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Abstract 

Software security is concerned with the protection of data, facilities and applications from harm that may be occasioned 
by malware attacks such as password sniffing, viruses and hijacking. It is a system-wide concept that takes into account 
both security mechanisms such as access control as well as the design for security, such as a robust design that renders 
software attack complicated. It may encompass building of secure software, which comprises of the designing of 
software to be attack-resistant, ensuring that software is error-free, and educating software developers, architects, and 
users about the building of secure artifacts. In this regard, insecure software negatively affects organization’s  
reputations with customers, partners, and investors. The goal of this paper is to investigate some of the issues that make 
the software insecure, as well as the approaches that have been developed to boost software quality and security. The 
outcomes indicate that various models, techniques, frameworks and approaches to software quality have been 
developed over the recent past. However, only a few of them give reliable evidence for creating secure software 
applications. 
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1. Introduction

Software systems have been extensively deployment in various domains and have become an integral part of human 
life. Most of these software systems process large and critical data which needs to be secured [1]. In addition, they are 
required to satisfy user needs or functional requirements. The rapid developments in information and communication 
technologies (ICTs) have made software security a key concern. Such developments include Internet of Things (IoT), 
Internet of Every Things (IoE), the advancement of Internet-based software systems, cloud computing, social 
networking, and location-based services. Moreover, new business paradigms, versatile customer requirements, rapid 
advancement in ICTs, and new regulations are making a software application evolve [2], [3]. In this complex software 
deployment scenarios, misuse of software [4], [5] can lead to various outcomes, such as sabotage in the communication 
sector, heavy economic loss in the financial sector, critical data theft in databases [6], as well as misuse of software in 
the missile controlling systems. All these outcomes have the potential of endangering human life. As explained in [7], 
software security features play a critical role in the security designs. These features help to enhance software security 
as well as helping to uphold software quality [8]. However, according to [9] and [10], software security ensures that the 
Confidentiality, Integrity, and Availability (CIA) of data and services are not interfered with. This can be achieved when 
security is considered during all Software Development Life Cycle (SDLC) phases. 

Software security deals with the protection of data, facilities and applications from harm caused by malware attacks 
such as password sniffing, viruses and hijacking. The malicious activities are mounted by various types of attackers, 
including hackers, crackers, domestic cyber-terrorists, industrial spies and international military [11], [12], [13]. As 
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pointed out in [14], software security is the capability of the software to resist, tolerate and recover from events that 
threaten its dependability. However, authors in [15] treat software security as the process of evaluating an application 
to discover risks and vulnerabilities of this application and its data [16], [17]. It is a system-wide concept that takes into 
account both security mechanisms such as access control as well as the design for security, such as a robust design [18] 
that makes software attack difficult. Basically, it involves the building of secure software, which comprises of the 
designing of software to be secure, ensuring that software is secure [19], and educating software developers, architects, 
and users about the building of secure artifacts. In so doing, it defends against software exploit by getting by the design 
right and avoiding common mistakes [20]. As explained in [21], secure software deals with the building of software that 
can withstand strong attacks, as well as maintaining basic security structures such as confidentiality, integrity, and 
access to sensitive assets. These three security structures are referred to as the CIA such that any software that enlists 
the CIA can be considered as secure software. With regard to software security characteristics, authors in [22] have 
defined it as the degree to which a product or system protects information and data. This means that people, other 
products or systems have the degree of data access that is appropriate to their types and levels of authorization [23]. It 
should also preserve features of secure software such as confidentiality, integrity, accountability and authenticity [24]. 

The authors in [25] have identified security as one of the most critical aspects of software quality. This is because 
software security incorporates processes that create and develop software that assures the integrity, confidentiality, 
and availability of its code, data, and services [26], [27], [28], [29]. As software development becomes more complex, 
distributed, and concurrent, security issues have been noted to have greater influence on the quality of the developed 
software [30]. From the empirical software engineering perspective, metrics of developer behavior such as unfocussed 
contribution [31], different development priorities [32], code complexity [33], [34] and large code changes [35] are 
often deployed to explain code quality. Unfortunately, the deployed software is continuously under the attack of hackers 
who exploit vulnerabilities. Over the recent past, there has been an increase in these attacks [36]-[39]. As discussed in 
[40] and [41], the elimination of bugs in the form of buffer overload and incompatible error management are major 
issues in software security [42]. To incorporate security into the software engineering paradigm, it should be put into 
consideration from the start of the SDLC [43]-[47]. This has led to the emergence of Secure Software Engineering (SSE) 
concept, which deals with the process of designing, building, and testing software. This ensures that this software is 
secure. It includes secure SDLC processes and secure software development (SSD) methods [48], [49],[50], [51]. 

As explained in [52], a software project might have different development practices, depending on its size. For instance, 
big software projects may involve developers working in parallel to increase the speed of development [53-[56]. In 
addressing both the technological and human aspects that may be involved, there is need to understand SSE methods. 
Basically, SSE is concerned with the building of software that can withstand potentially aggressive attacks. In addition, 
SSE encompasses maintaining basic security features such as privacy, integrity, and access to sensitive assets [57]. As 
the best practice, SSE recognizes that software security is a crucial factor that needs to be taken into account during the 
start of the software life cycle [58]-[61]. Since security problems in the SDLC are difficult to address, SSE has become a 
significant paradigm in the development of secure software for the software industry in recent years. This is supported 
by the authors in [62] and [63] who explain that during the entire software development life cycle, software security is 
an essential factor that needs to be addressed. Unfortunately, security is characterized as a non-functional requirement, 
and hence security checks [64] are usually carried out during the final phases of SDLC. It is therefore important for 
software security to be taken care of even in the first phase of the software development process. In a nutshell, software 
security is the key to the software's success, especially in today's fast-paced and technology-oriented world. Therefore, 
the incorporation of security at any level of the SDLC has become an urgent requirement. Unfortunately, software 
development organizations regard security as an afterthought issue, and hence continue to face security threats [25], 
[65], [66], [67], [68], [69], [70]. The goals of this current work include the following: 

 Offer a review of the various causes of software vulnerabilities 

 Establish the rationale behind the rising need for software quality and security 

 Investigate the various approaches geared towards software quality and security 

The rest of this paper is structured as follows: Section 2 discusses the various causes of software vulnerabilities while 
Section 3 expounds on the rising need for software quality and security. On the other hand, Section 4 explains the various 
approaches geared towards software quality and security while Section 5 presents some research gaps and future 
research directions. Finally, Section 6 concludes this paper. 
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2. Causes of software vulnerabilities 

One of the main reasons for widespread vulnerabilities [71] is failure to make security a key priority [10]. This is because 
even diligent businesses use the fix and penetrate approach in which security is accessed after completing the project 
[72]-[74]. The drawback of this method is that the application users do not apply these patches. As pointed out in [75] 
and [76], a secure software should not be accessed, updated, or targeted by any unauthorized users [77]. As such, 
software that has no vulnerabilities [78] is considered highly stable, whereas software that has at least one vulnerability 
is considered vulnerable. As pointed out in [79], SDLC endeavors to produce high-quality and low-cost applications in 
the shortest amount of time. This is achieved by offering a well structured step flow that aids enterprises in easily 
produce high-quality, well-tested, and ready-to-use production of software [80]-[82]. The common phases of SDLC 
include requirement, design, coding, testing, deployment, and maintenance [83]. Basically, all these phases depend on 
each other are of equal importance. Therefore, if security is not incorporated during these phases of SDLC, then the 
resultant product will be vulnerable to security threats [84], [85]. To counter this, secure SDLC processes must be 
followed to ensure that security-related activities are an integral part of the overall development effort [75], [86], [87]. 
However, the authors in [88] have explained that security protection is not considered in the overall system 
development lifecycle and hence numerous security breaches can occur [89], [90], [91], [92]. 

The authors in [62] and [93]-[96] have identified a number of software security issues during the coding phase of SDLC. 
On the other hand, some of the most common malware attacks include viruses, trojan virus, brute force attack, DNS 
hijacking, replay attacks [97], denial of service, flooding attacks, slicing attacks and cookie poisoning. These attacks 
negatively affect the processes of secure software development [11], [13], [98], [99]. In MITRE's Common 
Vulnerabilities Exposures database, the latest classification of common defects by type is provided. Here, the most 
common forms of security vulnerabilities are identified as weak encryption, explicit password storage, insecure 
communication [100], and synchronization errors [101]. However, the authors in [13] and [102] have identified 
invalidated redirects and forwards, improper use of secure APIs [103], weak encryption, insecure communication, man 
in the middle [104], and bandwidth usage are some of the most common security issues that hamper the communication 
and encryption processes. 

During the software development process, majority of the security attacks are possible due to implementation flaws 
such as improper input validation [105], improper authentication and authorization mechanisms [106], improper 
session management [107], and other vulnerabilities such as Session-Id vulnerable or theft, incorrectly implemented 
logouts, lock failed attempts per browser session, peer-user session restriction, and log replay feature. All these mishaps 
compromise the application's intended functionality [11], [48], [108]. However, spoofing [109], tampering, repudiation 
[110], information disclosure, denial of services [111], elevation of privilege and failure to restrict uniform resource 
locator (URL) access are some of the most common security issues that hamper the process of secure authorization and 
authentication [76], [112], [113], [114], [115], [116], [117]. Cross-site scripting, cross-site request forgery, format string 
problems, code and command injection, auto-complete attribute not enabled have been noted to be some of the software 
security risks in the deployment phase. On the other hand, software security risks in maintenance phase have been 
identified as POST change requests for GET, POST directives with invalidated parameters, as well as a database injection 
vulnerabilities [48], [93], [108], [118]-[123]. Here, incorrect input validation [124] refers to the lack of or incorrect 
substantiation of input provided by a user via the application's user interface. On the other hand, injection attacks [125] 
take advantage of the lack of input validation controls to allow malicious inputs to be passed in, which can be used to 
obtain elevated rights, alter data, or crash a system [126]-[128]. On the other hand, code injection attacks can breach 
data security, cause a loss of services and harm thousands of users' systems [118]. 

The vulnerabilities in software systems have been noted to include outdated software or fimware, default usernames 
and password, password conjuncture, and the inability to run software updates or change usernames and passwords. 
These credentials are leveraged to gain initial access to systems of corporate targets which can then be further exploited 
[50], [102], [129]. As explained in [130], software testing is the most time-consuming, complicated, and costly process 
of the SDLC. This phase is an important component of improving the efficiency [131] of software development projects 
[1]. Although it is an essential part of software development, rigorous testing is not normally the focus of software 
engineering education [132]. As a result, software developers often regard software testing as a liability, lowering 
overall software quality [133]-[135]. According to [136], developing secure software systems is dogged by many 
challenges. These include designing authentication protocols [137], improper configuration management, building 
strong cryptosystems [138], devising effective trust models and security policies [139]. Configuration management is 
an important component during secure maintenance and operation phase [140]. Some of the common software security 
risks which affect deployment phase of the SDLC have been identified in [1], [48], [62], [136], [140], [142]. 
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The authors in [143] have defined threat modeling as a systematic method for identifying threats that may compromise 
security [144]. As such, it is considered a well-known accepted practice by the software testing industry [145]. The aim 
of this phase is to find possible bugs and errors in the system and eliminate them. Some of the software security risks 
during software testing phase of SDLC have been discussed in [48], [86], [146], [147], [148], [149]. As explained in [150], 
software development iterations are of limited time, often lasting for few weeks. This makes fitting security activities 
such as security requirement elicitation challenging since they are often time-consuming [151]. In addition, defining 
security policies takes time, which raises the cost of software development. Some of the common issues due to time 
pressure in the secure software development process are identified in [118], [141], [150]. 

The authors in [152] point out that vulnerabilities of design level works as the major sources of security risks in software 
systems. In fact, 50% of software defects are normally identified and detected in the designing phase of SDLC [153]-
[155]. As such, reducing the risks at this phase may minimize the efforts in other phases. 

3. The rising need for software quality and security 

Insecure software negatively affects organization’s reputations with customers, partners, and investors. It can also 
increases costs as organizations are forced to repair unreliable applications. In so doing, it can potentially delay other 
development efforts as limited resources [156] are assigned to address current software deficiencies [29]. The current 
literature on requirement security has yielded different security risks that might occur if security is not incorporated 
from the beginning [157]. For instance, some security risks inherent in the requirement phase of SDLC are discussed in 
[10], [83], [112], [150], [158], [159]. In addition, design flaws have been noted to be one of the most common sources 
of security threats [160] in software systems [75], [161]. As pointed out in [162], most of the software bugs are 
discovered during the design process of the SDLC. This is because the design process of the SDLC serves as the 
foundation for designing a secure software system [163]. Some of the most common security challenges encountered 
during software design have been identified in [50], [75], [161], [113], [115], [164]. As such, reducing risks in this step 
can minimize the effort needed in subsequent phases [1], [165]. 

Each phase of the SDLC must incorporate appropriate security protections [166], analyses, and countermeasures that 
result in more secure code being released [94], [167]. As discussed in [168] and [169], the current trend is for 
developers to import functionality from third party free open-source software (FoSS) libraries by including them into 
their projects as dependencies [168], [169]. Such software engineering practice permits developers to use FoSS libraries 
as building blocks. This can potentially reduce development cost and time. According to [170], even for proprietary 
software, the fraction of homegrown code decreased to 5%. The reports from the software industry show that third 
party code inherited through dependencies is four times larger than the size of the own code base as an industry average 
[171]. In today’s software ecosystem, homegrown code is only a fraction of the total code base that is shipped to 
customers [171], [172]. However, a large leverage means that several libraries are deployed, which may require 
integration and update costs. In addition, developers rarely update the third party libraries they are using [173], [174]. 
This is attributed to the possibility of introducing incompatible, breaking changes [175]. Using many libraries increases 
the attack surface, and third-party libraries are known to introduce functionality bugs and security vulnerabilities [176] 
into the projects that use them [174], [177]. In some cases, dependent projects keep using outdated components for a 
decade or more [178] thus increasing the window of possible exploitations. 

Literature has shown that developers have a habit of reacting to the issues connected with their own code of their 
libraries or their direct dependencies [175], [179]. However, transitive dependencies are known to introduce security 
vulnerabilities to some extent [171], [177], [180]. A number of technical studies [173], [174], [177], [180], [181] have 
shown that FOSS dependencies, although being widely used by both commercial and FOSS projects, are not often 
maintained properly. For instance, large share of projects have outdated dependencies. 

4. Approaches to software quality and security 

Various models, techniques, frameworks and approaches to software quality have been developed over the recent past. 
These include Capability Maturity Model Integration (CMMI), Microsoft Software Development Life Cycle (MS-SDL), 
misuse case modeling, abuse case modeling, Knowledge Acquisition for Automated Specification, System Security 
Engineering Capability Maturity Model (SSE-CMM), Open Web Application Security Project (OWASP), and Secure 
Tropos Methodology [165]. Apart from these approaches, security testing technique has been identified as one of the 
most significant, effective, and commonly applied measures for the improvement of software security. It has been 
employed to identify the vulnerabilities and to ensure the functionality of security. For the identification of threats [182] 
that might compromise security, threat modeling is deployed. As explained in [108], improper authentication and 
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authorization mechanisms refer to the erroneous implementation of authentication functions and access-control 
policies. In this regard, authentication and authorization are critical components of basic security processes. As 
discussed in [183], these two concepts are particularly important in the production of secure software. 

The focus of conventional security mechanisms is on network systems. Many organizations spend huge amounts of 
money to make their network secure. These mechanisms include Intrusion detection system (IDS), firewalls, encryption, 
antivirus, and antispyware [48], [83], [184]. As explained in [86], building secure software means developing software 
that functions properly even under malicious attacks. This includes addressing the security challenges through the 
whole SDLC, especially in the early stages during the design phase [185]. The outcome is the reduction in the risk of 
overlooking critical security requirements or introducing security flaws throughout the implementation process. To 
build and deploy a secure software system, there is need for the integration of security features into the life cycle of 
application development and align current SSE methods [186], [187]. However, most organizations view security as a 
post-development process, and hence security is not considered during the pre-development phase. Consequently, 
there is no approval for the method to be used, and hence there is little understanding of the need for secure software 
development [188]. There are also few facts about the effectiveness [189] of existing approaches to dealing with real 
problems. In addition, there is limited view of how the existing approaches contribute to the assessment of safety 
concerns [190].  

According to [191], threats put systems at greater risk for major losses that can be difficult to recover. The majority of 
software programs are designed and deployed without attention to protection desires [192], [193]. Hidden attack risks 
within or outside the organization are emerging day-by-day, resulting in huge financial loss, as well as confidentiality 
[194] and credibility losses. This is because they put the availability and integrity of organizational data at risk. The 
authors in [191] and [195] explain that the coding phase of SDLC is more prone to errors, as the programmer leaves 
some bugs unintentionally. This increases software vulnerability to more attacks. Such vulnerabilities may include 
denial of services, code execution, memory corruption, data loss, cross-site scripting, improper access control, SQL 
injection, integer overflow and buffer overflow [196]. To curb these issues, researchers in the software industry have 
adopted a wide variety of software security practices, approaches, and methods [197], [198], [199], [3], [200].  

Several companies have created maturity models and frameworks to assess the degree of maturity of their software 
security practices. For instance, Correctness by Construction is a technique for developing high integrity software [201]. 
The seven main principles of Correctness by Construction include the following: expect requirements to change, know 
why you are testing, eliminate errors before testing, write software that is easy to verify [202], develop incrementally, 
some aspects of software development are just plain hard, the software is not useful by itself. On the other hand, the 
authors in [203] and [204] recommend seven touchpoint operations, which include abuse cases; security requirements; 
architectural risk analysis; code review and repair; penetration testing; and security operations. The aim of these 
touchpoints is to create secure software, all of which are connected to software development artifacts. Similarly, 
Microsoft has developed the Microsoft Trustworthy Computing Security Development Lifecycle [205], which adds a set 
of security practices to each step of its software development process. On the other hand, Secure Software Development 
Process Model (S2D-ProM) [190] has been developed to act as a strategy-oriented process model that offers guidance 
and support to developers and software engineers at all level, from beginners to experts, to build secure software. 
Similarly, TSP Secure (Team Software Process for Secure Software Development) [206] has been developed specifically 
for software teams. It endeavors to help them create a high-performance team and prepare their work to produce the 
best results. The TSP Secure focuses directly on the security of software [207] in three ways: planning, development 
and management, and training for developers about security-related aspects and other team members. 

As explained in [208], Comprehensive, Lightweight Application Security Process (CLASP) is a straightforward process 
that consists of 24 high-level security activities that can be completely or partially integrated into software during the 
SDLC. In CLASP threat modeling and risk analysis [209] is performed during requirement and design phase. In the 
design and implementation phase, it suggests secure design guidelines and secure coding standards [210], [211], [212], 
[213]. Inspections, static code analysis, and security testing [214] are performed in the assurance phase [215]. On the 
other hand, authors in [75] have conducted a Multi-vocal literature review to identify the best practices for designing 
secure software. Based on identified best practices, a framework Secure Software Design Maturity Model (SSDMM) was 
developed. Similarly, the Security Quality Requirements Engineering (SQUARE) methodology has been developed to 
facilitate elicitation, classification, and prioritization of security specifications for information technology systems and 
applications [216]. In addition, Appropriate and Effective Guidance for Information Security (AEGIS) has been 
developed to evaluate device assets and their relationships. Thereafter, it moves on to risk analysis, which defines 
weaknesses, threats, and risks [217], [218]. According to [219], the Secure Software Development Model (SSDM) 
security training offers stakeholders in software development with adequate security education [220]. During the 
requirements process of SSDM, a threat model is used to identify and their capabilities. 
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As discussed in [113], Microsoft uses STRIDE to model threats to their systems. Here, threats are defined by looking into 
the possibilities of spoofing identity, tampering with data, repudiation, information leakage, denial of services [221], 
and elevation in the given situation. The authors in [222] explain that numerous security approaches have been 
developed to assist the software engineers in evaluating security risks, such approaches include Attack Trees, 
combining goal-orientation and use-case modeling (an effective method of software requirement engineering) [223] 
and Secure Tropos (a security-oriented extension to the goal-driven requirements engineering methodology) [224]. 
Other approaches allow the software engineers to address these risks by reusing design decisions [225] or sustaining 
the decision making process [226]. Other software security approaches are McGraw's Secure Software Development 
Life Cycle (SSDLC) process [40], Microsoft Software Development Life Cycle (SDL) or Trustworthy Computing Security 
Development Life Cycle, Security Requirements Engineering Process (SREP) [227], Aprville and Pourzandi's Secure 
Software Development Life Cycle process, Core security requirements artifacts [228], Comprehensive, Lightweight 
Application Security Process (CLASP), Haley framework [229], and Security Quality Requirements Engineering 
(SQUARE). In addition, the authors in [208] explain that OWASP Security Verification Standard (ASVS) version 3.0 is a 
community effort to establish a framework of security requirements and controls [230] that focus on normalizing the 
functional and non-functional security controls required when designing, developing, and testing modern web 
applications. Basically, the ASVS comprises of a list of application security requirements or tests used by architects, 
developers, testers, security professionals, and even consumers to define what a secure application is. 

On the other hand, ISO/IEC 27001:2005 covers all types of organizations such as commercial enterprises, government 
agencies, and non-profit organizations [231], [232], [233]. It specifies the requirements for establishing, implementing, 
operating, monitoring, reviewing, maintaining, and improving a documented Information Security Management System 
[234] within the context of the organization’s overall business risks. In addition, it stipulates requirements for the 
implementation of security controls [235], [236] customized to the needs of individual organizations or parts thereof. 
Its design permits the selection of adequate and proportionate security controls that protect information assets and 
give confidence to interested parties. On their part, the authors in [237] explain that browser identity indicators such 
as uniform resource locators (URLs) and certificates help users identify phishing, social engineering, and other attacks. 
However, previous lab studies and surveys have suggested that older browser identity UIs are not effective security 
tools. Modern browser identity indicators have also been noted to be ineffective. Therefore, to design better identity 
indicators, browsers need to focus on active negative indicators, explore using prominent UI as an opportunity for user 
education, and incorporate user research into the design phase. Such goals have been achieved by the works in 
[197],[198] and [199]. However, most of these studies address only maintenance, evolution, implementation and 
feedback phases. The authors in [87] point out that the requirement stage in the SDLC is the primary stage where the 
initial plan for software is made. It necessitates a set of initial specifications, which are collected from various sources. 
To accomplish this, a number of methods such as brainstorming, group sessions, and interviews are used.  

The aim of Secure requirement engineering (SRE) is to offer complete security by implementing basic security functions 
such as confidentiality, integrity, and availability. This phase involves activities such as security requirements 
identification and inception, documentation, elicitation, analysis and negotiation, mapping, verification and validation, 
prioritization and management, authentication, and authorization [10], [112], [238]. The commonly deployed best 
practices for handling security issues during the requirement stage of SDLC have been highlighted in [10], [86], [83], 
[Keshta et al., 2017], [112], [159], [98], [238], [239], [240]. As explained in [1] and [162], the design phase is one of the 
most creative stages of the SDLC, and is therefore important from the viewpoint of security [241]. The authors in [1] 
have identified design-level flaws as the most common sources of security risks in software systems, where 50% of the 
software defects are identified and detected during this phase. Here, the security design architecture stipulates design 
methods such a strongly typed programming, least privilege, develop threat modeling, analyze and minimize attack 
surface. As such, the software developer must consider security best practices during design in a manner that is 
appropriate and secure. Some of the most widely used design security practices that should be followed when designing 
secure software have been discussed in [1], [86], [76], [29], [161], [162], [113], [115], [164], [239], [242]. 

The authors in [29] have pointed out that 80% of system penetration is due to coding errors in commercial software. 
Increased bugs, security issues, and costs are all associated with bad code. Due to time-to-market pressures, software 
developers are under pressure to meet deadlines. In addition, there is lack of security expertise and developers fail to 
follow secure code guidelines. An assumption made here is that perimeter security is sufficient to protect applications. 
To address this issue, security code reviews need to be conducted while the code is being checked for functionality, 
whether manual or automated. The goal here is to verify the fundamental tenets of software security [86], [243]. In 
addition, the programmers must be aware of implementation-level vulnerabilities when writing secure code and they 
must utilize the documentation and guidelines created in earlier stages to help them write secure code. As such, the 
authors in [48], [29], [86], [149], [239], [244], [245] and [246] have discussed some of the prescriptive actions to 
increase security during the coding phase of SDLC. As explained in [130], software testing is the most time-consuming, 
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complex, and costly phase of the SDLC, whose goal is to identify and fix any bugs or errors in the system. Here, security 
testers employ misuse cases, threat models and design documents to detect potential attacks and the consequences of 
successful attacks. Upon the completion of security testing, test documents containing security test cases [247] and a 
prioritized list of vulnerabilities resulting from automated and manual dynamic analysis are created. In this regard, 
some of the prescriptive actions to increase security during the testing phase of SDLC are described in [48], [86], [87], 
[146], [147], [148], [149], [239], [248], [249]. 

As discussed in [99] and [158], after the software is deployed into its operational environment, it is critical to monitor 
responses to flaws and vulnerabilities of the system to check for new evolved security patterns. After the identification 
of new security patterns, the same should be included in the requirement stage for further security improvements in 
subsequent releases. Here, static analysis and peer review are two useful procedures for mitigating or minimizing newly 
discovered vulnerabilities [250], [251]. Thereafter, final security reviews and audits are performed during the secure 
deployment phase, in which customer satisfaction is vital. Some of the prescriptive actions to increase security [252] 
during the deployment phase of SDLC are identified in [48], [29], [149], [239], [253], [254]. Before deploying software, 
administrators must understand the software’s security stance such that some of the identified faults that were not 
addressed previously are revisited, prioritized, and corrected after deployment. This is followed by the tracking of new 
threats by the maintenance team such that they are addressed promptly to prevent security breaches [118]. Some of 
the approaches to increase security during the maintenance phase of SDLC are identified in [29], [150], [239], [253], 
[255], [256]. As discussed in [15], security activities during the requirement phase serve three purposes. To start with, 
initial security requirements [257], [258] are identified and implemented. Secondly, with the security requirements in 
hand, the project team understands and recognizes the importance of security. Thirdly, with the needs of security in the 
hands, budget, resources, and time of security activities in future stages can be better estimated. 

The authors in [259], [260] explain that during the design phase, the project team focuses on identifying the attacker’s 
interests, potential access points, and critical security areas. This is followed by the identification of threats running on 
the software. Basically, all the security data collected in the design phase goes into the threat models, which are 
important milestone in terms of secure software. This involves gauging whether the security building function offers 
full details of how the software can be attacked, the asset that is likely to be attacked, the areas of attack that are 
attractive, and the kind of threats [7]. Based on this information, the security structure is continuously updated to cater 
for new threats. As explained in [261], the implementation phase plays a twofold role from a security perspective. To 
start with, it prevents security errors entering the software. Secondly, it detects existing software errors. Here, the first 
role is accomplished by writing a secure code while the second role of detecting security errors begins with static 
analysis by automated tools [262]. After automatic analysis, a manual update is performed. Thereafter, the software is 
fully functional and ready to go to the testing phase. According to [263], tests are performed mainly on test cases 
generated during test planning. Here, the testing team identifies security errors [264], [265], reports to the development 
team, and the development team corrects them in this code. The testing phase ends when all test cases are conducted, 
and retrospective testing of all sensitive areas has taken place [266]. Similar to other forms of testing, security testing 
involves the determination of who should do it and what activities should be undertaken.  

Before the release of the software, a security reviews must be performed [267] to identify the remaining security errors. 
Thereafter, the development team corrects code against security errors identified in the review report. After a review, 
a security audit is conducted, and based on such audit reports, management decided to release the software [268]. Upon 
release and distribution, the software is commercially used, but decisions may be made later to rectify non-critical safety 
errors. This may involve changing the code to remove these security errors in the form of a patch [269], [270]. After 
rigorous testing, the patch is applied to the software, which is the followed by the release of the patch [271]. To address 
the software system security, various models [272], practices, strategies, and methods have been proposed. They have 
been shown to improve security procedures in the stages of SDLC [273]. To effectively address security issues that exist 
during the application process, it is necessary to consider secure procedures in all development processes. This helps 
to minimize the threats of critical security requirements or to identify critical errors in software development [274], 
[275]. It has been shown that security is often neglected during software development. However, there is a growing 
emphasis to include the security aspects in every phase of software development, specifically at the early phases.  

The authors in [276] have developed a Security-Requirements-Elicitation and- Assessment-Mechanism (SecREAM) to 
facilitate holding of the security issues [277] that appear at the start of software development. On the other hand, the 
authors in [152] have provided a mechanism for measuring the security requirements engineering process. This 
mechanism is aligned with the method of SQUARE. Similarly, the authors in [278] have proposed a stochastic type 
maintenance method for the security of software through the use of a closed queuing-model of unreliable backups. 
However, a Software Security Assurance Model (SSAM) has been developed in [1] to assist vendor organizations to 
assess their readiness for secure software development. Similarly, the authors in [279] proposed a standards-setting 
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approach to software product and software supply network modeling. Despite the fact that this allows developers to 
anticipate upcoming changes in the software ecosystems, the approach aims at development within one company. As 
such, it does not suit the purpose of modeling FoSS infrastructure. On the other hand, the authors in [280] have proposed 
a simple model to help software developers to decide whether to include FoSS components into their projects. This 
model estimates the value of FOSS libraries based on the possibility of receiving additional support from the developers 
of an FOSS community. 

5. Research gaps and future research directions  

It is clear that several methodologies, strategies, and models have been proposed and developed to address software 
security. However, it is evident that only a few of them give reliable evidence for creating secure software applications. 
Therefore, software security issues have not been adequately addressed, and hence integrating security procedures into 
the SDLC remains a challenge. It has also been noted that hidden attack risks within or outside the organization are 
emerging day by day. This has resulted in huge financial loss, as well as confidentiality and credibility losses. This is 
because it puts the availability and integrity of organizational data at risk [281], [282], [283]. As pointed out in [284], 
most businesses view security as a post-development process. Consequently, security is not considered at some point 
in the predevelopment phase [285]. It has also been noted that many software development companies do not follow 
best practices to incorporate security in SDLC [286], [93]. This negligence includes lack of awareness, fear of time and 
cost overruns. The other reasons include the fact that the development teams are always in a hurry, use of third-party 
components and lack of qualified professionals. In some cases, majority of software programs are designed and 
deployed without attention to protection mechanisms [287], [288], [289]. Over the recent past, various approaches to 
software quality have been developed. These include CMMI, MS-SDL, misuse case modeling, abuse case modeling, 
knowledge acquisition for automated specification, SSE-CMM, OWASP and Secure Tropos Methodology [165]. However, 
there exists no explicit solution for incorporating security into all phases of SDLC. 

The authors in [3], [197], [198], [199], [200] have introduced a wide variety of software security practices, approaches, 
and methods. In addition, several companies have created maturity models and frameworks to assess the degree of 
maturity of their software security practices. However, none of these models or structures is specifically committed to 
recognizing security risks, threats and their practices in the SDLC. Consequently, they fall short of covering all aspects 
and activities of a secure SDLC. To curb this, it is critical to recognize the security threats that vendor organizations face 
while developing secure applications so as to develop risk mitigation strategies. This will enable software development 
vendors to assess their maturity and assurance levels, as well as improve their secure SDLC performance. In addition, it 
will help raise the level of awareness among software engineers. As pointed out in [99], vulnerability oriented 
architectural research offers a systematic and methodical approach to evaluating a wide variety of possible 
vulnerabilities. However, it is time-consuming and costly. To estimate the severity and cost of security threats, some 
maintenance and stakeholder considerations have been identified in [62], [99], [290]. As explained in [291], SSE 
postulates that software security is a critical factor that should be assessed early in the SDLC process. To build and 
deploy a secure software system, there is need to integrate security features into application development life cycle and 
adapt the latest SSE practices [43], [44]. 

Many software security issues stem from insufficient or incorrect identification, documentation, analysis, mapping, 
prioritization, specification and availability of security requirements. In this environment, the importance of identifying 
non-functional security requirements should be stressed. This is because it helps in the reduction or elimination of 
software vulnerabilities [10], [292], [140]. Misuse cases are other issues that need to be addressed. These cases, similar 
to use cases, they specify what a system should not do. They represent a great way to get security requirements [140], 
[141], [142], [148]. It has been noted that conventional security solutions such as antivirus, intrusion detection 
mechanisms, and firewalls are not enough to reduce the risk in the coding phase of the SDLC. Therefore, there is need 
for various suitable security defenses, practices, analysis, and countermeasures that can boost the security of the 
released code [94], [167]. Although patches have been developed to address the software flaws, software remains 
vulnerable to a variety of security threats. As such, there is need to monitor responses to flaws and vulnerabilities of the 
system so as to discover newly evolved security threats. After identifying these new security risks, they should be 
included in the requirement stage for further security improvements in subsequent releases [99], [158]. In this regard, 
static analysis and peer review are two useful procedures for mitigating or minimizing newly discovered vulnerabilities 
[29]. However, final security reviews and audits should be performed during the secure deployment phase [293], [294]. 

Based on the reviewed literature, many software development techniques do not explicitly include software security 
measures during software development as they move from demand engineering to their final products. As such, the 
integration of software security at each stage of the software development life cycle has become an urgent need. To 
tackle software security, numerous methods, techniques, and models have been suggested and developed. 
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Unfortunately, only a few of them offer strong evidence for building secure software applications. Due to budget 
constraints and shorter software release time in the market, many developers consider security as a subsequent 
thinking problem that may contribute to poor software quality. Although software security was considered part of 
software testing in the early days, it has over time been shown that security is not a serious concern. It is therefore 
important to consider how software engineers can incorporate security into the early stage of SDLC. It has been shown 
that the deployed software is under continuous attack from hackers exploiting vulnerabilities for decades. 
Consequently, there has been an increase in these attacks. There is therefore need to incorporate various suitable 
security defenses, analysis [295], and countermeasures in each phase of SDLC that can further secure the released code.  

Further, there is need to incorporate strong and latest security features into application development life cycle and 
adapt the latest SSE approaches to build and deploy a secure software system [296]. As illustrated by a quantitative 
study on Android libraries, updating software is not always a technically feasible solution [297]. This is because almost 
every library update breaks the dependent project, as explained in [175]. The presence of such dilemma may require 
the identification of alternative solutions to software updates. It has been shown that software testing is the most 
lengthy, complex, and expensive phase of SDLC [298]. It is a vital activity that is geared towards increasing the quality 
of software development projects. Although it is a core phase for software development, the thorough testing of the 
programs is not always the core subject under software engineering education. Consequently, the software developers 
often treat software testing as a liability. This negatively affects the overall quality of software. The main reason is that 
standardized testing mechanisms are recurrently regarded as boring and challenging when compared to the creative 
coding phase and design activities. 

6. Conclusion 

The rapid developments in information and communication technologies have made software security a key concern. 
Such developments include IoT, IoE, the advancement of Internet-based software systems, cloud computing, social 
networking, and location-based services. In this complex software deployment scenarios, misuse of software can lead 
to various outcomes, such as sabotage in the communication sector, heavy economic loss in the financial sector, critical 
data theft in database, as well as misuse of software in the missile controlling systems. Failure to make security a key 
priority has been noted to be one of the main reasons for widespread vulnerabilities. As such, models, techniques, 
frameworks and approaches to software quality have been developed, exampled by CMMI, MS-SDL, misuse case 
modeling, abuse case modeling, knowledge acquisition for automated specification, SSE-CMM, OWASP, and secure 
tropos methodology. Unfortunately, only a few of these approaches give reliable evidence for creating secure software 
applications. As such, software security issues have not been adequately addressed, and hence integrating security 
procedures into the SDLC remains a challenge. Future work will involve the development of practical solutions to 
address both software quality and security. 
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