms and Machines Theory, Faculty of Industrial Technology, Technical University, Sofia. 

Copyright © 2022 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution Liscense 4.0. 

Transient modes of high-speed rotor whit electric drive  

Venelin Stoyanov Jivkov * 

Department of Mechanisms and Machines Theory, Faculty of Industrial Technology, Technical University, Sofia. 

Global Journal of Engineering and Technology Advances, 2022, 13(03), 008–021 

Publication history: Received on 20 August 2022; revised on 29 September 2022; accepted on 02 October 2022 

Article DOI: https://doi.org/10.30574/gjeta.2022.13.3.0151 

Abstract 

The paper presents the results of the study of the transient modes of a high-speed rotor with formally six degree of 
freedom, driven by an electric motor-generator during transition trough the resonance.  

Based on the Newton-Euler equation, the differential equations of motion are derived, and the frequency spectrum of 
the considered electro-mechanical system is determined. 

The following cases are considered: - transition trough resonance with unlimited (ideal energy source) and limited 
excitation by the motor; unstable frequency zones; phase trajectories and the influence of the electro-magnetic constant 
of the motor on the stability. The analysis of the stationary and nonstationary processes was carried out using the 
asymptotic method of Bogoliybov-Mitropolski. The stability of vibrations are determined by numerical solution of the 
equations in variations of the equilibrium states. 

These transitions are of great importance for the recently widespread so-called uninterruptible power sources (UP), as 
well as the kinetic energy recovery system (KERS ) used as additional propulsion energy . 

Keywords: Rotor systems; Transient modes; Limited and Unlimited Excitation; Stability of Vibration 

Highlights 

 Stationary and non  stationary vibrations of a high speed rotor, suspended in a homogeneous

 Elasto-dissipative field, under unlimited  and limited excitation by the electric drive.

 Stability of vibrations during transition through resonance ;  unstable  frequency zones .

 Additional un-stability due to the dynamic characteristic of the engine; phases   diagrams.

1. Introduction

Research into the transient modes of elementary centrifugal vibrators dates back to the beginning of the last century. 
While conducting experiments whit such electro-mechanical devices, the German physicist A. Sommerfeld observed 
unstable vibrations in certain speed ranges with slow change in the frequency of the exciting force [1]. He predicted, 
without the necessary precise evidence, that these phenomena were due to the interaction between the characteristics 
of electro motor and vibrating system. 

Subsequently, this instability of vibrations (jump phenomenon) in the scientific literature received its citizenship as the 
Sommerfeld’s effect. A few decades later [2],[3],[4],[5] gave a satisfactory physical explanation for this phenomenon, 
viz. the condition under which it occurs are defined. 
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The concepts of “limited” and “ unlimited “ excitation are introduced, depending on the type of ( inclination or slope ) of 
the static characteristic of the electric motor and the reduced moment of the resistance forces in the area of resonance 
states of the electro-mechanical system.  

With „ unlimited „excitation, the transition through resonance is very fast, thanks to the large slope of the motor’s 
characteristic ( high starting moment).The higher the speed of the transition , the smaller the amplitudes of the forced 
vibrations, which is why unstable frequency zones do not exist [ 7 ],[ 8 ]. The transition through resonance of a „ limited 
„excitation of the electro-mechanical system is a relatively slow process due to the small slope of the static characteristic 
of the electric motor. Therefore, the small high-order terms an the right –hand sides of the equation describing rotation 
have the opportunity to manifest and they increase the reduced moment of resistance [8], [10].[11]. 

For planar centrifugal vibrators with two degrees of freedom (rotation and translation ) the existence of unstable 
frequency zones in the resonance region has been proven experimentally and theoretically, depending on the type of 
intersection of the motor’s moments and reduced resistances [ 8 ],[ 12].  

Shortly before the  resonance  ,is observed an additional unstable zone due to the dynamic characteristic of the motor 
(.electro-magnetic inertia) [12].  

The aim of the present research is the analysis transient modes in the  vicinity of the first resonance of electro-
mechanical rotor system with large kinetic moment JΩ, operating in the range between the first and second resonance.  

In the recent times, the so called kinetic energy accumulators have massively entered the engineering practice as 
uninterruptible source of electricity ( UPS ), designed to drive a group of high-tech metalworking machines in the event 
of a power failure. [16], [17],[ 18 ]. These devices are an elastically suspended rotor with a build-in electric motor-
generator, operating under conditions of „ unlimited „ excitation. 

The other type - „limited „ excitation is applied to hybrid electric vehicles with a kinetic energy recovery system (KERS) 
– elastically suspended super flywheel, as additional drive system [19],[ 20 ],[ 21 ]. 

2. Theoretically consideration 

Figure 1. Shows the elastically suspended rotor, as well as the selected coordinate systems: inertia, - X0, Y0, Z0 ; fixed to 
the rotor X3, Y3, Z3 and those with the indices 1 and 2 - determining its relative rotations.  

2.1.  Notation and basic dependencies 

Coordinates - y1  ,y2  ,y3  defining radius vector s  [m] , 

,   and  [-] rotation of the axis, where   and   are small quantities.  

c 1 , c2 , c3 [N/m] , d1 and d2 [Ns/m] are elasto-dissipative coefficients ;  

a and b [m] - the distance from the centers of the upper and lower bearing units to the plane X3 ,O3 ,Y3.  

M  - Mass of the rotor [kg]; 𝛆 - eccentricity [m] ;βr – dissipation coefficient [ Nms] 

J3 - mass moment of inertia of the rotor [kgm2] – A3, A3, C3 – main, D3,E3,F3 -centrifugal in coordinate system X3 ,Y3 ,Z3. 

In the following calculations,  the next values of the physical and geometrical parameters of the electro-mechanical 
system, presented in the Fig. 1 are , used:   c1 = c2 =5.105 [N/m] ; c3 = 2.105 [N/m] ;d1 = 1.103 [Ns/m] ;d2 = 500 [Ns/m] ; 
d3 = 250 [Ns/m]; d4= 1.10-4[Nms2]; ε = 5.10-5 [m] ; a = 38.10-3 [m] ; b = 142.10-3 [m] ; C3 =1.6 [kgm2] ; D3 =E3 = 1.10-4 
[kgm2] ; F3 = 0 [kgm2] ; K =( 0.05 - 2.0 ) [Nms] ; β = 150 [ Nms ] ; T = ( 0.00 – 0.35 ) [s]. βr = 18 [Nms]. 
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Figure 1 Elastically suspended rotor and its coordinate systems  

Transfer matrix ∆ ij from the mobile X3 , Y3 and Z3 coordinate system to the inertial one X0 ,Y0 ,Z0 has the form [ 15 ]   

∆ij = 

cos sin

sin cos

1

  

  

 







 where sin cos ; cos sin                                       (1) 

The distances from the beginning O of the fixed coordinate system X0 ,Y0 ,Z0 to the centers of the upper and lower bearing 
assembly, points A and B – Fig.1, are respectively equal to  

1

2

3

. ; ; 0 ; . ; 0 .A S ij S B S ij

y

OA L SA OS y SA OB L SB SB

y a b

 

  

 

           



           (2) 

After substituting ( 1 ) in ( 2 ) and regrouping, the next relations are obtained  

1 1

2 2

3 3

cos sin

sin ; sin

x x

y y

z z

OA y a OB y b

OA OA y a OB OB y b

OA y a OB y b

     

     

 

   

       

 

.                                                  (3) 

Elasto-dissipative forces in bearing assembly can be represent with 

 

1 1 2 2

1 1 1 2 2 2

3 3

. . . .

. . ; . . .

. .

x x x x

y y y y

z z

c OA d OA c OB d OB

F c OA d OA F c OB d OB

c OA c OB

 

 

   

     

 

                                                                       (4) 

The moments of the forces with respect to mass center of the rotor can be written in the form     

1 1 2 2. ; . ;M OA F M OB F   ,                                                                                                                               (5)  

; where  

,OA OB  are the co-symmetric tensors like this 
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0 0

0 ; 0 .
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y z y z
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OA OA OA OB OB OB
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 

   

 

                       .(6) 

The tensor of the mass moment of inertia of the rotor relative to the fixed coordinate system X0 , Y0  ,Z0 in accordance 
with ( 1 ) is represented by  

                                                     J0 = ∆ij.J3                                                                                                                                                              (7) 

The absolute angular velocity   of the rotor in co-symmetrical form can be obtained from dependence [ 9 ] 

. ( )
ij ij T

ij

d d
T transposed

dt dt


 
   

.                                                                                             (8) 

After processing and neglecting the small quantities of higher order, the final form of the angular velocity of the rotor 
with respect of the inertial coordinate system can be written as (9)  

                 ω = . , . ,
T

                                                                                                               (9) 

2.2. Equations of motion 

After substituting the already obtained dependences for the mass moment of inertia J0 - ( 7 ),for angular velocity   and 

  - ( 8 ) and ( 9 ), for the acting forces and moments - 1 2 1 2, ,F F M andM  - ( 4 ) and ( 5 ) in the Newton-Euler [ 9 ] 

differential equations  

         1 2. . ;d rJ J M M M M         

0

0 0

0 ; 0 ,

( ) .

d r

r

M M

K    

 

 

                         . (10) 

 .M 1 2 ,y F F


   

The following system equations in scalar form, describing the motion of the elastically suspended rotor, is obtained like 
this  

( )

1 1 1 2 1. 1 2 2 1. . ( . . ) . ix a x a x h x h x N e            

( )

2 3 1 2 2 1 3 2 4 1 2( . ). . . . . ix b i b x b x h x h x N e            

                                              .M  
2

3 3 3 1 2 12. . . ( , , , , ,...)y c y f a b c c d                                                 (11) 

2 2 24
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0( )TM M K       , 

2
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where; 
K – the slope of the engine’s characteristic [Nms]]  
Ω0 – synchronous velocity [ s-1] .  
T – electro-magnetic constant [ s ] 

2 2 2 1/2 2 2 1/21
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3. Analytical solution 

The free oscillations of the rotor can be obtained after zeroing the right parts of the first two equations of the system ( 
11 ) and they have the form 

                   

( )( ). . ;( 1,2), ( 1,2).k ki tk

j k jx A e j k
 

  
                                        (12) 

In essence the natural frequencies of the mechanical system of Fig.1 represent the real roots of the polynomial  

     
4 3 2

1 1 3 1 1 1 3 2 2. ( ). . 0b a b a b a b a b            .                                     (13) 

This frequencies in our case are two real and two imaginary [14], [ 15 ] - see Fig.2 .  

The modal vectors, or forms of the vibrations φ(k)1 and φ(k)2 can be obtained from next algebraic system equations 

                                                       
2 ( ) ( )

1 1 2 2( ). . 0k k

k a a                                     (14) 

( ) 2 ( )

2 1 1 3 2. ( . ). 0k k

k kb b b          , 

Where; 

k – numbers of the corresponding frequency ( k = 1,2 )  

The force nonstationary (transition) vibrations of the rotor in the vicinity of the first resonance k = 1, in accordance 
with the asymptotic method of Bogolyubov- Mitropolski [5 ] , [ 6 ], [ 10 ], [13] are sought in the form 

                                            
(1) ( ), . ,i

j jx A e                                                                    (15) 

where 

                           1 1. ( , , ); . ( , , ); ,
dA d

A A B A andA
dt dt

    


     …         (16) 
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Are slowly changing function of time.  

3.1.  Unlimited excitation („ ideal“energy source ) T=0.0, Ω0  = 600,K = 0.25, d4 = 0.0 – vacuum case; in the fourth 
equation   of the system ( 11 ), small quantities of the second order are neglected.  

You note by this conditions, that the last three equations in (11 ) are very weekly coupled to the coordinates x1 and x2 , 
and their solutions for an „ ideal „ energy source are practically trivial. Due this circumstances, the motion of the rotor 
is a very accurately described by the first two equations.  

In compliance with the algorithm in this method [6], the function 1( , , )A A   and 1( , , )B A   are determined by the 

dependence  

1 1
1 1 1 2 1 1 1{ ( ) (2 ). . } .{ ( ).

A B
u u u B A i u A      
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 
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where;  

2 2 2
(1)
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1 1 2 2 2 2 3 2 2; . ; . . .

d
u u b u b

d


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
   

 . 

From the solutions of the double integrals 1( , , )A A   and 1( , , )B A   are determined by, which after substitution 

in (16 ) are finally represented by  
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   
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   
                                 (18) 

(1) (1)

1 1 2 2
1

1 1 2 1 1 2

. .cos( ) . .cos( )1
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After substitution ( 18 ) in ( 16 ), finally for 
dA

dt
 and 

d

dt


 can be written  

               1

1 1 2 1 1 2 1 1 2

sin( ) cos( )
. ; .
2 ( ) ( )

edA R r d R r
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dt u u u u dt A u u
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    
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     

    
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where; 

2 2(1) (1)1 1
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
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   

   





 . 

The stationary (steady - state) values of the amplitude-frequency characteristic of the mass center of the rotor in the 
vicinity ( neighbour-hood ) of the first resonance are obtained after zeroing the right parts of ( 19 ), or  

                                                
1 1 2 1

{ .
(2 ).( )

e
s r arctg

u u



   


  

 
                                                    (20) 
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



 

 


 

In the specific case, the real values of the natural frequencies in accordance with (13 ) are respectively 1 340   [s-1] 

and 2 1120   [s-1] ; [ 15 ] .  

The next solutions are realized by forth order Runge-Kuta fixed step method and all initial conditions are set to zero  

The calculated steady-state amplitude- frequency characteristic of the rotor’s mass center, corresponding to the 
dependence (20 ) is shown in Fig.2 – with dashed line and denoted by – 1.   

For the numerical solution of the differential system equations (19) , representing the transition through first 
resonance, it is preferable to introduce the following new variables 

                                                       1 2.cos( ); .sin( )z A r z A r     ,                                               (21) 

  which   actually eliminate the periodic function sin and cos.  

In this case the system equations is transformed into 

                                    1
1 1 2

1 1 2

( ).
2

edz
z z

dt u u


 



   


                                                                        (22)                                                                                                                                                     

2
2 1 1

1 2 1 1 2

1
( ). .

2 ( )

edz R
z z

dt u u A u u


 

 




    

  
 . 
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The transitions through the first resonance 1    is proposed to be realized by linear change of the angular rotor’s 

speed (23) 

                                 0 .t         ,                                                                                                      (23) 

where        the speed gradients are two ν1 and ν2..  

   

 Figure 2 Amplitude-frequency characteristics of mass center S  

 

Figure 3 Amplitudes versus frequency of the upper LA and lower LB bearing units 

Figure 2, at the same physical-geometrical parameters of the vibrating system, shows transition processes with ν1= 500 
[s-1] – denoted by 2, and by ν2=250 [s-1] – denoted by - 3.  

Amplitude –frequencies characteristics of the centers of the upper, respectively lower bearings units LA and LB can be 
express by relations 
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1 2

(1) (1)
1 2

( . )sin1

( . )cos2 (1) (1) 2 2 (1) (1) 2
1 2 1 2[ .( . ) 2 .( . ). .cos ] . .

a
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ai

AL A a A a e e

 

       

 

 
              (24) 

(1) (1)
1 2

(1) (1)
1 2

( . )sin1

( . )cos2 (1) (1) 2 2 (1) (1) 2
1 2 1 2[ .( . ) 2. .( . ). .cos ] . .

b
i

bi

BL A b A b e e

 

       

 

 
       , 

and they are presented in Fig. 3 , at a velocity gradient ν = 500 [ s-1].  

3.2.  Limited excitation  

This type of excitation of rotor systems with electric drive is typical for kinetic accumulators ( KERS ) used as an 
additional source of energy in modern electric automobiles, with very long time constant due to the „ soft „ characteristic 
( low slope) of the motor/generator. 

In these electro-mechanical systems the small members of high order in the equation describing the rotation of the rotor 
– the fourth of (11), are manifested   in   the   vicinity of the resonance   and create conditions for un-stability of vibrations. 
For this particular case, the transition   through   resonance was    considered in the following additional data  

T = 0.2; K = 0.012; 800 < Ω0 < 1400.. 

Reapplying the algorithm of the asymptotic method [6], after α - averaging, the equations analogous to (19) are 
presented by  
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Fig.4 presents the results for engine’s moment – M, amplitude of the mass center S of the rotor - A and angular velocity 

-  
 as a function of time, from numerical solution of the system differential equations (25). There is a significant 

reduction in engine’s torque immediately after resonance. This is due to the transfer of energy from the gyroscopic 
moments of the rotor on the unbalanced by the elastic and dissipative forces   - coordinate. At the sometime the 

angular velocity of the rotor -  
 increases due to the reduction of the main mass moment of inertia of the rotor of the 

preserved kinetic momentum. 
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 Figure 4 The transition through the first resonance 

The steady- state( stationary) values of the parameters of vibrations at this type of excitation As , s  , s 
 and Ms are 

obtained by resetting the left sides of the system equations ( 25 ) to zero, from which it follows that 

                            
0( ); ( );M K M M          ,                                (26)  

   and the reduced resistance moment L (  
 ) from the last but one (before the last ) equation can to be represented by 
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Figure 5 shows the two functions ( )M  
 and ( )L  

 for this electro-mechanical system in the range of (300 ≤  
 ≤ 

800) [s-1] of the angular velocity of the rotor.  

The unstable zones of vibrations can be determined at a quasi   steady –state increase of the angular velocity of the rotor 
– from point 2 to point 1 ( left oriented hatch ) , and decrease – from point 1’ to point 2’ ( right oriented hatch ) – Fig.5. 
This corresponds to the jump phenomenon of the Sommerfeld’s effect.by the well  known relation for the stability of 
motion. [5 ],[13] 
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0
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d M L

d 
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
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


             .                                          (28) 

It has been shown based on the experiments and theoretically [12] that for monotonic increase of the driving frequency, 

a jump phenomenon occurs at the beginning of the resonance ( 0.8 ≤ / 
 ≤ 1.0 ). The jump phenomenon is shown 

in Fig.5 - (horizontal hatching) . This effect can be explained by the singular excitation of the motor – the last equation 
in system (25), because the motor dynamic characteristic is unknown in explicit form [15].  

The stability of vibrations and the form of the phase diagrams of the particular points can be determined exactly by 
analyzing the system equations (25) in variations.  

The values of parameters of vibrations during the disturbed motion can  be expressed in the form 

                          1 1 1 2 1 3 1 4; : ; :A A M M               
  ,             (29) 

where ∆I ( I = 1,2.3,4 ) are small deviations from the steady state values.  
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The variations form of ( 25 ) can be obtain by expanding these expressions in the Taylor series in the small parameters 
∆I , keeping only the linear terms 
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 where; bij are the coefficients in front of the linear terms in the expansions   
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The forms of the phase diagrams of the particular points can be derived from the generalized solution of ( 30 ) in the 
form  

                                                           

( )4

1

. .

j

t

i i jC e  ,                                                                              (31) 

where   is the natural frequency of the system, Cj are constants of integration depending on initial conditions, 
j

i  are 

fundamental function of .ijb E  . 
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 Figure 5 Unstable zones during quasi steady state transition through the first resonance 

In the right upper part of the Fig 5 is shown phase diagram of the stable vibrations - stable focus, obtained from solution 
of (31).  

For example the phase diagram for particular point 2 in Fig.5 is shown down right - saddle focus first order - unstable 
vibrations. The width of the add zone of instability of the vibration (points 2-3) on Fig.5 depends on the electro-magnetic 
motor’s time- constant T [12 ].  

Figure 6 shows the experimental record of the vibrations in the horizontal plane on the upper bearing assembly of the 
kinetic energy storage system. This diagram is given in the regime of a slow increase of the driving frequency. This result 
confirms the presence of the jump phenomenon in the rotor systems possessing large mass m moment of inertia.  

 

 Figure 6 Experimental recording of the unstable vibrations after the resonance  
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4.  Conclusion 

The maximum amplitudes of the vibrations , the both at the rotor’s mass center and at its bearing assemblies during the 
transition through resonance in the case of „ideal“ energy source are significantly smaller and are shifted in direction of 
increasing the speed of rotation .  

It is observed after passing the first maxima of attenuating (reducing in value) vibrations without the presence of 
unstable frequency zones.  

The obtained results are prerequisite for optimization of forces F1, F2 -( 4 ) and moments M1 and M2 - ( 5 ), both in steady 
state and transient modes of rotor’s system.  

Limited excitation „ in the neighbor-hood of the basic resonances have to be determined by analyzing and solving the 
system equations in variations during the disturbed motion. 
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