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Abstract 

Simultaneous radial distribution network reconfiguration (RDNR) and shunt capacitor allocation (SCA) is one of the 
compensation techniques that are used for getting an improved radial structure with reduced real power loss and 
enhanced voltage stability. This study presents a novel adaptive particle swarm optimisation (APSO) technique for the 
simultaneous RDNR and SCA, which is a complex and nonlinear optimisation problem. Unlike the conventional particle 
swarm optimization (PSO) technique in which an initial population of particles is randomly generated, the fundamental 
loop concept is used to populate the search space of APSO with the candidate branches for each tie switch (open branch) 
in the loop. The candidate branches are preselected with the graph theory. This is done to mitigate infeasible 
configurations in the optimization process and also to ensure that the conditions for radiality of the network are 
satisfied.  The effectiveness of the proposed APSO technique for simultaneous RDNR and SCA is demonstrated on the 
standard IEEE 33-bus and Nigerian Ayepe 34-bus RDNs using six event cases. The efficacy of the proposed APSO 
technique is further validated with the comparison of the observed simulation results with the reported results of 
similar work implemented with established algorithms like improved binary particle swarm optimization (IBPSO), 
modified pollinated flower algorithm (MFPA) and mixed integer linear programming (MILP). The result of the 
comparative study reveals that the proposed APSO technique outperforms the selected algorithms in most of the 
considered event cases. 
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1. Introduction

The distribution network is the last segment of the electrical power system that connect the end-users of electricity to 
the grid. Most of the distribution networks are weakly meshed or radial in nature as power flows in a unidirectional 
manner from the substation to every other parts of the network. Such networks are called radial distribution network 
(RDN) and they are widely used due to simplicity of operation, cheap cost and easier protection [1]. However, RDNs 
suffer from high power losses and voltage drop along the feeders of the RDN, which results into voltage magnitude 
violation at the buses. These problems are attributable to the high resistance to reactance ratio of network as well as 
proliferation of heavy inductive loads such as transformers, AC induction motors and adjust table speed drive (ASD) in 
the networks. Studies have shown that 13% of the total generated power is wasted as losses in the distribution network 
[2]. In addition, about 70% of all the losses in the electrical power system occur in the distribution network. Therefore, 
efforts are continually made to mitigate bus voltage magnitude violations and power losses, which adversely affect the 
general performance of the distribution network. 
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In electric power systems, the voltages at all the buses are required to be within acceptable limit. If a power system is 
operated beyond its voltage stability limit, voltage collapse results. However, with the unabating increase in global 
power demand and high cost of constructing new power systems, utility providers are constrained to operate very close 
to the limit resulting in a situation where RDNs are heavily loaded [3]. To improve power system efficiency and forestall 
voltage collapse, several methods are used to mitigate power losses and improve voltage profile in RDNs. These methods 
include reconfiguration of the network, load management, and optimal placement of power compensators such as shunt 
capacitor and distributed generation (DG) [4]. Power compensators are electrical devices that are capable of power 
injection into power system networks for the enhancement of power transfer capability. They are placed in the 
distribution networks at the optimal locations in order to mitigate voltage deviation and power losses in the distribution 
system. However, non-optimal placement and sizing of power compensators may aggravate rather than mitigate power 
losses. The available methods for the mitigation of RND problems are either implemented singly or combined together 
in such a way that a better network in terms of power loss reduction, voltage profile improvement. Load balancing, 
loadability, stability, and reliability is obtained [5]. These methods are usually formulated as a combinatorial 
optimization problem in which there is a single or multi-objective function subject to certain constraints and limits. 
From the economic point of view, the cheapest among these methods are the distribution network reconfiguration and 
shunt capacitor allocation [4]. 

In this study, radial distribution network reconfiguration (RDNR) and optimal shunt capacitor allocation are 
simultaneously implemented for power loss reduction and voltage profile enhancement. RDNR involves altering the 
status of the normally closed branches called sectionalizing switches (SS) and normally open branches called tie 
switches (TS) of the radial distribution network, which results into an improved radial configuration. Shunt capacitor 
allocation (SCA) on the other hand, deals with the installation of the appropriate number and size of shunt capacitors at 
optimal locations in the distribution network. By injecting reactive power into distribution network, shunt capacitor 
installation does not only provide power loss mitigation, it also improves voltage profile and stability of the network. 
Allocation of shunt capacitors in distribution network requires proper optimization of placement and sizing. 
Simultaneous RDNR and SCA combines the strengths of both methods resulting in a vastly improved network in which 
there is more power loss reduction and a better enhanced voltage profile. Simultaneous implementation of RDNR and 
SCA is a combinatorial optimization problem that is complex and nonlinear.  In recent years, several optimization 
techniques have been deployed for simultaneous optimization of RDNR and SCA in a bid to maximize the operational 
efficiency of the RDNs using various indices such as real power loss reduction index, loss sensitivity factor (LSF) and 
voltage stability index (VSI) as performance evaluation metrics. The real power loss is the total of all the real power 
losses in all the lines of the RDN under consideration while VSI deals with the acceptable limits of voltage magnitude at 
each of the distribution network buses as well as load operation stability [3]. RDNs are vulnerable to voltage instability 
and collapse when operated under stress as a result of overloading. Buses that are close to the point of collapse and in 
need of compensation are identified using VSI. The bus having the minimum VSI is the most susceptible to voltage 
collapse.  

The optimization techniques that have been presented for power loss mitigation and voltage profile improvement using 
simultaneous implementation of RDNR and SCA include ant colony search algorithm (ACSA) [6], ant colony optimization 
(ACO) [8], evolutionary algorithms like genetic algorithm (GA) and its variants [9], [10], [11]. In [12], harmony search 
algorithm has been utilized for solving the RDNR and SCA combinatorial optimization problem with reduction of power 
loss and voltage deviation as the objectives. The RDNR and SCA problem was also solved using improved binary particle 
swarm optimization (IBPSO) in [13]. Juan et al proposed mixed-integer second-order cone programming formulation 
for the optimization problem using voltage dependent models [14]. Other optimization methods like mixed integer 
linear programming (MILP) [7], ordination optimization [15], bat algorithm [16], oppositional krill herd algorithm 
(OKHA) [17], cat swarm optimization (CSO) [18], modified flower pollinated algorithm (MFPA) [19], moth swarm 
algorithm (MSA) [20], chemical reaction optimization (CRO) [21], modified particle swarm optimization (MPSO) [22], 
and autonomous group particle swarm optimization (AGPSO) [23] have also been deployed to solve RDNR and SCA 
combinatorial optimization problem. The aforementioned studies in [7] – [23] implemented their solution techniques 
on standard IEEE radial distribution networks.  

The effect of simultaneous implementation of RDNR and SCA on real power loss (RPloss) and voltage stability of radial 
distribution network is presented in this study. With the power loss minimization as the objective function, 
simultaneous implementation of RDNR and SCA is formulated as a combinatorial optimization problem, which is then 
solved using adaptive particle swarm optimization (APSO) technique. The proposed APSO is tested on standard IEEE 
33-bus and a practical Nigerian Ayepe 34-bus RDNs. Although the authors in [13], [22] and [23] have worked on the 
simultaneous implementation of RDNR and SCA using variants of PSO, their techniques suffer from large number of 
infeasible configurations and radiality constraint violation. This is attributable to the random generation of the initial 
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population of particles in their works. In the proposed APSO, the initial population is generated using graph theory in 
order to reduce the number of infeasible configurations, and also to prevent radiality constraints violation.  

The paper is structured in five sections as follows: Section 1 deals with the introduction. Section 2 entails the objective 
functions and the constraints of the RDNR and SCA problem. Section 3 discusses the introduction of the particle swarm 
optimization, its adaptation through graph theory, check of radiality constraints and implementation of the APSO for 
the RNDR and SCA problem. The results achieved by the proposed APSO are presented and discussed in section 4 while 
the conclusion of the study is found in section 5. 

2. Problem Formulation 

2.1. Objective function  

The main purpose of reconfiguration of RDN and SCA is total power loss reduction in the network. Hence, this is 
considered as the objective function of this work. The total power of any RDN is determined by the summation of the 
losses in the line sections of the system: 

𝑂𝐹𝑚𝑖𝑛 = 𝑅𝑃𝑙𝑜𝑠𝑠 = ∑ |𝐼𝑖|
2𝑅𝑖

𝑛𝑏
𝑖 …………………….(1) 

Here, 𝑂𝐹𝑚𝑖𝑛 is the objective function of real power losses (𝑅𝑃𝑙𝑜𝑠𝑠), 𝑛𝑏 is the total number of branches in the RDN, 𝑅𝑖  is 
the resistance of the ith branch of the RDN and |𝐼𝑖| is the current magnitude of the ith branch of the RDN. 

2.2. Constraints 

The optimal size and location of shunt capacitors are found by subjecting the objective function in equation (1) to the 
following constraints: 

 Power flow equations: The power flow equation is solved using the Newton Raphson load flow technique in the 

optimization process. These equations are given as: 

𝑃𝑔𝑖 = 𝑃𝐷𝑖 + ∑ |𝑉𝑖|
𝑛𝑏
𝑗=1 |𝑉𝑗|[𝐺𝑖𝑗 𝑐𝑜𝑠 𝜃𝑖𝑗 + 𝐵𝑖𝑗  sin 𝜃𝑖𝑗]……………………. (2) 

𝑄𝑔𝑖 = 𝑄𝐷𝑖 + ∑ |𝑉𝑖|
𝑛𝑏
𝑗=1 |𝑉𝑗|[𝐺𝑖𝑗 𝑠𝑖𝑛 𝜃𝑖𝑗 − 𝐵𝑖𝑗  cos 𝜃𝑖𝑗]……………………. (3) 

where 𝑉𝑖  and 𝑉𝑗  are the voltages of buses ‘i’  and ‘j’ respectively; 𝑃𝑔𝑖  and 𝑃𝐷𝑖  are the real power generated and power 

demanded at bus ‘i’;  𝑄𝑔𝑖  and 𝑄𝐷𝑖  are the reactive power generated and demanded at bus ‘i’; and 𝜃𝑖𝑗  is the difference 

between the voltage angles of buses ‘i’  and ‘j’. 

 Reactive power constraint of SC: The size of the each of the installed shunt capacitors is constrained within the 

limits:  

𝑄𝑆𝐶(𝑚𝑖𝑛) ≤ 𝑄𝑆𝐶 ≤ 𝑄𝑆𝐶(𝑚𝑎𝑥) ……………………. (4) 

Where 𝑄𝑆𝐶(𝑚𝑖𝑛)= 100 kVar and 𝑄𝑆𝐶(𝑚𝑎𝑥) is 75% of the total reactive power demand of the network [25]. 

 Bus voltage limitation: The voltage must fall within the standard limits for RDN 

 𝑉𝑚𝑖𝑛 ≤ 𝑉𝑖 ≤ 𝑉𝑚𝑎𝑥  ……………………. (5) 

Where the minimum voltage, 𝑉𝑚𝑖𝑛 = 0.95 p.u., the maximum voltage, 𝑉𝑚𝑎𝑥  = 1.05 p.u., and 𝑉𝑖  is the bus voltage. 

 Radial configuration constraint: The radial nature of the RDN must be maintained such that there is just a 

unidirectional flow of power to all buses associated with the network. 

2.3. Performance evaluation metrics 

In this study, the efficiency of the proposed APSO for simultaneous RDNR and SCA is evaluated using percentage power 
loss reduction index (%PLRI) and voltage stability index (VSI). 
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 Real power loss (𝑅𝑃𝑙𝑜𝑠𝑠) and percentage power loss reduction index (%PLRI)  

Real power loss is the summation of all the real power losses in all the lines of the RDN as given in equation (1). In this 
study, the percentage power loss reduction index is calculated as given below: 

%𝑃𝐿𝑅𝐼 =
𝑅𝑃𝑙𝑜𝑠𝑠(𝑏𝑒𝑓𝑜𝑟𝑒_𝑅𝐷𝑁𝑅_𝑆𝐶𝐴)−𝑅𝑃𝑙𝑜𝑠𝑠(𝑎𝑓𝑡𝑒𝑟_𝑅𝐷𝑁𝑅_𝑆𝐶𝐴)

𝑅𝑃𝑙𝑜𝑠𝑠(𝑏𝑒𝑓𝑜𝑟𝑒−𝑅𝐷𝑁𝑅_𝑆𝐶𝐴)
× 100% ……………………. (6) 

Where 𝑅𝑃𝑙𝑜𝑠𝑠(𝑏𝑒𝑓𝑜𝑟𝑒_𝑅𝐷𝑁𝑅_𝑆𝐶𝐴) and 𝑅𝑃𝑙𝑜𝑠𝑠(𝑎𝑓𝑡𝑒𝑟_𝑅𝐷𝑁𝑅_𝑆𝐶𝐴) are the power losses of the RDN before and after simultaneous 

RDNR and DG allocation, respectively. 

 Voltage stability index (VSI) and minimum VSI 

RDNs are exposed to voltage instability and collapse when operated under stress and overloaded. Voltage stability index 
is used to identify buses that are close to point of collapse and may need compensation [25]. It is given as follows:  

𝑉𝑆𝐼 = |𝑉𝑠|4 − 4[𝑃𝑟𝑅𝑠𝑟 + 𝑄𝑟𝑋𝑠𝑟]|𝑉𝑟|2 − 4[𝑃𝑟𝑅𝑠𝑟 + 𝑄𝑟𝑋𝑠𝑟] ……………………. (7) 

Where s and r stand for the sending and receiving end bus. V, P, and Q represent voltage magnitude, real power, and 
reactive power respectively. R and X represent the resistance and reactance between the sending and receiving bus. 
The least value of the voltage stability index of RDN is referred to as the minimum VSI (𝑉𝑆𝐼𝑚𝑖𝑛). The bus having 𝑉𝑆𝐼𝑚𝑖𝑛 
is the most susceptible to voltage collapse. 

3. Particle Swarm Optimization (PSO) 

PSO is a swarm intelligence-based stochastic search algorithm proposed by Kennedy and Eberhart [26] in 1995. It was 
inspired by the social behavior exhibited by a school of fish or a flock of birds. PSO solves optimization problems by 
deploying a population of candidate solutions called swarm of particles collaborating together in their search of optimal 
solutions in the search space through successive updating of generations (iterations). Starting with a randomly 
initialized population of particles moving in random directions, each particle goes through the search space looking for 
the best position. With each particle having a randomly generated position and velocity, fitness evaluation of all the 
particles is performed with the objective function. The personal best position of the ith particle of a swarm in an N-
dimensional space is called personal best (𝑃𝑏𝑒𝑠𝑡) and denoted by 𝑃𝑖 = [𝑃𝑖1, 𝑃𝑖2, … , 𝑃𝑖𝑁], while the global best, which is 

the best position attained by any particle in the swarm is denoted by 𝑃𝑔 = [𝑃𝑔1, 𝑃𝑔2, … , 𝑃𝑔𝑁] . During successive 

iterations, each particle uses its best previous position (𝑃𝑏𝑒𝑠𝑡) and that of the whole swarm (𝐺𝑏𝑒𝑠𝑡) to updates its 
current velocity and position. Thus, if the ith particle of a swarm in an N-dimensional space is currently having velocity 
and position vectors given as 𝑉𝑖

𝑡 = [𝑉𝑖1, 𝑉𝑖2, … , 𝑉𝑖𝑁]  and 𝑥𝑖
𝑡 = [𝑥𝑖1 , 𝑥𝑖2 , … , 𝑥𝑖𝑁] , respectively during iteration t, the 

particle then updates its current velocity and position in the next iteration as follows [26]: 

𝑣𝑖
𝑡+1 = (𝑤 × 𝑣𝑖

𝑡) + (𝐶1 × 𝑟𝑎𝑛𝑑1 × (𝑃𝑏𝑒𝑠𝑡𝑖
𝑡 − 𝑥𝑖

𝑡  )) + (𝐶2 × 𝑟𝑎𝑛𝑑2 × (𝐺𝑏𝑒𝑠𝑡𝑖
𝑡 − 𝑥𝑖

𝑡)) ……………………. (8) 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑣𝑖
𝑡+1 ……………………. (9) 

Where 𝑤 is the inertia weight constant within [0,1], 𝐶1 and 𝐶2  are the cognitive and social coefficients, respectively, 
𝑟𝑎𝑛𝑑1 and 𝑟𝑎𝑛𝑑2 are random numbers uniformly distributed between [0, 1]. The combination of parameters 𝑤, 𝐶1 and 
𝐶2 controls the tradeoff between exploration and exploitation of the search space by the particle. The mechanism used 
to update the parameters is given in [27]. The process of updating velocity and position in PSO continues until any of 
the stopping criteria is satisfied. 

3.1. Adaptive PSO for RDNR and SCA problem 

When the conventional PSO is utilized to solve the problem of RDNR and SCA, the radial constraint imposed on the 
optimization problem results in a number of infeasible configurations during the initialization and intermediate stages. 
This occurs because a number of sectionalizing switches (SS) will form the search agents in the population, such that 
when they are opened (or turned to TS) may result in a non-radial structure or infeasible configuration. Hence, The PSO 
needs some adaptation to make it efficient for the RDNR problem in other to significantly minimize the number of 
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infeasible configurations. In the proposed adaptive PSO (APSO), the particles (search agents) are generated using the 
graph theory to minimize the number of infeasible configurations at every stage of the optimization process. 

Adaptation of PSO through graph theory for removal of infeasible configuration 

In the conventional and variants of PSO, the initial population is randomly generated thereby giving a large number of 
infeasible configurations in which the radiality constraints is not satisfied. In the proposed APSO, these infeasible 
configurations are reduced using graph theory. The first step is the formation of an incidence matrix C using the number 
of branches and buses (line data) of the RDN. The incidence matrix, C has one row for each branch and one column for 
each bus with an entry 𝑐𝑖𝑗in row i and column j according to the following rules [28]: 

𝑐𝑖𝑗 = {

+1 𝑓𝑜𝑟 𝑎 𝑏𝑟𝑎𝑛𝑐ℎ 𝑖 𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 𝑎𝑤𝑎𝑦 𝑓𝑟𝑜𝑚 𝑛𝑜𝑑𝑒 j
−1 𝑓𝑜𝑟 𝑎 𝑏𝑟𝑎𝑛𝑐ℎ 𝑖 𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 toward 𝑛𝑜𝑑𝑒 j

0 𝑓𝑜𝑟 𝑎 𝑏𝑟𝑎𝑛𝑐ℎ 𝑖 not connected to 𝑛𝑜𝑑𝑒 j
 ……………………. (10) 

When all the tie switches (TS) of the RDN are closed, some loops are formed in the network. These loops are referred to 
as the fundamental loops. The number of fundamental loops (FLs) formed in the RDN is equal to the number of TS [29], 
[30]. To determine the FLs of the RDN after formation of the incidence matrix, a tie switch (TS) is added to the incidence 
matrix. Based on the technique utilized in [31], the absolute sum of the corresponding column (S_C) of the matrix after 
addition of a tie switch is calculated. The branches connected to bus whose S_C is 1 are removed. This process is repeated 
until branches connected to bus whose S_C are 1 are no longer available in the RDN. The number of branches remaining 
forms a fundamental loop (FL) and is saved [32]. Thereafter, another TS is added and the whole process is repeated. 
Figure 1 shows a simple sample of RDN with TSs and the first FL is determined as shown in Figure 2.  

 

Figure 1 A simple sample of 13-bus RDN 

As shown in Figure 2, after determining the incidence matrix, the following steps are executed to identify the FLs.  

 Step 1: Add the first tie switch (open branch: TS13) to the incidence matrix C. 

 Step 2: Calculate sum of absolute each element of a corresponding column (S_C) in matrix C. The buses which 

have the S_C as 1, are 1, 6 and 13. The branches 1, 5 and 12 are removed because they are connected to buses 

1, 6 and 13, respectively. 

 Step 3: Similar to step 2, calculate S_C for the remaining branches in matrix C and the result is that the branch 

12 is removed. 

 Step 4: Similar to step 2, calculate S_C for the remaining branches in matrix C and the result is that the branch 

4 is removed. 

 Step 5: There is not any bus whose S_C is 1. Therefore, the first FL consists of branches {2, 3, 4, 6, 7, 8, 9 and 13}. 

Similar to TS13, by adding TS14, the second FL that consists of branches {3, 4, 5, 10, 11, 12 and 14} will be 

obtained. 
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Figure 2 Determination of FLs when closing branches (a) 13 (b) 14  

The flowchart for determining the fundamental loops of the RDN is shown in Figure 3. Each radial configuration, which 
involves a set of open branches are randomly chosen from corresponding FLs. This helps to reduce the generation of 
infeasible configuration during each stage of the optimization algorithm. However, some of the branches are common 
in some of FLs [32]. Therefore, radial condition of network must be checked. 

3.2. Radial configuration check 

In other to satisfy the radial configuration constraints, a radial configuration check is conducted before performing load 
flow analysis and obtaining the fitness function of each generated solution at various stages of the optimization process 
of the proposed technique. In each configuration, the incidence matrix C is determined. Then, the first column 
corresponding to the slack bus in the RDN will be removed to form a square matrix C. If the configuration is radial, the 
determinant of square matrix C is equal to 1 or -1, otherwise the configuration is non-radial [28]. The flowchart for the 
radial feasibility of the configuration is shown in Figure 4. 
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Figure 3 Flowchart for finding fundamental loops (FLs) of any RDN 
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Figure 4 Radiality check for candidate configuration 

3.3. Application of APSO for simultaneous RDNR and SCA problem  

The steps involved in the implementation of APSO technique for the simultaneous RDNR and SCA are as follows: 

 Step 1: Input the line and load data of the RDN including the tie switches, and APSO parameters  

 Step 2: Obtain the fundamental loops (FLs) of the RDN using steps given in Figure 3.  

 Step 3: Determine the upper-bound and lower-bound of each tie-switch based on the size of the branches that 

constitute it corresponding FLs.  

 Step 4: Initialization 

In the application of the APSO technique, a particle is a potential solution consisting of radial configuration, SC locations 
and SC sizes. A swarm of n particles is represented as: 
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……………………. (11) 

Each particle in the population can be represented as: 

𝑥𝑖 = [𝑇𝑆1
𝑖 , … , 𝑇𝑆𝑁𝑇𝐿

𝑖 𝑏𝑢𝑠. 𝑆𝐶1
𝑖, … , 𝑏𝑢𝑠. 𝑆𝐶𝑚

𝑖 𝑐𝑎𝑝. 𝑆𝐶1
𝑖 , … , 𝑐𝑎𝑝. 𝑆𝐶𝑚

𝑖 ]`……………………. (12) 

It can be seen from equation (12) that the solution vector of each particle contains three parts. The first part represents 
the number of tie switches or lines (open branches) denoted as 𝑇𝑆1, 𝑇𝑆2, … , 𝑇𝑆𝑁𝑇𝐿  in the fundamental loops (𝐹𝐿1  to 
F𝐿𝑁𝑇𝐿 ) of the RDN, the second part that is denoted as 𝑏𝑢𝑠. 𝑆𝐶1, 𝑏𝑢𝑠. 𝑆𝐶2, . . . , 𝑏𝑢𝑠. 𝑆𝐶𝑚  represents the buses that are 
selected for shunt capacitor placement while the third part that is represented as 𝑐𝑎𝑝. 𝑆𝐶1, 𝑐𝑎𝑝. 𝑆𝐶2, . . . , 𝑐𝑎𝑝. 𝑆𝐶𝑚 stands 
for sizes (or capacities) of the shunt capacitor units in kVar to be installed at the selected buses. Therefore, each particle, 
𝑥𝑖  of the population is randomly initialized as follows: 

𝑇𝑆𝑖 = 𝑟𝑜𝑢𝑛𝑑[𝑇𝑆𝑙𝑜𝑤𝑒𝑟,𝑟1
𝑖 + 𝑟𝑎𝑛𝑑 × (𝑇𝑆𝑢𝑝𝑝𝑒𝑟,𝑟1

𝑖 − 𝑇𝑆𝑙𝑜𝑤𝑒𝑟,𝑟1
𝑖 )]……………………. (13) 

𝑏𝑢𝑠. 𝑆𝐶𝑖 = 𝑟𝑜𝑢𝑛𝑑[𝑏𝑢𝑠𝑙𝑜𝑤𝑒𝑟,𝑟2
𝑖 + 𝑟𝑎𝑛𝑑 × (𝑏𝑢𝑠𝑢𝑝𝑝𝑒𝑟,𝑟2

𝑖 − 𝑏𝑢𝑠𝑙𝑜𝑤𝑒𝑟,𝑟2
𝑖 )]……………………. (14) 

𝑐𝑎𝑝. 𝑆𝐶𝑖 = 𝑟𝑜𝑢𝑛𝑑[𝑐𝑎𝑝𝑙𝑜𝑤𝑒𝑟,𝑟3
𝑖 + 𝑟𝑎𝑛𝑑 × (𝑐𝑎𝑝𝑢𝑝𝑝𝑒𝑟,𝑟3

𝑖 − 𝑐𝑎𝑝𝑙𝑜𝑤𝑒𝑟,𝑟3
𝑖 )]……………………. (15) 

where 𝑟1= 1, 2, . . . 𝑁𝑇𝐿 , 𝑟2= 1, 2, . . .m and 𝑟3= 1, 2 . . . m. 𝑇𝑆𝑙𝑜𝑤𝑒𝑟,𝑟1  and 𝑇𝑆𝑢𝑝𝑝𝑒𝑟,𝑟1  are the minimum tie-switch and 

maximum tie-switch that are encoded in the fundamental loop 𝑟1. Shunt capacitors are placed on any bus of the RDN 
apart from the slack bus which is the first bus. Hence, the lower limit (𝑐𝑎𝑝𝑙𝑜𝑤𝑒𝑟,𝑟2) and upper limit (𝑐𝑎𝑝𝑢𝑝𝑝𝑒𝑟,𝑟2) for the 

placement of the SC units is from bus 2 to the last bus of the RDN and the capacities of each SC is from 100 kVar to 
maximum power of SC as given in the inequality constraint of equation (4). 

 Step 5: Evaluation of fitness function  

Radial configuration check is performed for the swarm of particles. The fitness function of non-radial configuration is 
set at infinity. The load flow for each of the particle is performed using Newton Raphson technique to determine its 
fitness value with respect to the objective function, which is taken as the power loss in this study as given in equation 
(1).  

 Step 6: Determine 𝑃𝑏𝑒𝑠𝑡 and 𝐺𝑏𝑒𝑠𝑡 

Determine the best position of each particle (𝑃𝑏𝑒𝑠𝑡) from the previous and current iterations. Choose the particle with 
best fitness value as 𝐺𝑏𝑒𝑠𝑡 for the swarm during the current iteration. 

 Step 7: Update positions and velocities of particles 

Update the PSO parameters (𝑤, 𝐶1 and 𝐶2), and calculate the particles velocity and position using equations (8) and (9) 
subject to the limits specified in equations (13) – (15). 

 Step 8: Termination condition 

If any of the termination condition is satisfied, output the Gb𝑒𝑠𝑡, its fitness value and stop the optimization process. Else, 
increment the number of iteration and go to step 5. 
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Figure 5 Implementation of the APSO for RDNR and SCA 

4. Results and Discussion 

The efficacy of the proposed APSO technique in solving the simultaneous RDNR and SCA problem is tested on the IEEE 
33-bus and Nigerian Ayepe 34-bus of the Ibadan Electricity Distribution Company (IBEDC) using the MATLAB 
simulation software (R2021a) on a core i3 laptop clocked at 1.70 GHz. The line and load data of the two test RDNs are 
found in [33] and [34]. The 33-bus RDN consist of 37 branches made up of 32 sectionalizing switches (SS), 5 tie switches 
(TS) while the Ayepe 34-bus RDN consists of 38 branches made up of 33 sectionalizing switches (SS) and 5 tie switches 
(TS). The total number of shunt capacitors available for placement in the RDN is limited to three in this study. The 
parameters of the APSO utilized in the study are swarm size, n = 1000, and maximum number of iterations, 𝑖𝑡𝑒𝑟𝑚𝑎𝑥  is 
200. To demonstrate the global exploration and local exploitation capabilities of the proposed APSO, six different 
scenarios that are considered are as follows: 
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 Scenario 1: Base case (BC) without RDNR and SCA  

 Scenario 2: Reconfiguration (RDNR) only  

 Scenario 3: SCA only 

 Scenario 4: SCA after RDNR 

 Scenario 5: RDNR after SCA 

 Scenario 6: Simultaneous RDNR and SCA 

4.1. IEEE 33-bus RDN 

The fundamental loops obtained for the 33-bus RDN are depicted in Table 1. The tie-switches displayed in the table 
gives the boundary and limits of the possible open branches for each of the FLs.  

Table 1 Fundamental loops (FLs) of the IEEE 33-bus RDN 

loop (FLs) Tie-switch (TS) 

FL1 2, 3, 4, 5, 6, 7, 18, 19, 20, 33 

FL2 9, 10, 11, 12, 13, 14, 34 

FL3 2, 3,4, 5, 6, 7, 8, 9, 10, 11, 18, 19, 20, 21, 35 

FL4 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 25, 26, 27, 28, 29, 30, 31, 32, 36 

FL5 3, 4, 5, 22, 23, 24, 25, 26, 27, 28, 37 

 
The results obtained for all the considered scenarios are given in Table 2. As shown in the table, the power loss (in kW) 
for the base case (BC) scenario is 202.70. The initial power loss is significantly reduced to 139.997, 132.19, 95.14, 93.49 
and 92.64 for scenarios 2, 3, 4, 5 and 6, respectively; corresponding to percentage power loss reduction (%PLR) of 30.94, 
34.79, 53.06, 53.88 and 54.30. It is clearly seen from the Table that the minimum voltage has significantly improved for 
all the considered scenarios compared to the BC. The minimum voltage (bus location) increased from 0.9131 (18) to 
0.9413 (32), 0.9377 (18), 0.9561 (33), 0.9597 (33) and 0.9561 (33) for scenarios 2 to 6, respectively. Similarly, the 
minimum VSI improved from 0.6956 observed in the base case to 0.7850, 0.7733, 0.8366, 0.8482 and 0.8354 for 
scenarios 2 to 6, respectively. A comparison of all the scenarios reveals that scenario 6 gave the highest percentage 
power loss reduction demonstrating the superiority of simultaneous RDNR and SCA to the other scenarios. 

Table 2 Summary and comparison of results for the various scenarios for the 33-bus RDN 

Scenario Parameters Proposed 
APSO 

IBPSO [14] MFPA [20] MLIP [7] 

Scenario 1 

(Base Case) 

TS --------- --------- --------- --------- 

RPloss (kW) 202.70 202.67 202.67 202.67 

Vmin (p.u.) 0.9131 0.9131 0.9131 0.9131 

VSImin (p.u.) 0.6956 --------- --------- --------- 

Scenario 2 

(RDNR only) 

TS 7 9 14 28 32 7 9 14 32 37 7 9 14 32 
37 

7 9 14 32 
37 

RPloss (kW) 139.997 139.55 139.54 139.54 

% PLRI 30.94 31.14 31.14 31.14 

Vmin (p.u.) 0.9413 (32) 0.9378 0.9378 0.9378 

VSImin (p.u.) 0.7850 --------- --------- --------- 

Scenario 3 TS 33 34 35 36 
37 

33 34 35 36 37 33 34 35 
36 37 

33 34 35 36 
37 
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(SCA only) SC size in kW 

(location) 

 

379 (13) 

544 (24) 

1037 (30) 

900(1) 300(3) 300(14) 300(22) 
300(24) 600(30) 

600(31) 

350 (13) 

550 (24) 

1050 (30) 

750 (6) 

150 (28) 

850 (29) 

RPloss (kW) 132.19 134.20 132.20 139.57 

% PLRI 34.79 33.78 34.77 31.13 

Vmin (p.u.) 0.9377 (18) 0.9389 0.9369 0.9302 

VSImin (p.u.) 0.7733 --------- --------- --------- 

Scenario 4 

(SCA after 
RDNR) 

TS 7 9 14 28 32 7 9 14 32 37   

SC size in kW 

(location) 

 

626 (21) 

489 (24) 

922 (30) 

1200(4) 900(7) 1800(8) 1200(9) 
300(16) 600(30) 600(31) 

  

RPloss (kW) 95.14 94.26   

% PLRI 53.06 53.48   

Vmin (p.u.) 0.9561 (33) 0.9612   

VSImin (p.u.) 0.8366 ---------   

Scenario 5 

(RDNR after 
SCA) 

TS 7 9 14 36 37 7 10 34 36 37   

SC size in kW 

(location) 

 

379 (15) 

544 (24) 

1037 (30) 

900(1) 300 (3) 300(14) 300(22) 
300(24) 

  

RPloss (kW) 93.49 95.91   

% PLRI 53.88 52.67   

Vmin (p.u.) 0.9597 (33) 0.9658   

VSImin (p.u.) 0.8482 ---------   

Scenario 6  

(RDNR and 
SCA) 

TS 7 9 14 32 34 7 9 14 32 37  7 9 14 36 
37 

SC size in kW 

(location) 

 

516 (24) 

624 (21) 

961 (30) 

600(7) 300(12) 300(25) 600(30) 
300 (33) 

 200 (28) 

200 (29) 

550(30) 

RPloss (kW) 92.64 93.06  101.77 

% PLRI 54.30 54.07  49.78 

Vmin (p.u.) 0.9561 (33) 0.9585  0.9585 

VSImin (p.u.) 0.8354 ---------  --------- 

 
The voltage profiles and VSIs for all the considered scenarios are displayed in Figures 6 and 7, respectively. As clearly 
shown in the figures, bus voltages and VSIs are significantly improved for scenarios 2 to 6.  
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Figure 6 Voltage profile of scenarios 1 – 6 for IEEE 33-bus RDN 

 

Figure 7 Voltage stability index for scenarios 1 – 6 for IEEE 33-bus RDN 

The convergence characteristics of scenarios 2 to 6 are illustrated in Figure 8. It can be seen that scenario 6 
(simultaneous RDNR and SCA) has the least power loss closely followed by scenarios 4 and 5. 

 

Figure 8 Convergence characteristics of scenarios 2 – 6 for IEEE 33-bus RDN 
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For further validation of the proposed APSO technique, the observed simulation results in this study are objectively 
compared with the results of improved binary particle swarm optimization (IBPSO) [14], modified flower pollinated 
algorithm (MFPA) [20] and mixed integer linear programming (MILP) [7], which are some of the recent literatures that 
considered the same scenarios. The results of the comparative analysis presented in Table 2 show that the proposed 
APSO method outperforms the IBPSO, MFPA and MILP in most of the considered scenarios in terms of percentage power 
loss reduction. 

4.2. Nigerian Ayepe 34-bus RDN 

The fundamental loops obtained for the Ayepe 34-bus RDN are depicted in Table 3. The tie-switches displayed in the 
Table gives the boundary and limits of the possible open branches for each of the FLs.  

Table 3 Fundamental loops (FLs) of Ayepe 34-bus RDN 

Fundamental loops (FLs) Tie-switch (TS) 

FL1 8, 9, 10, 11, 12, 13, 19, 20, 34 

FL2 9, 15, 16, 35 

FL3 12, 13, 19, 20, 21, 36 

FL4 17, 12, 13, 14, 30, 31, 32, 37 

FL5 24, 23, 22, 21, 20, 19, 25, 26, 27, 28, 38 

 
Presented in Table 4 are the results obtained for all the considered cases. As displayed in the table, the power loss (in 
kW) for the BC scenario is 762.00. The initial power loss (in kW) is significantly reduced from 762.00 to 622.43, 587.17, 
483.1, 481.97 and 478.64 for scenarios 2, 3, 4, 5 and 6, respectively; with a corresponding percentage power loss 
reduction (%PLR) of 18.32, 22.94, 36.60, 36.75 and 37.19, respectively. It is clearly seen from Table 4 that the minimum 
voltage significantly improved for scenarios 2 to 6 compared to scenario 1, which is the base case. The minimum voltage 
and corresponding (bus location) increased from 0.8332 (24) observed in the base case to 0.8599 (25), 0.8491 (25), 
0.8757 (35), 0.8781 (27) and 0.8773 (34) for scenarios 2 to 6, respectively. Similarly, there is an improvement in 
minimum VSI from 0.4743 (25) to 0.5192 (24), 0.5195 (23), 0.5715 (29), 0.5839 (25) and 0.5807 (24) for scenarios 2 
to 6, respectively. A comparison of all the scenarios reveals that scenario 6 gave the highest percentage power loss 
reduction demonstrating the efficiency of simultaneous RDNR and SCA.  

Table 4 Summary of results for the various scenarios for the Ayepe 34-bus RDN 

Items Base Case RDNR SCA SCA after 
RDNR 

RDNR after 
SCA 

RDNR and 
SCA 

TS 34 35 36 37 
38 

15 13 23 

31 21 

34 35 36 37 
38 

13 15 21 23 31 12 14 15 21 23 12 14 15 21 
23 

SC size 
(kVar) 

 

 

 

 

531 (9)  

1032(14)  

344 (23) 

433 (7) 

783 (12) 

736 (26) 

531 (9)  

1032 (14)  

344 (23) 

833 (12)  

640 (21)  

358 (28) 

RPloss (kW) 762 622.43 587.17 483.1 481.97 478.64 

%PLRI -------------- 18.32 22.94 36.60 36.75 37.19 

Vmin (p.u.) 0.8332 (24) 0.8599 (25) 0.8491 (25) 0.8757 (35) 0.8781 (27) 0.8773 (34) 

VSImin (p.u.) 0.4743 (25) 0.5192 (24) 0.5195 (23) 0.5715 (29) 0.5839 (25) 0.5807 (24) 

 
The voltage profiles and VSIs for all the considered scenarios are displayed in Figures 9 and 10. It is clear from the 
figures that the bus voltages and VSIs significantly improve in scenario 2 to 6.  
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Figure 9 Voltage profile of scenarios 1 – 6 for Ayepe 34-bus RDN 

 

Figure 10 Voltage profile of scenarios 1 – 6 for Ayepe 34-bus RDN 

The convergence characteristics of scenarios 2 to 6 are illustrated in Figure 11. It can be seen that scenario 6 
(simultaneous RDNR and SCA) has the least power loss closely followed by scenarios 4 and 5. 

 

Figure 11 Convergence characteristics of scenarios 2 – 6 for Ayepe 34-bus RDN  
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5. Conclusion 

In this paper, an adaptive particle swarm optimization (APSO) is proposed for solving the combinatorial optimization 
problem that characterize simultaneous implementation of radial distribution network reconfiguration (RDNR) and 
shunt capacitor allocation (SCA) with the aim of reducing the power loss in practical radial distribution networks. In the 
proposed APSO method, the graph theory is used for the adaptation of the tie switches search space in an effort to 
significantly minimize the infeasible configurations in the optimization process and perform the radiality constraints 
check of the generated configurations. In a bid to establish the effectiveness of the proposed method, six different 
scenarios, which are the base case without RDNR and SCA, RDNR only, SCA only, SCA after RDNR, RDNR after SCA and 
simultaneous RDNR and SCA are considered. The proposed APSO is tested on standard IEEE 33 RDN and Nigerian Ayepe 
34-bus RDN. The simulation results reveal that simultaneous RDNR and SCA outperforms the other considered 
scenarios in term of power loss reduction and voltage profile improvement. Further validation of the efficacy of the 
proposed technique was also performed by comparing the observed simulation results of the IEEE 33-bus with the 
reported results of IBPSO, MFPA and MILP algorithms for similar scenarios that are available in open literatures. The 
result of the comparative study reveals that the proposed APSO technique outperforms the selected algorithms in most 
of the considered event cases.  
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