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Abstract 

The importance and differs applications of Magnetohydrodynamics, MHD and mixed convective flow through a porous 
medium has led to investigation of buoyancy force and thermal radiation on the flow. The modeled ordinary differential 
equations were transformed by means of similarity transformation into partial differential equations. The resulting 
equations were solved using Nachtsheim–Swigert iteration technique. The obtained results were conformed to existing 
ones, and displayed on tables and through graphs. In conclusion the investigated parameters have significant effects on 
the flow. Close to the boundary positive values of 𝛾 is found to give rise to the familiar inflection point profile leading to 
the destabilization of the laminar flow. Strong injection also leads to the similar destabilization effect. Also, hall 
parameter m has an interesting effect on the radial and axial velocity profiles. For large values of 𝑚(> 2.0), the resistive 
effects of the magnetic field are diminished and hence the radial and axial velocity profiles decrease with the increase 
of 𝑚, among others. 
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1. Introduction

Rotating disk flow along with heat transfer is one of the classical problems of fluid mechanics, which has both theoretical 
and practical value. The importance of heat transfer from a rotating body can be ascertained in cases of various types 
of machinery, for example computer disk derives (see [1]) and gas turbine rotors (see [2]). The rotating-disk problem 
was first formulated by von-Karmann [3]. He has shown that Navier–Stokes equations of steady flow of a viscous 
incompressible fluid due to an infinite rotating disk can be reduced to a set of ordinary differential equations and solved 
them by approximate integral method. But Cochran [4] pointed out that von-Karmans momentum integral solution 
contained errors. He obtained more accurate results by patching two series expansions. It has been found that the disk 
acts like a centrifugal fan and hence the fluid near the surface being thrown radially upwards. This in turn generates an 
axial flow towards the disk to maintain continuity. Benton [5], further improved Cochrans solution and extended the 
hydrodynamic problem to the flow starting impulsively from rest. The rotationally symmetric flow in presence of an 
infinite rotating disk with different angular velocity was studied by Roger and Lance [6]. 

Following a suggestion made by Batchelor [7], Stuart [8] investigated the effect of uniform suction of fluid from the 
surface of a rotating disk. Suction essentially decreases both the radial and azimuthal components of velocity but 
increases the axial flow towards the disk at infinity. As a consequence, the boundary layer becomes thinner. Ockendon 
[9] used asymptotic method to determine the solutions of the problem for small values of suction parameter in case of 
a rotating disk in a rotating fluid. On the other hand, the effect of uniform blowing through a rotating porous disk on the 
flow induced by this disk was studied by Kuiken [10]. 
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Figure 1 The flow conFigureuration and the coordinate system. 

Some interesting results on the effects of the magnetic field on the steady flow due to the rotation of a disk of infinite or 
finite extent was pointed out by El-Mistikawy et al. [11,12]. Hassan and Attia [13] investigated the steady magneto-
hydrodynamic boundary layer flow due to an infinite disk rotating with uniform angular velocity in the presence of an 
axial magnetic field. They neglected the induced magnetic field but considered Hall current and accordingly solved 
steady state equations numerically using finite difference approximation. Attia [14] investigated the effects of suction 
as well as injection along with effects of magnetic field in a flow near a rotating porous disk. It was observed by him that 
strong injection tends to destabilize the laminar boundary layer but when magnetic field works along with even strong 
injection, it stabilizes the boundary layer. 

In all the above studies to the authors knowledge, constant properties of fluid were not assumed. However, it is known 
that these physical properties may change significantly with temperature of the flow. To predict the flow behavior 
accurately, it may be necessary to take into account these variable properties. In this light Zakerullah and Ackroyd [15] 
investigated the free convection flow above a horizontal circular disk for variable fluid properties. Herwig [16] analyzed 
the influence of variable properties on laminar fully developed pipe flow with constant heat flux across the wall. It was 
shown 
how the exponents in the property ratio method depend on the fluid properties. The influence of temperature 
dependent fluid properties on laminar boundary layers was examined by Herwig and Wickern [17] for wedge flow. In 
case of fully developed laminar flow in concentric annuli, the effect of the variable property has been studied by Herwig 
and Klemp [18]. Herwig [19] studied the laminar film boiling including variable properties. 

In the present paper, the steady MHD laminar flow of a viscous conducting, compressible flow due to a porous rotating 
disk of infinite extend is studied in the presence of an external uniform magnetic field directed perpendicular to the disk 
taking the properties of the fluid as strong functions of temperature. A uniform suction or injection through the disk is 
considered for the whole range of suction or injection velocities. The governing non-linear partial differential equations 
are integrated numerically using Nachtsheim and Swigert [20] iteration technique. 

2. Basic equations 

Consider the steady MHD laminar boundary layer flow due to a rotating disk in an electrically conducting viscous 
compressible fluid in the presence of an external magnetic field and Hall current. The equations governing the fluid flow 
are  

Equation of continuity:  

∇ ∙ (𝜌𝑞) = 0 … … … … … . . (1) 
Navier–Stokes equation: 

𝜌(𝑞 ∙ ∇)𝑞 = −∇𝑝 + [∇ ∙ (𝜇∇)]𝑞 + (𝐽 × 𝐵), … … … … … . . (2) 
The generalized Ohm’s law: 

𝐽 = 𝜎[𝐸 + 𝑞 × 𝐵 − 𝛽(𝐽 × 𝐵)], … … … … … . . (3) 
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Energy equation : 

𝜌𝐶𝑝((𝑞 ∙ ∇))𝑇 = ∇ ∙ (𝜅∇)𝑇 … … … … … . . (4) 

The external uniform magnetic field is applied perpendicular to the plane of the disk and has a constant magnetic flux 
density 𝐵 =  (0,0, 𝐵0) which is assumed unaltered by taking magnetic Reynolds number 𝑅𝑒𝑚 ≪ 1. E is the electric field 
which results from charge separation and is in the 𝑧 −direction. Eq. (3) expresses the Hall effect, where 𝛽 = 1 𝑛𝑒⁄  is the 
Hall factor, n is the electron concentration per unit volume and e is the charge of electron. In Eq. (4), we neglected the 
viscous energy dissipation, Joule heating term and the heat generation/absorption coefficient. 

3. Governing equations 

Using non-rotating cylindrical polar coordinates (𝑟, 𝜙, 𝑧), the disk rotates with constant angular velocity Ω and is placed 
at 𝑧 =  0, and the fluid occupies the region 𝑧 >  0, where z is the vertical axis in the cylindrical coordinates system with 
𝑟  and 𝜙  as the radial and tangential axes respectively. The components of the flow velocity 𝑞  are (𝑢, 𝑣, 𝑤)  in the 
directions of increasing (𝑟, 𝜙, 𝑧) respectively, the pressure is P and the density of the fluid is 𝜌. 𝑇 is the fluid temperature 
and the surface of the rotating disk is maintained at a uniform temperature 𝑇𝑤 . Far away from the wall, the free stream 
is kept at a constant temperature 𝑇∞ and at a constant pressure, 𝑃∞. The fluid is assumed to be Newtonian, viscous and 
electrically conducting. The external uniform magnetic field is applied perpendicular to the surface of the disk and has 
a constant magnetic flux density 𝐵0 which is assumed unchanged by taking small magnetic Reynolds number (𝑅𝑒𝑚 ≪
1). The electron–atom collision frequency is assumed to be relatively high, so that the Hall Effect is assumed to exist. We 
assume that the fluid properties, viscosity (𝜇) and thermal conductivity (𝜅) coefficients and density (𝜌) are functions of 
temperature alone and obey the following laws [21]: 

𝜇 = 𝜇∞ [
𝑇

𝑇∞

]
𝑎

, 𝜅 = 𝜅∞ [
𝑇

𝑇∞

]
𝑏

, 𝐷𝑚 = 𝐷∞ [
𝑇

𝑇∞

]
𝑐

, 𝜌 = 𝜌∞ [
𝑇

𝑇∞

]
𝑑

… … … … … . . (5) 

Where the 𝑎, 𝑏 and 𝑑 are arbitrary exponents, 𝜅∞ is an uniform thermal conductivity of heat and l1 is a uniform viscosity 
of a fluid. For the present analysis fluid considered is flue gas. For flue gases the values of the exponents 𝑎, 𝑏 and 𝑑 are 
taken as 𝑎 =  0.7, 𝑏 =  0.83 and 𝑑 = −1.0. The physical model and geometrical coordinates are shown in Figure. 1. Due 
to steady axially symmetric, compressible MHD laminar flow of a homogeneous fluid the governing equations take the 
following form from Eq. (1)–(4) as: 

𝜕

𝜕𝑟
(𝜌𝑟𝑢) +

𝜕

𝜕𝑧
(𝜌𝑟𝑤) = 0 … … … … … . . (6) 

𝜌 (𝑢
𝜕𝑢

𝜕𝑟
−

𝑣2

𝑟
+ 𝑤

𝜕𝑢

𝜕𝑧
) = −

𝜕𝑝

𝜕𝑟
+

𝜕

𝜕𝑟
(𝜇

𝜕𝑢

𝜕𝑟
) +

𝜕

𝜕𝑟
(𝜇

𝑢

𝑟
)  +

𝜕

𝜕𝑧
(𝜇

𝜕𝑢

𝜕𝑧
) 

 +𝐺𝑟𝑡(𝑇 − 𝑇∞) + 𝐺𝑟𝑐(𝐶 − 𝐶∞) −
𝜎𝐵0

2

(1 + 𝑚2)
(𝑢 − 𝑚𝑣),

 … … … … … . . (7) 

𝜌 (𝑢
𝜕𝑣

𝜕𝑟
+

𝑢𝑣

𝑟
+ 𝑤

𝜕𝑣

𝜕𝑧
)  =

𝜕

𝜕𝑟
(𝜇

𝜕𝑣

𝜕𝑟
) +

𝜕

𝜕𝑟
(𝜇

𝑣

𝑟
) +

𝜕

𝜕𝑧
(𝜇

𝜕𝑣

𝜕𝑧
) + 𝐺𝑟𝑡(𝑇 − 𝑇∞) 

 +𝐺𝑟𝑐(𝐶 − 𝐶∞) −
𝜎𝐵0

2

(1 + 𝑚2)
(𝑣 + 𝑚𝑢),

… … … … … . . (8) 

𝜌 (𝑢
𝜕𝑤

𝜕𝑟
+ 𝑤

𝜕𝑤

𝜕𝑧
) = −

𝜕𝑝

𝜕𝑧
+

𝜕

𝜕𝑟
(𝜇

𝜕𝑤

𝜕𝑟
) +

1

𝑟

𝜕

𝜕𝑟
(𝜇𝑤) +

𝜕

𝜕𝑧
(𝜇

𝜕𝑤

𝜕𝑧
) , … … … … … . . (9) 

𝜌𝐶𝑝 (𝑢
𝜕𝑇

𝜕𝑟
+ 𝑤

𝜕𝑇

𝜕𝑧
) =

𝜕

𝜕𝑟
(𝜅

𝜕𝑇

𝜕𝑟
) +

𝜅

𝑟

𝜕𝑇

𝜕𝑟
+

𝜕

𝜕𝑧
(𝜅

𝜕𝑇

𝜕𝑧
) + 𝐴(𝑇 − 𝑇∞) −

𝜕𝑞𝑟

𝜕𝑧
, … … … … … . . (10) 

𝜌 (𝑢
𝜕𝐶

𝜕𝑟
+ 𝑤

𝜕𝐶

𝜕𝑧
) =

𝜕

𝜕𝑟
(𝐷𝑚

𝜕𝐶

𝜕𝑟
) +

𝐷𝑚

𝑟

𝜕𝐶

𝜕𝑟
+

𝜕

𝜕𝑧
(𝐷𝑚

𝜕𝐶

𝜕𝑧
) − 𝑄(𝐶 − 𝐶∞), … … … … … . . (11) 

 

here, 𝜎 is the electrical conductivity, 𝐶𝑝 is the specific heat at constant pressure and 𝑚 is the Hall current. 
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When the free path velocity of the fluid particle is comparable to the characteristic dimensions of the flow field domain, 
Navier-Stokes equations break down since the assumption of continuum media fails. In the range of 0.1<kn<10 of 
Knudsen Number, the higher order continuum equation, e.g. Burnett equation should be used. For range of 
0.001<=Kn<=0.1, no-slip boundary conditions cannot be used and should be replaced with the following expression 
(God-el-Hak 1999): 

𝑈𝑡 =
2 − 𝜉

𝜉
𝜆

𝜕𝑈𝑡

𝜕𝑛
 

Where 𝑈𝑡  is the tangent velocity, n is the normal direction to the wall, 𝜉  is the tangent momentum accommodation 
coefficient and 𝜆 is the mean free path. For Kn<0.001, the no-slip boundary condition is valid, therefore, the velocity at 
the surface is equal to zero. In the present study, we incorporate both the slip and no-slip regims of the Knudsen number 
that lies in the range 0.1 > 𝐾𝑛 > 0 is considered. Considering the above analysis, the appropriate boundary conditions 
for the flow induced by an infinite disk (𝑧 =  0) which is started impulsively into steady rotation with constant angular 
velocity Ω and a uniform suction/injection 𝑤𝑤  through the disk, are given by 

𝑢 =
2 − 𝜉

𝜉
𝜆

𝜕𝑢

𝜕𝑧
, 𝑣 = Ω𝑟 +

2 − 𝜉

𝜉
𝜕

𝜕𝑢

𝜕𝑧
, 𝑤 = 𝑤𝑤 , 𝑇 = 𝑇𝑤, 𝐶 = 𝐶𝑒  at 𝑧 = 0

 𝑢 → 0, 𝑣 → 0, 𝑇 → 𝑇∞, 𝐶 → 𝐶∞, 𝑝 → 𝑝∞ as 𝑧 → ∞

} … … … … … . . (12) 

Using the Roseland approximation for radiative heat transfer and the Roseland approximation for diffusion, the 
expression for the radiative heat flux 𝑞𝑟 can be given as 

𝑞𝑟 = (
−4𝜎

3𝑘𝑠

) (
𝜕𝑇4

𝜕𝑦
) … … … … … . . (13) 

Here in Eq.(9), the parameters 𝜎 and 𝑘𝑠 represent the Stefan Boltzmann constant and the Roseland mean absorption 
coefficient, respectively. 

Now on assuming that the temperature differences within the fluid flow are sufficiently small, 𝑇4  in Eq.(9) can be 
expressed as a linear function of 𝜕∞ ' using the Taylor series expansion. The Taylor series expansion of 𝑇4about 𝑇∞ , 
after neglecting the higher order terms, takes the form 

𝑇4 ≅ 4𝑇∞
3𝑇 − 3𝑇∞

4  … … … … … . . (14) 

Thus by (9) and (10), equation () becomes 

𝜌𝐶𝑝 (𝑢
𝜕𝑇

𝜕𝑟
+ 𝑤

𝜕𝑇

𝜕𝑧
) =

𝜕

𝜕𝑟
(𝜅

𝜕𝑇

𝜕𝑟
) +

𝜅

𝑟

𝜕𝑇

𝜕𝑟
+

𝜕

𝜕𝑧
(𝜅

𝜕𝑇

𝜕𝑧
) + (

16𝜎𝑇∞
3

3𝑘𝑠

)
𝜕2𝑇

𝜕𝑦2
, … … … … … . . (15) 

4. Similarity transformations 

To obtain the solutions of the governing equations, following von-Karmann, a dimensionless normal distance from the 

disk, 𝜂 = 𝑧(Ω 𝑣∞⁄ )1 2⁄  is introduced along with the following representations for the radial, tangential and axial 
velocities, pressure and temperature distributions: 

𝑢 = Ω𝑟𝐹(𝜂), 𝑣 = Ω𝑟𝐺(𝜂), 𝑤 = (Ων∞)
1
2𝐻(𝜂), 𝑝 − 𝑝∞ = 2𝜇∞Ω𝑃(𝜂),

 𝑇 − 𝑇𝑤 = (𝑇 − 𝑇∞)𝜃(𝜂), 𝐶 − 𝐶𝑤 = (𝐶 − 𝐶∞)𝜙(𝜂)
 … … … … … . . (16) 

where 𝑣∞ is a uniform kinematic viscosity of the fluid. Eqs. (6)–(8) and (10) in this case reduce to the system 

𝐻′ + 2𝐹 + 𝐻𝜃′(1 + 𝛾𝜃)−1𝑑 = 0 … … … … … . . (17) 

𝐹′′ + 𝑎𝛾(1 + 𝛾𝜃)−1𝜃′𝐹′ − [𝐹2 − 𝐺2 + 𝐻𝐹′](1 + 𝛾𝜃)𝑑−𝑎 

 −
𝑀

1 + 𝑚2
(𝐹 − 𝑚𝐺)(1 + 𝛾𝜃)−𝑎 + 𝐺𝑟𝑡𝜃 + 𝐺𝑟𝑐𝜙 (14) = 0

 … … … … … . . (18) 
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𝐺′′ + 𝑎𝛾(1 + 𝛾𝜃)−1𝜃′𝐺′ − [2𝐹𝐺 + 𝐻𝐺′](1 + 𝛾𝜃)𝑑−𝑎 

 −
𝑀

1 + 𝑚2
(𝐺 + 𝑚𝐹)(1 + 𝛾𝜃)−𝑎 + 𝐺𝑟𝑡𝜃 + 𝐺𝑟𝑐𝜙 = 0

 … … … … … . . (19) 

𝜃′′ + 𝑏𝛾(1 + 𝛾𝜃)−1𝜃′2
− 𝑃𝑟𝐻𝜃′(1 + 𝛾𝜃)𝑑−𝑏 

 +
𝑃𝑟4

3𝑅
(1 + 𝛾𝜃)−𝑏𝜃′′ + 𝑃𝑟𝛿𝜃(1 + 𝛾𝜃)−𝑏 = 0

 … … … … … . . (20) 

 𝜙′′ + 𝑐𝛾(1 + 𝛾𝜃)−1𝜙′𝜃′ − 𝑆𝑐𝐻𝜙′(1 + 𝛾𝜃)𝑑−𝑐 + 𝛼𝜙(1 + 𝛾𝜃)−𝑐 = 0 … … … … … . . (21) 

The boundary conditions (11) transform to  

𝐹(0) = 𝛾𝐹′, 𝐺(0) = 1 + 𝛾𝐺′, 𝐻(0) = 𝑊𝑠, 𝜃′(0) = 𝐵𝑖(𝜃(0) − 1), 𝜙′(0) = 𝐴𝑖(𝜙(0) − 1),

𝐹(∞) → 0, 𝐺(∞) → 0, 𝜃(∞) → 0, 𝜙(∞) → 0
… … … … … .. (22) 

5. Surface Wall Transfer 

The skin friction coefficients and the rate of heat transfer to the surface, which are of chief physical interest, are also 
calculated out. The action of the variable properties in the fluid adjacent to the disk sets up a tangential shear stress, 
which opposes the rotation of the disk. As a consequence, it is necessary to provide a torque at the shaft to maintain a 
steady rotation. To find the tangential shear stress 𝜏𝑡  and surface (radial) stress 𝜏𝑟 , we apply the Newtonian formulae: 

𝜏𝑡 = [𝜇
𝜕𝑣

𝜕𝑧
+

1

𝑟

𝜕𝑤

𝜕𝜗
]

𝑧=0
= 𝜇∞(1 + 𝛾)𝑎𝑅𝐸

1

2Ω𝐺′(0) … … … … … .. (23) 

and 

𝜏𝑟 = [𝜇
𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑟
]

𝑧=0
= 𝜇∞(1 + 𝛾)𝑎𝑅𝐸

1

2Ω𝐹′(0)  … … … … … .. (24) 

Hence the tangential and radial skin-frictions are respectively given by 

(1 + 𝛾)𝑎𝑅𝐸
1
2𝐶𝑓𝑡

= 𝐺′(0), 

(1 + 𝛾)𝑎𝑅𝐸
1

2𝐶𝑓𝑟
= 𝐹′(0), … … … … … .. (25) 

The rate of heat and mass transfer from the disk surface to the fluid is computed by the application of Fouriers law as 
given below 

𝑞 = − (𝜅
𝜕𝑇

𝜕𝑧
)

𝑧=0
= −𝜅∞∆𝑇(1 + 𝛾)𝑏 (

Ω

𝜈∞

)

1
2

𝜃′(0) 

𝐽 = − (𝐷𝑚
𝜕𝐶

𝜕𝑧
)

𝑧=0
= −𝐷∞∆𝐶(1 + 𝛾)𝑐 (

Ω

𝜈∞
)

1

2
𝜙′(0)  … … … … … .. (26) 

Hence the Nusselt number (Nu) and Sherwood number (Sh) are obtained as 

(1 + 𝛾)−𝑏𝑅𝑒−
1
2𝑁𝑢 = −𝜃′(0) 

(1 + 𝛾)−𝑐𝑅𝑒−
1

2𝑆ℎ = −𝜙′(0)  … … … … … .. (27) 

where 𝑅𝑒(= Ω𝑟2 𝜈∞⁄ ) is the rotational Reynolds number. In Eqs. (18)–(20), the gradient values of 𝐺, 𝐹, 𝜃 and 𝜙 at the 
surface are evaluated when the corresponding differential equations are solved satisfying the convergence criteria. 

𝑀 = 𝜎𝐵0
2 Ω𝜌∞⁄ , 𝑃𝑟 = 𝜇∞𝐶𝑝 𝜅∞⁄ , 𝛾 = (𝑇𝑤 − 𝑇∞) 𝑇∞⁄ , 𝑊 = 𝑤𝑤 √𝜈∞Ω⁄  
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𝑊𝑠 < 0 ⟹ suction, 𝑊𝑠 > 0 ⟹ injection at the surface 

6. Solutions 

Numerical solutions to the transformed set of coupled, nonlinear, differential Eqs. (13) – (16) were obtained, utilizing a 
modification of the program suggested by Nachtsheim and Swigert. Within the context of the initial value method and 
the Nachtsheim–Swigert iteration technique the outer boundary conditions may be functionally represented by the first 
order Taylors series as 

  

Figure 2 Effect of M on 𝑯(𝜼) Figure 3 Effect of 𝜸 on 𝑯(𝜼) 

  
Figure 4 Effect of 𝛿 on 𝐻(𝜂) Figure 5 Effect of s on 𝐻(𝜂) 

  

Figure 6 Effect of M on 𝑭′(𝜼) Figure 7 Effect of 𝑾𝒔 on 𝑭′(𝜼) 
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Figure 8 Effect of 𝜸 on 𝑭′(𝜼) Figure 9 Effect of 𝑮𝒓𝒕 on 𝑭′(𝜼) 

  
Figure 10 Effect of 𝐺𝑟𝑐 on 𝐹′(𝜂) Figure 11 Effect of M on 𝐺′(𝜂) 

  

Figure 12 Effect of 𝑾𝒔 on 𝑮′(𝜼) Figure 13 Effect of s on 𝑮′(𝜼) 
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Figure 14 Effect of R on 𝜽(𝜼) Figure 15 Effect of 𝑾𝒔 on 𝜽(𝜼) 

 

 
 

Figure 16 Effect of 𝛿 on 𝜃(𝜂) Figure 17 Effect of 𝐵𝑖 on 𝜃(𝜂) 

  

Figure 18 Effect of 𝜶 on 𝝓(𝜼) Figure 19 Effect of 𝑾𝒔 on 𝝓(𝜼) 
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Figure 20 Effect of 𝑨𝒊 on 𝝓(𝜼)𝒗 Figure 21 Effect of s on 𝝓(𝜼) 

7. Results and discussions 

As a result of the numerical calculations, the radial, tangential and axial velocities, with temperature and concentration 
distributions for the flow are obtained from Eqs. (17) – (22) and are displayed in Figures. 2–21 for different values of 𝛾 
(relative temperature difference parameter),  R (Thermal radiation parameter),  𝑊𝑠  (suction /injection parameter), 
𝐵𝑖 (Magnetic field at the edge of the boundary layer)  𝑀  (magnetic parameter),  𝐺𝑟𝑐 (Species Grashof number) and 
𝐺𝑟t (Thermal Grashof number) etc respectively. In the present analysis the fluid considered is flue gas. 

For flue gases (𝑃𝑟 =  0.64) the values of the exponents 𝑎, 𝑏 and 𝑑 are taken as 𝑎 = 0.7, 𝑏 = 0.83 and𝑑 =  −1.0. 𝛾 =
 ∆𝑇 𝑇∞⁄  is termed as the relative temperature difference parameter, which is positive for a heated surface, negative for 
a cooled surface and zero for the case of constant property. In order to highlight the validity of the numerical 
computations adopted in the present investigation, some of our results for constant property case have been compared 
with those of Kelson and Desseaux [22] in Table 1. The comparisons show excellent agreements, hence an 
encouragement for the use of the present numerical computations. 

The effects of 𝛾 on the radial and tangential velocity profiles are shown in Figures 3 and 8. In these Figures comparison 
is made between the constant property and variable property solutions from Figure. 3, it is seen that due to existence 
of the centrifugal force the radial velocity attains a maximum value close to the surface of the disk for all values of 𝛾. The 
largest maximum value of the velocity is attained in case of the constant property (𝛾 = 0). 

Figure 3 also shows that very close to the disk surface an increase in the values of 𝛾 leads to the decrease in the values 
of the radial velocity while the opposing experience existed in Figure 8 as the values of 𝛾 increase. The effects of suction 
and injection (Ws) for 𝛾  = 0.05, 𝑀 =  𝑚 =  0.05  and 𝑃𝑟 =  0.64  on the tangential, the axial velocity profiles, 
temperature and concentration profiles are shown in Figure 7, Figure 12, Figure 15 and Figure 19 respectively. For 
strong suction, tangential velocity and temperature decay rapidly away from the surface. It is no news that suction 
stabilizes the boundary layer as evident in these Figures. As for the injection (Ws > 0), from the Figures, it is observed 
that the boundary layer is increasingly blown away from the disk to form an interlayer between the injection and the 
outer flow regions. Also, it is found that temperature decay more slowly away from the surface. As in the case of 
temperature difference parameter, from Figure 12, we again observe that higher injection velocities have the tendency 
to destabilize the laminar flow. In Figure 7, it is observed that for high values of injection parameter (Ws = 4), the radial 
velocity near the disk is lower than that for smaller values of Ws. This is due to the fact that, with increasing values of 
Ws, the injected flow can sustain axial motion to greater distances from the wall. Then, near the wall, the radial flow 
which is fed by the axial flow is expected to decrease as the injected parameter increases.  

Imposition of a magnetic field to an electrically conducting fluid creates a drag like force called the Lorentz force. This 
force has the tendency to slow down the flow around the disk at the expense of increasing its temperature. This is 
depicted by the decreases in the radial, tangential and axial velocity profiles and increases in the temperature profiles 
as M increases as shown in Figure. 5, Figure. 6, and Figure 11 respectively.  

If the parameters𝛾,𝑊𝜕 and 𝑀 are held constants, 𝑚 illustrates the effect of Hall term on the flow. The parameter m has 
a marked effect on the velocity profiles as seen in Figure 5 and Figure 10. It is observed that, due to an increase in the 
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magnitude of m within 0–2.0 (not precisely determined), both radial and axial velocity profiles increase. But if the 
magnitude of m is increased beyond the limit of 2.0 (possibly), the velocity profiles show a decreasing effect. This is due 
to the fact that for large values of m, the term 1 (1 + 𝑚2)⁄  is very small and hence the resistive effect of the magnetic 
field is diminished. 

This phenomenon for small and large values of m has been effectively explained by Hassan and Attia [13]. From Figure 
6(b) we observe that the Hall parameter 𝑚  has slightly increasing effect on the tangential velocity profiles. 
The Hall current parameter m and magnetic interaction parameter M do not enter directly into the energy Eq. (16) but 
its influence come through the momentum Eqs. (14) and (15). Figure 5(d) and Figure. 6(d) show the small variation of 
temperature profiles for different values of M and m respectively. From Figure 5(d), it is observed that the value of non-
dimensional temperature profile increases a little with the increasing values of M and this also leads to a small rate of 
increase in the thermal boundary layer thickness. The temperature profile decreases with the increasing values of Hall 
parameter m is shown in Figure. 6(d). 

The influence of s is depicted by Figure 13 and Figure. 21, increasing the parameter influence velocity profiles by 
retarding both axial and tangential velocity profiles. 

The effect of 𝛿 which is heat generation/absorption parameter is illustrated in Figure 4 and Figure. 16 where it is shown 
to influence both temperature profile and radial velocity profile positively, respectively. This is true because increasing 
values of the parameter increases thermal boundary layer and increases rate of mass and heat transfer across the 
boundary layers. 

Figure 9 illustrates impact of thermal grashof numbers on tangential velocity profile. The graph shows that increasing 
values of the parameter increases tangential velocity profile. 

Figure 12, Figure. 17, Figure 18 and Figure. 20 show effects of thermal radiation parameter, thermal slip parameter, 
mass heat generation/absorption parameter and mass slip parameter respectively. Increasing both values of radiation 
and thermal slip parameters increase the thermal boundary layer and causes rise in temperature profile along the disk 
as illustrated in Figure 12 and Figure. 17. Both mass heat generation/absorption parameter (Figure. 18) and mass slip 
parameter (Figure. 20) reduce transfer of species along the disk. 

Table 1 Radial skin-friction, tangential skin-friction and the rate of heat transfer coefficients values comparison obtain 
𝑺𝒄 = 𝟎. 𝟔𝟎, 𝑷𝒓 = 𝟎. 𝟕𝟏, 𝒂 = 𝟎. 𝟕𝟏, 𝒃 = 𝟎. 𝟖𝟑, 𝒄 = 𝟎. 𝟔, 𝒅 = −𝟏  when 𝑴 = 𝟎, 𝒎 = 𝟎, 𝜸 = 𝟎, 𝑹 = 𝟎. 𝟎, 𝑮𝒓𝒕 = 𝟎. 𝟎, 𝑮𝒓𝒄 =
𝟎. 𝟎, 𝒔 = 𝟎, 𝜹 = 𝟎. 𝟎, 𝜶 = 𝟎. 𝟎 

𝑾𝒔 Maleque and Sattar (2005) Kelson and Desseaux [22] Current Work 

 𝑭’(𝟎) 𝑮’(𝟎) 𝜽′(𝟎) 𝑭’(𝟎) 𝑮’(𝟎) 𝜽′(𝟎) 𝑭’(𝟎) 𝑮’(𝟎) 𝜽′(𝟎) 

4.0 0.24304 0.02892 0.00001 0.24304 0.02892 0.00001 0.243063 -0.028926 -0.000119 

3.0 0.30915 0.06029 0.00058 0.30915 0.06029 0.00058 0.309183 -0.060308 -0.002390 

2.0 0.39893 0.13595 0.01105 0.39893 0.13595 0.01101 0.398981 -0.135962 -0.021414 

1.0 0.48948 0.30217 0.08560 0.48948 0.30217 0.08488 0.489359 -0.302051 -0.103882 

0.0 0.51014 0.61596 0.32953 0.51023 0.61592 0.32586 0.509440 -0.615664 -0.311832 

-1.0 0.38941 1.17563 0.79768 0.38957 1.17522 0.79305 0.389061 -1.175767 -0.685383 

-2.0 0.24328 2.04137 1.45065 0.24242 2.03853 1.43778 0.242380 -2.038738 -1.217534 

-3.0 0.16684 3.01477 2.14906 0.16558 3.01214 2.13559 0.165574 -3.012194 -1.805309 

-4.0 0.12766 4.00999 2.86448 0.12474 4.00518 2.84238 0.124737 -4.005196 -2.402249 

 

Finally, the values of radial and tangential skin frictions and the rate of heat transfer have been presented in Tables 1 
and 2. From Table 1, it can be seen that the values of the radial and tangential skin friction and the rate of heat transfer 
coefficients decrease for increasing values of injection velocity (Ws = 0 to 4). It also can be seen from this table that 
increasing the suction velocity (Ws = 0 to 4) leads to decrease in the radial skin friction coefficient while increase in the 
azimuthal (tangential) skin friction and the rate of heat transfer coefficients. It can be seen from Table 2 that the radial, 
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the tangential and the rate of heat transfer coefficients decrease with the increasing values of temperature difference 
parameter𝛾. 

Table 2 Radial skin-friction, tangential skin-friction, the rate of heat transfer and rate of mass transfer coefficients 
obtained for various values of 𝑴, 𝑹, 𝑾𝒔, 𝜸 and 𝒔 

Para 𝑭’(𝟎) 𝑮’(𝟎) 𝜽′(𝟎) 𝝓′(𝟎) 

𝑀 = 0.0 0.424583 -0.996991 -0.086776 -0.083648 

𝑀 = 1.0 0.325602 -1.357740 -0.085974 -0.083099 

𝑀 = 4.0 0.256346 -1.979484 -0.085149 -0.082598 

𝑀 = 8.0 0.241231 -2.461821 -0.084804 -0.082405 

𝑅 = 0.1 0.323160 -1.217599 -0.085927 -0.089405 

𝑅 = 0.4 0.337693 -1.209021 -0.086062 -0.087012 

𝑅 = 0.8 0.354877 -1.199511 -0.086228 -0.084416 

𝑅 = 1.0 0.362491 -1.195433 -0.086302 -0.083316 

𝑊𝑠 = 2.0 0.561859 -0.204136 -0.024916 -0.061714 

𝑊𝑠 = 1.0 0.569094 -0.420139 -0.052347 -0.070487 

𝑊𝑠 = −1.0 0.362491 -1.195433 -0.086302 -0.083316 

𝑊𝑠 = −2.0 0.217889 -1.764740 -0.091887 -0.087698 

𝛾 = −0.1 0.362305 -1.237583 -0.086386 -0.083647 

𝛾 = 0.0 0.362080 -1.115373 -0.086167 -0.082642 

𝛾 = 0.5 0.360305 -1.023136 -0.086061 -0.081779 

𝛾 = 0.7 0.352252 -0.835211 -0.086094 -0.079650 

𝑠 = 0.0 0.489447 -1.352393 -0.086186 -0.083243 

𝑠 = 0.5 0.092528 -0.554129 -0.086328 -0.083327 

𝑠 = 1.0 0.048738 -0.345588 -0.086281 -0.083296 

𝑠 = 1.5 0.024992 -0.197256 -0.086251 -0.083276 

Table 3 Radial skin-friction, tangential skin-friction, the rate of heat transfer and rate of mass transfer coefficients 
obtained for various values of 𝑮𝒓𝒕, 𝑮𝒓𝒄, 𝜹, 𝑨𝒊, 𝑩𝒊 and 𝑷𝒓 

Para 𝑭’(𝟎) 𝑮’(𝟎) 𝜽′(𝟎) 𝝓′(𝟎) 

𝐺𝑟𝑡 = 0.0 0.286915 -1.227351 -0.085693 -0.082921 

𝐺𝑟𝑡 = 0.5 0.362491 -1.195433 -0.086302 -0.083316 

𝐺𝑟𝑡 = 1.5 0.493700 -1.135626 -0.087115 -0.083902 

𝐺𝑟𝑡 = 2.5 0.608077 -1.079851 -0.087659 -0.084333 

𝐺𝑟𝑐 = 0.1 0.330669 -1.210164 -0.086085 -0.083172 

𝐺𝑟𝑐 = 0.4 0.362491 -1.195433 -0.086302 -0.083316 

𝐺𝑟𝑐 = 0.8 0.401903 -1.176640 -0.086547 -0.083484 

𝐺𝑟𝑐 = 1.4 0.456200 -1.149885 -0.086849 -0.083699 

𝛿 = −0.4 0.350675 -1.201985 -0.086191 -0.085101 

𝛿 = −0.2 0.362491 -1.195433 -0.086302 -0.083316 
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𝛿 = 0.2 0.411139 -1.168699 -0.086739 -0.076122 

𝛿 = 0.4 0.469860 -1.135675 -0.087203 -0.067305 

𝛼 = −0.5 0.410980 -1.177607 -0.077315 -0.083598 

𝛼 = −0.2 0.371109 -1.192154 -0.084607 -0.083365 

𝛼 = 0.5 0.336618 -1.206056 -0.092112 -0.083180 

𝛼 = 2.0 0.323832 -1.212424 -0.096316 -0.083129 

𝐴𝑖 = 0.2 0.392792 -1.181035 -0.152400 -0.083446 

𝐴𝑖 = 0.4 0.532489 -1.110854 -0.508742 -0.083973 

𝐴𝑖 = 1.0 0.560052 -1.096326 -0.588260 -0.084065 

𝐴𝑖 = 5.0 0.593478 -1.078514 -0.688764 -0.084173 

𝐵𝑖 = 0.1 0.362491 -1.195433 -0.086302 -0.083316 

𝐵𝑖 = 0.2 0.412289 -1.158716 -0.086616 -0.143159 

𝐵𝑖 = 0.4 0.475580 -1.110520 -0.086967 -0.223883 

𝐵𝑖 = 0.8 0.541077 -1.059091 -0.087286 -0.312436 

𝑃𝑟 = 0.01 0.516680 -1.117638 -0.087634 -0.063022 

𝑃𝑟 = 0.71 0.362491 -1.195433 -0.086302 -0.083316 

𝑃𝑟 = 4.00 0.296330 -1.236819 -0.085734 -0.095184 

𝑃𝑟 = 7.00 0.291153 -1.242083 -0.085721 -0.097037 

Nomenclature 

Parameter Definition  

x, y, z coordinates 

u, v, w flow velocity components 

P, P∞, Fluid pressure, constant pressure 

𝑟, 𝜙, 𝑧  cylindrical polar coordinates 

γ relative temperature difference parameter 

T, Tw, T∞ fluid, uniform, and constant temperature 

q flow velocity 

B, Bo constant magnetic flux density, Induced magnetic field, 

Bi Magnetic field at the edge of the boundary layer 

J, E  electric field 

∇  Del or gradient symbol 

Ω constant angular velocity 

U, Uo, Uw Fluid, uniform and plate’s velocity 

a, b, c, d arbitrary exponent constants 

𝑘𝑠  Roseland mean absorption coefficient 

𝜇∞  uniform viscosity of the fluid 

𝜅∞  uniform thermal conductivity of heat 

q, qr Fluid velocity, and fluid heat flux  
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ƞ Dimensionless variable 

 𝐵𝑖, s, 𝐴𝑖 Thermal, Velocity and mass slip parameter 

Q Heat source 

ʋf fluid kinematic viscousity 

µ, 𝜇∞ Viscosity,  Velocity diffusivity 

RE, Re, Rem,  Local Reynolds number, rotational Reynolds number and small 
magnetic Reynolds number 

𝜏𝑡 , 𝜏𝑟 tangential shear stress, surface (radial) stress 

C, C∞, Cf, Fluid concentration, constant concentration, and Skin friction 
coefficient 

Nu Nusselt number 

n normal direction to the wall 

Ws Suction/injection parameter 

Sh Sherwood number 

H Magnetic field parameter 

𝐺𝑟𝑡, 𝐺𝑟𝑐 Thermal, species Grashof number 

λ mean free path 

α Heat bsorption/generation parameter 

β Hall factor 

𝛿  Heat generation/absorption 

𝑣∞  uniform kinematic viscosity of the fluid 

ξ tangent momentum accommodation coefficient 

Pr Prandtl number 

R Thermal radiation parameter 

e, n  charge of electron, electron concentration per unit volume 

Sc Schmidt number 

H, F, G Radial, tangential, axial velocity 

θ Dimensionless fluid temperature 

𝜙  Dimensionless fluid concentration 

 𝜌, 𝜌∞ Density, constant pressure 

µ Dynamic viscosity 

K, k permeability parameter, thermal conductivity 

Ce, Cp Constant pressure specific heat 

 ρ cp Heat capacity 

 σ, σ∗ Electrical conductivity, Stefan Boltzmann constant 

M, m Magnetic, Hall current parameter 

R, Pr Radiation, prandtl number 

Dm,  Mass Diffusion  

Ww, Ut, Kn tangent velocity, Knudsen Number 
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8. Conclusion 

In this paper, the effects of variable properties along with the effects of suction/injection and Hall current on a steady 
MHD convective flow induced by an infinite rotating porous disk were studied. The Nachtsheim and Swigert iteration 
technique based on sixth-order Range–Kutta and Shooting method has been employed to complete the integration of 
the resulting solutions. 

The following conclusions can be drawn as a result of the computations: 

 Variable properties (𝛾) has marked effects on the radial and axial velocity profiles. Close to the surface of the 
disk these velocities slow down as c increases but shortly after they increase with the increase of 𝛾. 

 Due to the existence of the centrifugal force, the radial velocity reaches a maximum value close to the surface 
of the disk. 

 Close to the boundary positive values of 𝛾 is found to give rise to the familiar inflection point profile leading to 
the destabilization of the laminar flow. Strong injection also leads to the similar destabilization effect. 

 The effect of Lorentz force or the usual resistive effect of the magnetic field on the velocity profiles is apparent. 
 Hall parameter m has an interesting effect on the radial and axial velocity profiles. For large values of 𝑚(> 2.0), 

the resistive effects of the magnetic field is diminished and hence the radial and axial velocity profiles decreases 
with the increase of 𝑚. 

 Increasing the values of 𝛾 (1.0 to 1.0) lead to the decrease in radial and tangential skin friction coefficients and 
the rate of heat transfer coefficient for fixed values of 𝑊𝑠, 𝑀, 𝑚 and 𝑃𝑟. 
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