
* Corresponding author: Diana Christina Mancas

Copyright © 2023 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution Liscense 4.0.

On replacing standard system error messages for relational database constraints with
context aware natural language ones

Diana Christina Mancas *

Department of Mathematics and Computer Science, Ovidius University at Constanta, Romania.

Global Journal of Engineering and Technology Advances, 2023, 14(03), 172–187

Publication history: Received on 18 February 2023; revised on 28 March 2023; accepted on 31 March 2023

Article DOI: https://doi.org/10.30574/gjeta.2023.14.3.0062

Abstract

The goal of this paper is to provide a rigorous methodology for enhancing VBA software application users’ experience
when faced with attempts to violate the underlying SQL Server database constraints. The original contribution is a
pseudo-code algorithm for assisting developers in this process. We exemplify the results of using it with a full code
example for a class taken from a genealogy database software application designed and developed using this
methodology. Consequently, it replaces all context-independent and developer jargon standard system error messages
with context aware and natural language ones. Moreover, it also synchronizes combo-box instances after each update
or delete. We also show that the proposed algorithm works fine not only for other relational database management
systems, but even with NoSQL platform backends, and that the modifications needed to adapt it to other similar SQL
embedding frontend platforms are minimal. This algorithm main merit is that it may serve as the basis for developing a
tool for performing this important task through automatic code generation.

Keywords: Relational database constraints; Event-driven programming; Database constraint-driven design and
development; Automatic code generation; VBA; SQL Server

1. Introduction

Not only in the Database Constraint-Driven Design and Development (DCDDD) framework [1] of Software Engineering
a final code polishing step in the software application development is included, for providing a user-friendly graphic
user interface (GUI). Even if an application is correctly enforcing all business rules governing the corresponding sub-
universe of discourse, almost nobody will accept at least to test it, not to speak of buying it, if its GUI is poorly designed
and developed, no matter how glossy it looks. Generally, code polishing is done by developers on an ad-hoc basis: not
even the best recent Software Engineering monographs (e.g., [2]) are proposing systematical approaches to it.

Database (db) designers take care at most of carefully designing db schemes, by including all needed columns in
corresponding tables, as well as their (relational, i.e., provided by the Relational Database Management Systems
(RDBMS)) constraints. These constraints are of the following six types (out of which the default type one may never be
violated):

 not-null (i.e., corresponding table columns do not accept unknown values);
 range (i.e., corresponding columns accept values from only a subset of their data type);
 referential integrity / foreign key (i.e., corresponding columns accept only values stored in other table columns);

 uniqueness / key (i.e., corresponding columns do not accept duplicate values);
 check / tuple (i.e., values of several columns of a same table must satisfy a logic predicate for their values of any

table data row), and

http://creativecommons.org/licenses/by/4.0/deed.en_US
https://gjeta.com/
https://doi.org/10.30574/gjeta.2023.14.3.0062
https://crossmark.crossref.org/dialog/?doi=10.30574/gjeta.2023.14.3.0062&domain=pdf

Global Journal of Engineering and Technology Advances, 2023, 14(03), 172–187

173

 default value (i.e., when users do not provide a value for the corresponding column in the current data row, the
system automatically assigns it the specified default one).

 For example, in table RULERS from Fig. 10, there are:

 3 not-null constraints (on columns [#R], Name, and Dynasty);
 4 range ones (on [#R], Name, BYear, and DYear, where autonum. stands for system (unique) autonumbering

and VARCHAR(64) stands for the set of all text strings of length at most 64);
 2 referential integrity ones (on Title, which can take values only from those of column x of table TITLES, and on

Dynasty, which can take values only from those of column [#D] of table DYNASTIES);
 2 uniqueness ones (on [#R], which is guaranteed by autonumbering, and on the pair <Name, Dynasty>, i.e., there

may not be two persons of a same dynasty having same names), and
 1 check / tuple one (BYear DYear, i.e., any person must be born at most in the same year as his/her death

one).

Software application users might try sometimes to violate these constraints, either inadvertently or even on purpose,
to test the application’s quality. In such cases, backend RDBMSes reject corresponding invalid data values and return
error and description codes to the frontend applications, which, for sparing additional programming effort, may choose
to display them to their end-users. The issue in such cases is the fact that all system standard error messages are both
context-independent and written in a developers’ jargon.

The state-of-the-art solution to this issue is that some programmers are replacing at least some of these messages on
an ad-hoc basis with better custom ones.

Consequently, we are introducing in this paper a pseudo-code algorithm for replacing all such system error ones with
context-aware ones, preferably written in simple natural language. We chose as target technologies VBA (MS Office suite
programming language [3]) over SQL Server [4] databases.

Obviously, such courtesy code methodologies heavily depend on the technological platforms used. However, we are also
showing that our proposed one is easily adaptable to both other SQL embedding event-driven platforms than VBA (e.g.,
C#, Rust, Python, Java, etc.), as well as to other DBMS, be they relational (e.g., Oracle Database and MySQL, IBM DB2,
Postgres, Access, etc.) or NoSQL (e.g., MongoDB, Cassandra, HBase, CouchDB, etc.).

The next section of this paper presents our proposed algorithm. Section 3 provides an example of applying it extracted
from [5] and discusses contrastively these results vs. the lack of corresponding courtesy code. The paper ends with
conclusion and further work, acknowledgement, and references.

2. Material and methods

 Fig. 1 to 9 present our proposed algorithmic methodology (where ‘ starts comments).

3. Results and discussion

We applied in [5] our proposed algorithm to the development of a genealogy software application. Let us consider from
its db only the 3 tables (with a few columns) shown in Fig. 10.

Fig. 11 shows the VBA code for class TITLES obtained by applying our proposed algorithm.

Here are the differences that this courtesy code brings to the application users’ experience (where the even numbered
messages are displayed by the code from Fig. 11, while the odd numbered ones are the corresponding system standard
messages):

 When users inadvertently delete a title name, the messages are shown in Fig. 12 and 13; moreover, the
application also restores the deleted value.

 When users ask for the deletion of a title that was associated with at least one person, the messages are shown
in Fig. 14 and 15.

 When users ask for the deletion of a title that was not associated with anybody, the messages are shown in Fig.
16 and 17; moreover, if deletion is confirmed, the application re-queries the combo-box Title of the RULERS

Global Journal of Engineering and Technology Advances, 2023, 14(03), 172–187

174

form, which deletes that title from it as well, while the system does not this, but only replaces the name of the
deleted title with the text “#Deleted”.

 When users try to duplicate an existing title, the messages are shown in Fig. 18 and 19.

Figure 1 The proposed pseudo-code algorithm for assisting db constraint errors handling in VBA

Global Journal of Engineering and Technology Advances, 2023, 14(03), 172–187

175

Figure 2 The NN method called by the Algorithm VBARelationalConstraintErrorMessagesHandling

Please beware that SQL Server does not make any difference between either the possible several uniqueness keys of a
table or its check constraint and the uniqueness keys.

NN(j As Integer, i As Integer) 1

If Fi does not have an associated Form_Error procedure Then CFEP(Fi); 2

add in its code immediately after the statement "Select Case DataErr" the following code: 3

 Case 3162 ‘SQL Server error code for attempt to violate a not-null constraint 4

 Select Case ctlCurrentControl.Name ‘what is the current form control name? 5

 End Select 6

Repeat for all not-null columns c of table Tj 7

 If Fi does not have an associated c_BeforeUpdate procedure Then add it to its class; 8

 add to the beginning of the c_BeforeUpdate procedure the following VBA code: 9

 If Not Cancel And IsNull(c) Then ‘handles c Is Null for new records 10

 Cancel = True ‘cancels emptying c 11

 Beep ‘draws user attention 12

 MsgBox "Please specify a valid value for c.", vbCritical, "c is mandatory!" 13

 c.Undo ‘restores previous c value 14

 End If 15

 add to the Form_Error procedure the following VBA code immediately after the 16

"Select Case ctlCurrentControl.Name" statement following the "Case 3162" one: 17

 Case "c" ‘handles c Is Null for existing records 18

 MsgBox "Please specify a valid value for c.", vbCritical, "c is mandatory!" 19

 c.Undo ‘restores previous c value 20

End Repeat 21

Global Journal of Engineering and Technology Advances, 2023, 14(03), 172–187

176

Figure 3 The RC method called by the Algorithm VBARelationalConstraintErrorMessagesHandling

RC(j As Integer, i As Integer) 1

If Fi does not have an associated Form_Error procedure Then CFEP(Fi); 2

add in its code immediately after the statement "Select Case DataErr" the following code: 3

 Case 3761, 7753, 2113 ‘SQL Server error codes for attempt to violate a range 4

‘constraint or enter not numeric values in numeric columns 5

 Select Case ctlCurrentControl.Name ‘what is the current form control name? 6

 End Select 7

Repeat for all numeric columns c of table Tj constrained by c [minVal, maxVal] 8

 If Fi does not have an associated c_BeforeUpdate procedure Then add it to its class; 9

 add to the beginning of the c_BeforeUpdate procedure the following VBA code: 10

 If Not Cancel And (c < minVal Or c > maxVal) Then ‘handles c for new records 11

 Cancel = True ‘cancels modifying c 12

 Beep ‘draws user attention 13

 MsgBox "Please specify a valid value for c.", vbCritical, _ 14

"c must be between minVal and maxVal!" 15

 c.Undo ‘restores previous c value 16

 End If 17

 add to the Form_Error procedure the following VBA code immediately after the 18

"Select Case ctlCurrentControl.Name" statement following the "Case 3761, …": 19

 Case "c" ‘handles c range for existing records 20

 MsgBox "Please specify a valid value for c.", vbCritical, _ 21

"c values must be between minVal and maxVal!" 22

 c.Undo ‘restores previous c value 23

End Repeat 24

Global Journal of Engineering and Technology Advances, 2023, 14(03), 172–187

177

Figure 4 The FK method called by the Algorithm VBARelationalConstraintErrorMessagesHandling

Figure 5 The CFEP method called by the methods from Fig. 2, 3, 4. and 6

FK(j As Integer, i As Integer) 1

If Fi does not have an associated Form_Error procedure Then CFEP(Fi); 2

add in its code immediately after the statement "Select Case DataErr" the following code: 3

 Case 2237 ‘SQL Server error code for attempt to violate a foreign key constraint 4

 Select Case ctlCurrentControl.Name ‘what is the current form control name? 5

 End Select 6

Repeat for all foreign key columns c of table Tj 7

 add to the Form_Error procedure the following VBA code immediately after the 8

"Select Case ctlCurrentControl.Name" statement following the "Case 2237": 9

 Case "c" 10

 MsgBox "Please select a valid value for c.", vbCritical, _ 11

"c must take values only from its combo-box!" 12

 c.Undo ‘restores previous c value 13

End Repeat 14

CFEP(Fi As Form); 1

add a Form_Error procedure to the Fi ‘s class and add to its begining the following code: 2

 Dim ctlCurrentControl As Control ‘declare a form control type variable 3

Set ctlCurrentControl = Screen.ActiveControl ‘store current control name 4

Response = acDataErrContinue ‘error handled 5

Beep ‘draws user attention 6

Select Case DataErr ‘what is the SQL Server error code? 7

 Case Else ‘unexpected SQL Server error 8

 Response = acDataErrDisplay ‘display system error message 9

End Select 10

Global Journal of Engineering and Technology Advances, 2023, 14(03), 172–187

178

Figure 6 The UCC method called by the Algorithm VBARelationalConstraintErrorMessagesHandling

Please note that, moreover, our proposed algorithm also synchronizes combo-box instances after each update or
delete in any table, through method Synchro (see Fig. 8).

To also avoid SQL injection errors, our proposed algorithm replaces apostrophes and quotes with their acute
counterparts in any text box, through method NoSQLInj (see Fig. 9).

Both these add-on features contribute to application’s user friendliness and bug-free coding.

UCC(j As Integer, i As Integer) 1

If Fi does not have an associated Form_Error procedure Then CFEP(Fi); 2

add in its code immediately after the statement "Select Case DataErr" the following code, 3

for all u unique keys ki = cki1 … ckiti of table Tj, except for its autonumbering one pkTj: 4

 Case 3146 ‘SQL Server error code for attempt to violate a unique or check constraint 5

 If Not IsNull(DLookup("*", " Tj,", "ck11 =" & ck11 & … & " And ck1t1 =" & ck1t1)) Then 6

MsgBox "There is another element of Tj having ck11 =" & ck11 & … & _ 7

" And ck1t1 =" & ck1t1 & "!", vbCritical, "Request rejected…" 8

ElseIf Not IsNull(DLookup("*", " Tj,", "ck21 =" ck21 & … & " And ck2t2 =" & ck2t2)) _ 9

 Then MsgBox "There is another element of Tj having ck21 =" & ck21 & … & _ 10

" And ck2t2 =" & ck2t2 & "!", vbCritical, "Request rejected…" 11

 … 12

 ElseIf Not IsNull(DLookup("*", " Tj,", "cku1 =" cku1 & … & " And ckutu =" & ckutu)) _ 13

Then MsgBox "There is another element of Tj having cku1 =" & cku1 & … & _ 14

" And ckutu =" & ckutu & "!", vbCritical, "Request rejected…" 15

 Else MsgBox "These values do not satisfy the check constraint of Tj!", vbCritical, _ 16

"Request rejected…" 17

 End If 18

Global Journal of Engineering and Technology Advances, 2023, 14(03), 172–187

179

Figure 7 The Del method called by the Algorithm VBARelationalConstraintErrorMessagesHandling

Obviously, there are two main differences for the users between these two approaches:

 Without courtesy code, users get system messages, which are context-independent, while with courtesy code,
they are context-dependent, hence much more user friendly.

 Courtesy code may and should use natural language in messages, while the system ones use computer
programmers’ jargon, which is sometimes not easy to understand even for computer programmers (e.g., those
from Fig. 13, 15, and 19)!

Figure 8 The Synchro method called by the Algorithm VBARelationalConstraintErrorMessagesHandling

Del(m As Integer, i As Integer) 1

If Fi does not have an associated Form_BeforeDelConfirm procedure Then 2

 add it to its class and add to it the following statement, to prevent standard system 3

 deletion confirmation message displaying: 4

 Response = acDataErrContinue 5

If Fi does not have an associated Form_Delete procedure Then add it to its class; 6

For j = 1 to m 7

 Repeat for all foreign key columns fkj of table Tj referencing primary key pkTi of table Ti 8

 (the data source of form Fi) to add at the beginning of Form_Delete the following code: 9

 If Not Cancel And Not IsNull(DLookup("pkTj", "Tj", " fkj =" & pkTi)) Then 10

 Cancel = True ‘cancels current Ti‘s data row deletion 11

 Beep ‘draws user attention 12

 MsgBox "At least an element of table Tj is referencing this element of Ti!", _ 13

vbCritical, "Request rejected…" 14

 End If 15

 End Repeat 16

Next j 17

Synchro(n As Integer, i As Integer) 1

add to Fi‘s class the following custom procedure: 2

 Sub Synchronize() 3

 On Error Resume Next 4

 End Sub 5

For j = 1 to n 6

 Repeat for all foreign key columns fkj of table Tj referencing primary key pkTi of table Ti 7

 (the data source of form Fi) adding before the “End Sub” statement the following code: 8

 Forms!Fj!fkj.Requery 9

 End Repeat 10

Next j 11

If Fi does not have associated Form_AfterUpdate and Form_AfterDelConfirm procedures 12

Then add them to its class; 13

add to the Form_AfterUpdate procedure as its first line the following statement: 14

Synchronize 15

add to the Form_AfterDelConfirm procedure as its first line the following statement: 16

If Status = acDeleteOK Then Synchronize 17

Global Journal of Engineering and Technology Advances, 2023, 14(03), 172–187

180

Figure 9 The NoSQLInj method called by the Algorithm VBARelationalConstraintErrorMessagesHandli

Figure 9 (Continued)

Of course, that courtesy code needs additional programming effort, but, on one hand, it is clearly worthwhile and, on
the other, this effort can be spared through automatic code generation [6, 7]. Obviously, automatic code generation
cannot be done ad-hoc, but only algorithmically, which is the main strategic contribution of our proposed methodology.

NoSQLInj(i As Integer) 1

If there is no public ReplaceApostrophes method Then add the following code to a project module: 2

Public Function ReplaceApostrophes(ByVal text As String) As String 3

'returns text with apostrophes in it replaced as acute accent characters (´), 4

'as well as quotes replaced with two acute accent characters (´´) 5

Dim pos, l As Long 6

pos = -1 7

l = Len(text) 1

While pos <> 0 2

 pos = InStr(1, text, "'") 3

 If pos <> 0 Then 4

 text = Left(text, pos - 1) & "´" & Right(text, l - pos) 5

 End If 6

Wend 7

pos = -1 8

While pos <> 0 9

 pos = InStr(1, text, """") 10

 If pos <> 0 Then 11

 text = Left(text, pos - 1) & "´´" & Right(text, l - pos) 12

 End If 13

Wend 14

ReplaceApostrophes = text 15

End Function 16

Repeat for all text controls c of form Fi 17

 If Fi does not have a c_AfterUpdate event procedure Then create it; 18

 add to the c_AfterUpdate event procedure as its first line the statement: 19

c = ReplaceApostrophes(Trim(c)) 20

End Repeat 21

Global Journal of Engineering and Technology Advances, 2023, 14(03), 172–187

181

The algorithm proposed in Section 2, which is the main contribution of this paper, can be easily adapted for similar
programming platforms. For example, in MS .Net (e.g., C#) there exist similar to VBA event -driven procedures, only
having different names (e.g., BeforeUpdate is called Validating, AfterUpdate is called Validated, etc.). Dually, thanks
to the de facto standardization of both ADOX and ODBC, this algorithm may be used without modifications for the
design of VBA software frontends based on other relational DBMSes

Figure 10 A small genealogical db scheme

Global Journal of Engineering and Technology Advances, 2023, 14(03), 172–187

182

Figure 11 The courtesy code added to class TITLES for replacing system messages with custom ones

Private Sub Title_BeforeUpdate(Cancel As Integer) 1

If IsNull(Title) Then 'enforces Title mandatory for new records 2

 Cancel = True 3

 Beep 4

 MsgBox "Please specify a title name.", vbCritical, "Title name is mandatory!" 5

 Title.Undo 6

End If 7

End Sub 8

Private Sub Title_AfterUpdate() 9

Title = ReplaceApostrophes(Trim(Title)) 'prevents SQL injection errors 10

End Sub 11

Private Sub Form_AfterUpdate() 12

Synchronize 13

End Sub 14

Private Sub Form_Delete(Cancel As Integer) 15

Dim v, n As Variant 16

v = DLookup("[#R]", "RULERS", "Title =" & x) 17

If Not IsNull(v) Then 'at least one ruler had this title 18

 Cancel = True 19

 Beep 20

 n = DLookup("Name", "RULERS", "[#R] =" & CLng(v)) 21

 v = DLookup("Dynasty", "RULERS", "[#R] =" & CLng(v)) 22

 If IsNull(v) Then 23

 MsgBox "At least " & n & " (from an unknown dynasty) was a " & Title & "!", _ 24

Global Journal of Engineering and Technology Advances, 2023, 14(03), 172–187

183

Figure 11 (Continued)

e.g., Oracle’s DB and MySQL, IBM’s DB2, Postgres DB, MS Access, etc.): only minor changes in VBA coding are needed
(e.g., correspondingly replacing constants storing DBMS error codes, taking care of particular behaviours, like the fact
that autonumbering values are generated by MS Access immediately after users type a character on a new data line,
which makes them available as early as the Form_AfterInsert event-driven procedure, while MS SQL Server does it only
after saving the new data line, which makes them available only in the Form_AfterUpdate event procedure, etc.).

vbCritical, "Request rejected..." 1

 Else 2

 v = DLookup("Dynasty", "DYNASTIES", "[#D] =" & CLng(v)) 3

 MsgBox "At least " & n & " from dynasty " & v & " was a " & Title & "!", _ 4

 vbCritical, "Request rejected..." 5

 End If 6

End If 7

If Not Cancel Then 'asks corresponding confirmation message 8

 If vbCancel = MsgBox("Are you sure you want to delete the title " & Title & "?", _ 9

 vbQuestion + vbOKCancel + vbDefaultButton2, "Please confirm or cancel...") _ 10

 Then Cancel = True 11

End If 12

End Sub 13

Private Sub Form_BeforeDelConfirm(Cancel As Integer, Response As Integer) 14

Response = acDataErrContinue 'prevents system displaying its standard deletion message 15

End Sub 16

Private Sub Form_AfterDelConfirm(Status As Integer) 17

If Status = acDeleteOK Then Synchronize 18

End Sub 19

Private Sub Form_Error(DataErr As Integer, Response As Integer) 20

Response = acDataErrContinue ' handles SQL Server errors 21

Beep 22

Select Case DataErr 23

 Case 3146 ' SQL Server attempt to duplicate key values error code 24

Global Journal of Engineering and Technology Advances, 2023, 14(03), 172–187

184

Figure 11 (Continued)

Figure 12 App. message when a title name is deleted

Figure 13 Standard system message when a title name is deleted

 MsgBox "The title " & Title & " is already stored: please change the title name!", _

vbCritical, "There may not be two titles with a same name..."

 Title.Undo

Case 3162 ' SQL Server attempt to violate not null value error code

 MsgBox "Please specify a title name.", vbCritical, "Title name is mandatory!"

 Title.Undo

Case Else ' unexpected SQL Server error

 Response = acDataErrDisplay

End Select

End Sub

Sub Synchronize()

 On Error Resume Next

 Forms!RULERS!Title.Requery

End Sub

Global Journal of Engineering and Technology Advances, 2023, 14(03), 172–187

185

Figure 14 App. message when trying to delete the title “King”

Figure 15 Standard system message when trying to delete the title “King”

Figure 16 App. message when trying to delete the title “TestTitle”

Figure 17 Standard system message when trying to delete the title “TestTitle”

Global Journal of Engineering and Technology Advances, 2023, 14(03), 172–187

186

Figure 18 App. message when trying to duplicate title “President”

Figure 19 System standard message when trying to duplicate title “President”

Moreover, our proposed algorithm could also be used for software applications built on top of NoSQL DBMSes: as they
lack support for even almost all the relational constraint types (generally, except for one uniqueness constraint per
table), the only difference is that the set of the relational constraints to be monitored by the frontend is much smaller,
so our proposed algorithm becomes much simpler.

4. Conclusion and further work

In the framework of the Database Constraint-Driven Design and Development software engineering methodology, we
designed, proposed, and used an algorithm for assisting the process of enhancing the frontend MS VBA classes of the
Windows forms, aimed to replace standard system error messages for attempts to violate relational db constraints,
which are both context-independent and written in developers’ jargon, with context-aware ones, preferably written in
everyday language. Moreover, this algorithm synchronizes corresponding combo-box instances after each update or
delete and prevents basic SQL injection bugs.

Where needed and possible, we also provided actual corresponding VBA code patterns. We exemplified the result of
applying this algorithm with the VBA code of a class taken from a genealogy db software application.

As usual, many developers might not use our algorithm, but, what is it much more important is that this algorithm may
be used as a basis for developing a tool for corresponding automatic code generation, which is the future of computer
programming.

Further work will be done, first to exemplify the power of our proposed algorithm even in the frameworks using other
DBMSes, both relational and NoSQL; secondly, devising similar algorithms for other SQL embedding platforms; thirdly,
developing a tool for automatic code generation based on these algorithms.

Compliance with ethical standards

Acknowledgments

The author is grateful to Associate Professor Cristina Serban, who is the scientific coordinator of her MSc. dissertation
thesis.

Global Journal of Engineering and Technology Advances, 2023, 14(03), 172–187

187

References

[1] Mancas C, Serban C, Mancas DC. On Software Application Database Constraint-Driven Design and Development.
Journal of Computer Science Research. 2023 Mar; 5(1):31-45, DOI: https://doi.org/10.30564/jcsr.v5i1.5476.

[2] Kleppmann M. Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable, and Maintainable
Systems. London, UK: O’Reilly; 2016. ISBN-13: 978-1449373320.

[3] Microsoft Corp. Office VBA Reference [Internet]. Redmond: Microsoft Corp.; © 2023 [cited 2023 Mar 25].
Available from Office Visual Basic for Applications (VBA) reference | Microsoft Learn.

[4] Microsoft Corp. Transact-SQL Reference (Database Engine) [Internet]. Redmond: Microsoft Corp.; © 2023 [cited
2023 Mar 25]. Available from Transact-SQL reference (Database Engine) - SQL Server | Microsoft Learn.

[5] Mancas DC. Design and Development of a Database Software Application for Managing Genealogical Trees [M.Sc.
dissertation]. Constanta, Romania: Ovidius University; 2023.

[6] Thalheim B., Jaakkola H. Models as Programs: The Envisioned and Principal Key to True Fifth Generation
Programming. In: Dahanayake A. and Huiskonen J., eds. Conference Proceedings of 29th International Conference
on Information Modelling and Knowledge Bases - EJC 2019. Lappeenranta: IOS Press; 2019, pp. 147–166.

[7] Mancas C. On Modelware as the 5th Generation of Programming Languages. Acta Scientific Computer Sciences.
2020 Sep; 2(9):24–26.

Author’s short biography

Diana Christina Mancas graduated in 2021 from the Faculty of Engineering Taught in Foreign
Languages (Computers and Information Technology in French stream) of the Politehnica University
at Bucharest, Romania.

From 2021 she is a MSc. student with the Mathematics and Computer Science Faculty of the Ovidius
University at Constanta, Romania. She is currently preparing for her MSc. dissertation thesis defence,
under the scientific supervision of Associate Professor Cristina Serban.

https://doi.org/10.30564/jcsr.v5i1.5476
https://learn.microsoft.com/en-us/office/vba/api/overview/
https://learn.microsoft.com/en-us/sql/t-sql/language-reference?view=sql-server-ver16

