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Abstract 

This paper presents a clever movement arranging framework to evaluate the traversability of ligand molecules within 
protein tunnels, utilizing the Haloalkane dehalogenase protein (PDB ID 1CQW) as a case study. The approach involves 
defining key metrics such as accessibility, throughput, and ligand scale to assess local and global traversability of tunnel 
segments. By implementing a planner that scales ligand radii, we systematically analyze the impact of various scaling 
factors on the success rates of ligand trajectories. Visualization techniques, including color mapping of tunnel properties 
and trajectory clustering, facilitate the interpretation of the results. Our experimental findings reveal significant insights 
into tunnel accessibility, highlighting that regions near bottlenecks exhibit critical limitations while alternative 
pathways may offer viable routes. The results underscore the importance of dynamic assessments in tunnel 
traversability, suggesting that while static models provide foundational insights, incorporating motion dynamics can 
enhance our understanding of ligand behavior within protein structures. This work aims to inform future studies in 
protein engineering and drug design by providing a comprehensive methodology for analyzing ligand transport through 
complex protein architectures. 

Keywords: Ligand traversability; Protein tunnels; Haloalkane dehalogenase; Dynamic protein analysis; Ligand 
trajectory visualization; Protein engineering; Biochemical pathway analysis; Tunnel detection algorithms; Ligand-
protein interaction 

1. Introduction

Figure 1 Tunnels in haloalkane dehalogenase with a possible trajectory of 1-chlorpropan ligand 
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Understanding the interactions between proteins and other small molecules is crucial in many research fields, including 
drug design and protein engineering. These interactions are highly influenced by the ability to transport the small 
molecule, called ligand, to the protein active site. The active site can be considered as a deeply buried inner cavity with 
the ability to interact with the incoming ligand. A transportation path must connect the protein’s outer environment 
with the active site to transport the ligand to the active site. These paths, called tunnels, have to be wide enough, and the 
physico-chemical properties of the surrounding amino acids have to be compatible with the ligand (Fig. 1). 

Traditionally, tunnels are detected using Voronoi diagrams [1, 2] assuming A spherical ligand (probe) they are represented 
as a sequence of spheres. Biochemists decide if a tunnel can be used to transport a given ligand mainly based on the tunnel 
length and bottleneck (i.e., the radius of the smallest sphere that forms the tunnel). This is used, for example, in protein 
engineering, where the task is to change selected properties of a protein, e.g., its stability under different outer conditions 
[3] or its activity of the protein towards other molecules [4]. 

Whereas tunnel computation is already a well-established research field, the simulation of ligand transportation through 
the detected tunnels is rather new. Ligands are typically non-spherical, so it is difficult to estimate their traversability 
through tunnels computed for a spherical probe. The decision based only on spherical tunnels requires previous 
expertise in the domain, and yet it may be imprecise. Compute the trajectories of the ligand considering its shape and 
possibly also its conformation changes to provide biochemists with a better insight into the behavior of non-spherical 
ligands. 

We propose to analyze the traversability of the ligands in the tunnels using motion planning. The principle of Rapidly 
Exploring Random Tree (RRT) [5] planner is used and further modified. The main idea of the proposed planner is to 
generate random samples around a virtual sphere moving through the tunnel, which guides the search in the 
configuration space. This allows us to focus the sampling of the configuration space around the tunnel. The flexibility of 
the ligand is modeled using a predefined set of typical conformations. To enable ligand movements in narrow tunnels, a 
scaled down version of the ligand is used, similarly, e.g., to [6]. It also helps to keep potential solutions that do not fit the 
geometric restraints but can still be feasible because of their physicochemical properties. 

The proposed method can be seen as an extension for the traditionally used tunnel detection tools. Our motivation is to 
help biochemists perform virtual screening, where they test the traversability of a ligand through a given tunnel. To predict 
the success of ligand traversability, the virtual screening performs hundreds of thousands of tests and checks whether the 
ligand passed through the tunnel. The proposed approach’s advantage is that we can search the ligand path inside a specific 
tunnel, which substantially decreases the computational time and resources required for virtual screening. 

2. Related Work 

The assessment of protein structure hoping to uncover the sections has been maintained by different computational 
programming gadgets that take the math of the protein as data and explore the internal void space (e.g., CAVER 1.0 [7] or 
MOLE [8]). Early techniques for tunnel distinguishing proof utilized a discretized 3D cross-section, where each cell is viewed 
as involved or free, depending on the presence of particles of the protein. Entries can then be glanced through using 
standard outline search methods, like Dijkstra’s computation. Also, the cross-section can be used to recognize other 
significant properties like pockets, pits, or channels [7, 9]. The undeniable hindrance of the framework-based strategies 
is the high memory interest and reliance on the matrix goal. 

As of now, the most commonly used method for managing tunnel revelation relies upon standard Voronoi diagrams (VD) 
or Weighted Voronoi Outlines (WVD). The traditional VD is figured on centers tending to the focal points of all particles, 
ignoring the radii of atoms. To consider particles with different radii, the heaps of individuals still hang out by the van 
der Walls radii of particles in WVD. An elective game plan is to calculate a non weighted VD on an extensive point set, 
where a couple of circles deduced each particle with a little radius [1, 2]. VD-based procedures are less mentioned and 
faster than system based methodologies. 

The tunnels detected by the approaches mentioned above are evaluated using basic characteristics like bottleneck, length, 
curvature, and a list of surrounding residues, which are later used to estimate the interaction possibilities. The biggest 
disadvantage of both grid based and VD-based methods is that the shape of the ligand is not taken into account during 
tunnel detection, and it is therefore not easy to estimate if (and how) a ligand might traverse the tunnels. 

Compute a trajectory considering the shape of the ligand to determine if it can pass the tunnel. This can be formulated 
as a motion planning problem in a high dimensional configuration space. The configuration space C is formed by all 
possible configurations of the ligand in the tunnel, i.e., considering its rotation, translation, and possibly also other 
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degrees of freedom responsible for the conformation changes. The dimension of the configuration space is given by the 
degrees of freedom (DOF) of the ligand, i.e., 6D for a rigid ligand and 6D + n for a flexible ligand with n DOFs. Sampling-
based motion planning methods can be used to search this high-dimensional configuration space [10]. The idea of sampling-
based motion planning is to randomly sample C and classify the samples as free or non-free using collision detection. The 
free samples are stored in a roadmap (a graph structure), in which a path can be searched using standard graph-search 
methods. 

Sampling-based motion planning methods are suitable for computing the trajectories of the ligand as they can cope with 
many DOF robots (objects) of arbitrary shapes. The flexibility of ligands (or even proteins) can be modeled using a multi-
link kinematic chain, where torsional angles can change [11]. This is useful, e.g., in the protein folding studies [12–15] 
or analysis of loop motions [16]. 

Quickly Investigating Irregular Tree (RRT) [5] is a solitary inquiry examining based movement arranging strategy that 
gradually constructs a design tree T established at the underlying setup qstart. In every emphasis of RRT, an irregular 
design qrand ∈ C is created, and its closest hub qnear ∈ T in the tree is found. Another design qnew is built on the line 
associating qnear and qrand somewhere far off ε from qnear. Assuming that qnew is without crash, it is added to the tree. The 
calculation ends assuming that the tree moves toward the objective design sufficiently close. 

Motion planning for flexible ligands in protein tunnels brings two main issues: the ligand flexibility increases the 
dimension of the configuration space and the necessity to plan in protein tunnels leads to the narrow passage problem. 
A narrow passage is a region in the configuration space whose removal changes the connectivity of the free space [17]. 
Narrow passages have a smaller volume than other regions, and it is, therefore, difficult to sample them densely enough 
using the uniform distribution used in basic sampling-based planners. The presence of narrow passages in the configuration 
space, especially if they contain part of the solution, requires many iterations in order to put enough samples there and 

consequently increase the planning time. Typical tunnels have bottlenecks smaller than 1.0 Å ,  so they can already be 
considered narrow passages for ligands with more than two atoms. To cope with the narrow passages, they have to be 
sampled more densely. For the family of RRT planners, it is useful to change the distribution of random samples according 
to the growth of the tree [18–20]. The kinematic chain representation used to model the ligand flexibility can generate 
all possible conformations, but it also increases the dimension of the configuration space. However, not all conformations 
are feasible, and it is therefore necessary to verify the feasibility of a given conformation based on energy, which is time 
consuming. An alternative solution is to employ a library of known conformations. The conformation changes of protein 
amino acids and ligands are represented by so called rotamers stored in different rotamer libraries (e.g., Dunbrack 
library [21]). Possible rotamer conformations correspond to energetically and geometrically favorable positions. 

A RRT-based strategy for registering exit pathways for a little adaptable particle was introduced in [22]. To adapt to 
numerous DOF ligands, the RRT-ML variant [23] was utilized. RRT-ML extends the tree fundamentally utilizing those 
DOFs that are fundamental for accomplishing movement of the ligand (i.e., turn what’s more, interpretation), and it 
utilizes the other DOFs (i.e., that are answerable for conformity changes) assuming they prevent the development of the 
tree. The approach [22] may,, notwithstanding,, experience the ill effects of the limited section issue, as it expects to 
discover some leave pathway for a given ligand, which requires looking through the entire setup space of the 
ligand/protein complex. Despite the fact that there are normally different pathways from a given dynamic site, not every 
one of them are safe by a given ligand. Numerous cycles are expected to find an answer, which expands the computational 
time.  

In this paper, we propose to analyze the traversability of each tunnel separately. This can bring several advantages for 
the biochemists. The tunnels in a protein being studied can be computed using standard tunnel detection tools for 
spherical probes and assessed according to their length, curvature, bottleneck, and biochemical properties (e.g., partial 
charge). These characteristics are already used in many research studies. Selected tunnels can further be analyzed with 
a given ligand to determine the traversability. According to the found trajectories, researchers may decide of the given 
ligand can reach the active site, which helps to organize subsequent MD simulations or other experiments.  

The proposed work employs the RRT planning principle with three extensions: a) the configuration space is not sampled 
uniformly but uses a guided sampling along the tunnel centerline, b) the radii of the ligand atoms can be decreased, and c) 
ligand flexibility is modeled using a library of predefined conformations. The first two extensions are designed to cope 
with the narrow passage problem. By reducing the scale of the atomic radii, the ligand can move more without collisions, 
which widens the narrow passages and increases the probability of placing samples into them. The scaling-down 
technique has been used, e.g. for motion planning of deformable objects [24, 25], and they are also used in the most 
related MoMa-LigPath tool [6]. The number of dimensions of the configuration space does not depend on the ligand’s 
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DOF by using the predefined set of conformations. Library of conformations is also used in different types of calculations, 
e.g. [26]. 

3. Traversability of Tunnels 

3.1. Preliminaries 

Proteins and ligands are addressed by the hard circle model, where the sweep of every circle (molecule) is given by its 
van der Waals span. The adaptability of a ligand is demonstrated utilizing the set L of its compliances. The compliances 
L are utilized from a library (e.g., [21]), or they can be arranged thinking about the possible energy. A protein tunnel is 
described by a sequence of collision-free spheres T = ((c1, r1), . . . , (cn, rn)), where n denotes the number of spheres, 
ci ∈ R3 is their 3D position and ri > 0 denotes the maximum collision free radius of a sphere centered at ci. The tunnels 
can be found by tunnel detection tools like CAVER 3.0 [2]. 

To enable the motion of ligands in the narrow tunnels, the atomic radii of the ligand are scaled down by a factor s, 0 < s 
≤ 1. A discrete set of scales is used, i.e., s ∈ {smin, smin + s∆, . . . , smax}, where smin is the minimal allowed scale, smax = 1 is the 
maximal allowed scale and s∆ is the minimal difference between two scales. 

A configuration of the ligand q = (x, y, z, rx, ry, rz, l, s) is described by the 3D position (x, y, z) of the reference point of the 
ligand (e.g., its geometric center), rotation around x, y, and z axes, index of the conformation l ∈ L and the actual scale s. 
All possible configurations form the configuration space C. A configuration is collision-free if none of the ligand atoms scaled 
by s and placed at the position defined by q collides with the protein atoms. 

3.2. Computing Initial Configuration 

The analysis of tunnel traversability is based on the computation of multiple trajectories of the ligand inside the 
tunnel, which requires to generate a set Qinit of collision-free initial configurations. In this paper, we assume that the 
ligand has to travel from the beginning to the end of the tunnel. As the tunnels are computed for a spherical probe, the 
ligand may not fit exactly to the first sphere of the tunnel. The initial configurations have to be searched around the first 
sphere of the tunnel. To find a new initial configuration, a random sample q is generated around ci in the distance Rinit 
(translation and rotation parts of q are generated randomly, the scale is set to smin and the conformation index is set 
randomly). If the sample q is collision-free, it can be considered as a new starting configuration, so q is added to Qinit. 
Similarly, a single goal configuration qgoal is found around the end of the tunnel. For each starting configuration qstart ∈ 
Qinit, K trajectories are created. Each trajectory is computed using a modified RRT, which is introduced in the following 
section. 

3.3. Computing Single Trajectory of the Ligand 

The task of the trajectory computation is to find a trajectory for a ligand in the given tunnel. Here, the original RRT is 
extended to cope with the specific requirements needed for the traversability of ligands. First, the trajectory has to be 
found around the given tunnel, but a deflection from the tunnel centerline is allowed. Due to this requirement, the 
sampling process of RRT has to be adapted in order to follow the tunnel and to prevent the construction of trajectories 
in the rest of the protein. 

The main loop of the proposed method is described in Alg. 1. In each iteration, a random sample qrand is generated, and 
its nearest node qnear ∈ T in the tree is found. The nearest-neighbor search between qrand and the tree is performed using 
the weighted 6D Euclidean metric considering both 3D rotation and 3D translation. 

To guide the growth of the tree through the tunnel, a moving virtual goal is used [18]. The virtual goal v, 1 ≤ v ≤ n, is the 
index of a sphere of the tunnel. The random samples qrand are generated around the sphere cv ∈ T with the probability 
ptunnel and from the whole C otherwise. After the tree reaches the sphere cv, i.e., the distance of the tree to cv is less than 
a predefined threshold dtunnel, the virtual goal is moved to the successor of the last sphere in the tunnel that is reached 
by the tree (lines 1–1 in Alg. 1). Setting the virtual goal to this successor allows the tree to avoid such parts of the tunnels 
that are not traversable or reachable by the ligand. This is necessary in dense protein structures, where it is not always 
possible to follow the tunnel exactly. The algorithm terminates after a predefined number of planning trials Imax or if the 
tree reaches the last sphere in the tunnel, i.e., when v = n. 

To generate the samples qrand around the virtual goal v, the translation part (x, y, z) of qrand is generated from N (cv, 
Σ), where Σ is the diagonal matrix with diagonal entries equal to the parameter Rtunnel, and the rotational part of qrand is 
generated using techniques described in [27]. The other two parameters (ligand index l and scale s) of qrand can be left 
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zero, as these are not used in the employed metric for the nearest-neighbor search. The parameter Rtunnel influences the 
distribution of samples around the tunnel centerline. By setting Rtunnel to a small value, the planner attempts to find the 
trajectories inside the tunnel, while higher values of Rtunnel cause exploration of paths around the tunnel. We propose to 
set this parameter to the average tunnel width. 

 

The core of the proposed planner is the expansion procedure (Alg. 2), which generates new collision-free nodes around 
qnear ∈ T . For each ligand conformation l ∈ L, the expansion procedure attempts to find a new collision-free configuration 
around qnear with a maximal scale. First, the maximal scale smax is tested, and m random samples are generated around 
qrand and tested for collision. The nearest collision-free sample towards qrand is selected and added to the tree. If none of 
the tested samples is collision-free, the scale is reduced to smax − s∆, and the search continues until a collision-free sample 
is found or until the minimal reduced-scale smin is reached. The random samples are generated similarly as in the case of 
qrand samples; only their translation part is generated around qnear. 

The sampling-based methods are sensitive to the employed metrics, especially if the objects are not symmetrical, which is 
the case of the non-spherical ligands. To consider the actual shape of the ligand (which is different in each conformation) 
and to support finding such configurations that maximally approach qrand, the distance between newly generated 
configurations and qrand is measured as the smallest 3D distance between an atom of the ligand placed at q and the 3D 
position of qrand (datom(q, qrand) on line 2 in Alg. 2). By computing the distance between the nearest atoms, the shape 
of the ligand is actually considered. This metric supports the retraction of the ligand towards qrand. 
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The result of each planning trial is the tree T of collision-free configurations in which a path between qstart (root of the 
tree) and q′ is found, where q′ is the nearest node in the tree towards qgoal (using 3D Euclidean metric). The path P = (qi), 
qi ∈ C is represented as a sequence of collision-free configurations. The path is found in the tree even if the tree does not 
approach qgoal close enough. Considering these non-feasible solutions is also necessary to evaluate difficult areas of the 
tunnels, e.g., bottlenecks. The utilization of all computed paths for the evaluation of tunnel difficulty is described in the next 
section. 

3.4. Traversability Characteristics 

For each initial configuration qstart ∈ Qinit, K trajectories are computed, which results in the set of K|Qinit| trajectories. All 
these trajectories are used to compute the following properties of the tunnel T . A trajectory P reaches the tunnel sphere 
ci ∈ T if the 3D Euclidean distance of the nearest configuration q ∈ P towards ci is less than ri (radius of the sphere ci). Let 
N (i) denote the number of trajectories that reached i−th sphere of the tunnel, i = 1, . . . , n. Three basic characteristics of 
the tunnel are computed from the trajectories: accessibility, throughput, and the scaling factor. 

The accessibility A(i) = N (i)/N of the sphere i is the probability of reaching the sphere i, where N = K|Qinit| is the total 
number of trajectories. The accessibility shows how probable it is to pass the tunnel up to the sphere i. Obviously, the 
most important is A(n) of the last sphere of the tunnel, which can be considered as the overall difficulty of the tunnel. 
The ligand passage may, however be strongly affected by the first bottleneck, so the parts of the tunnel located behind 
the bottleneck has low accessibility. 

The throughput T (i) is the ratio of trajectories that passed sphere i (i.e., visited sphere i + 1) and reached the sphere i, 
i.e., T (i) = N (i + 1)/N (i). The throughput is not computed for the last sphere (i = N ). The throughput shows the local 
accessibility of tunnel parts, and it can be used to detect places where most of the trajectories end. The proposed planner 
is allowed to scale down the radii of ligand spheres up to the permitted scale smin. It can be expected that narrower parts 
of the tunnel are more often passed with a more scaled-down ligand than the wider parts. Ligand scale L(i) at the tunnel 
sphere i is the average scale of ligand that reaches the sphere i. 

3.5. Visualization of Results 

The above-defined characteristics can be shown as a graph or, better yet, presented visually by mapping them using colors 
to the tunnel spheres. Alternatively, the surface representation can be used to visualize the tunnel. In this case, a 3D point 
on the tunnel surface is colored according to the property value in its nearest tunnel part i, i.e., such part i whose center 
ci is the closest to the point among all tunnel parts. 
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The examples of the color mapping are shown in Fig. 2. The accessibility (Fig. 2a) shows that more than half of the tunnel 
is not accessible (red part of the tunnel). The throughput shows (Fig. 2b) that the only difficulty is the part around the 
bottleneck (red color in Fig. 2b), and the second half of the tunnel is also traversable. 

 

Besides the color mapping, it is also necessary to show the computed trajectories. Simple visualization of all trajectories 
could, however, be too slow for an interactive work. Therefore, the trajectories are first clustered, and then only the 
clusters are visualized. Due to the different lengths of the trajectories, they are first converted to a normalized form. Let 
cstart represent the average starting position of all trajectories and let dmax be the 3D Euclidean distance of the most 
distant configuration from cstart among all trajectories. A set of M spheres centered at cstart are created with radii  ,  

𝑟𝑖′ = 𝑖
𝑑𝑚𝑎𝑥

M
   where i = 0, . . . , M − 1. The trajectory P = (q1, . . . , qn) of length n 

is represented by the normalized vector v = (x1, . . . , xM ) of length M , where xi is the 3D position of the nearest configuration 
q ∈ P to the surface of the i-th sphere with the radius ri’. The distance between two normalized trajectories vi and vj is 
defined as  

d(vi,vj)= 
1

𝑀
 ∑ |⬚

1≤𝑘≤𝑁  xik xjk|. This distance is used in the UPGMA clustering technique [28]. The trajectories can be 

visualized using a representative of each cluster. The number of trajectories in each cluster is represented by the width of 
the polyline. 

 

Figure 2 Visualization of the trajectories. The tunnel begins in the top left corner. (a) All trajectories (∼ 5000) colored 
according to whether they reached the end of the tunnel (green) or not (red). (b) Visualization using clusters of 

trajectories 

4. Experimental Verification 

The tunnels in the Haloalkane dehalogenase protein (PDB ID 1CQW) have been analyzed using the proposed approach. 

Three tunnels were detected using CAVER 3.0 [2] for the spherical probe of radius 0.9 ̊A ( F ig .  3a). The traversability was 
evaluated for 1-chlorpropan (denoted as L1) with 11 atoms and and 1-chlorbutan (denoted as L2) with 14 atoms. L1 was 
represented by 12 conformations, and L2 by a set of 114 conformations. Examples of three conformations of L1 and L2 
are depicted in Fig. 3b. Further information about the experiments can be found at http://mrs.felk.cvut.cz/ isrr2017. 

Both tested ligands have more than ten atoms and therefore, they cannot fit into the tunnel with 0.9 Å ,  so the radii of 
ligands were scaled down. Four different scaling down factors were used: smin = {0.3, 0.4, 0.5, 0.6}. No trajectories were 

found for smin > 0.6. For each scale, 50 collision-free initial configurations were found in the Rinit = 2Å radius around the 

http://mrs.felk.cvut.cz/isrr2017
http://mrs.felk.cvut.cz/isrr2017
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first sphere of the tunnel. For each ligand, each minimal scale smin, and each initial configuration, 100 trajectories were 
computed using the proposed planner. The parameters of the planner were: Imax = 10,000, m = 50, ptunnel = 0.9, dtunnel = 

1 . 5 Å ,  Rtunnel = 2 Å .  For each initial configuration, the success rate is computed as the ratio of trajectories that reached 

the end of the tunnel (to the distance Rtunnel = 2 Å o r  less) over 100 trials. 

he average runtimes, success rates, and sizes of the built trees for the first tunnel are shown in Table 1. The highest 
average success rate was achieved for the most scaled-down ligands (smin = 0.3), and it decreases with the increasing 
smin. The difference between the minimal and maximal success rates indicates how the ligand’s initial configurations 
influence its ability to pass the tunnels. For example, the most difficult initial configuration of L1 and smin = 0.3 lead to 
success rate 78 % (the easiest initial configuration lead to success rate 100 %), but for the scale smin = 0.4, the worst 
success rate is only 42 % and the best 96 %. The traversability of larger ligands (smin = 0.4 vs. smin = 0.3) is therefore more 
sensitive to the initial configuration. This shows 

 

Figure 3 (a) The protein 1CQW is visualized using the cartoon representation (gray) with three tunnels (red, green, 
and blue) were detected by CAVER 3.0. The first tunnel is depicted in red. (b) Examples of three conformations of L1 

(top) and L2 (bottom) 

 

Table 1 Runtime and success ratio for ligand L1 (left) and L2 (right) 

Scale Runtime [s] Success rate Tree 

size smin avg. (std.) min/max/avg 

0.3 59.25 (40.21) 78/100/91.4 41k 

0.4 98.58 (68.55) 42/96/78.1 47k 

0.5 162.43 (85.14) 2/60/18.3 47k 

0.6 160.71 (64.71) 0/0/0.0 38k 

 

Scale Runtime [s] Success rate Tree 

size smin avg. (std.) min/max/avg 

0.3 253.42 (100.73)   100/100/100   45k 

0.4 641.13 (460.82)   88/100/95.4   49k 

0.5 1852.27 (736.44) 0/70/24.3 44k 

0.6 1995.02 (478.62) 0/0/0.0 35k 

the importance of testing the traversability from multiple initial configurations. The runtime is significantly higher for 
the L2 ligand, which is caused by the larger number of conformations that need to be examined in each expansion. The 
average runtimes, which are in the order of minutes, are negligible in the comparison of runtimes of MD simulations. 
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Trajectories for L1 in all detected tunnels were classified as successful if they reached the last sphere of the tunnel to 

distance dtunnel = 2 Å ,  and they were considered unsuccessful otherwise. The throughput computed from the trajectories 
shows that the tunnels are difficult not only around bottlenecks but also in other places. 

The comparison of the classic bottleneck (i.e., measured by the radius of the spherical probe) and throughput is 
depicted in Fig. 4a. The trajectories for smin = 0.4 are depicted in Fig. 4b and for smin = 0.5 in Fig. 4c. The successful 
trajectories for smin = 0.4 reveal that the end of tunnel No. 3 can be approached by two different pathways (one in 
the tunnel and another one outside the tunnel). The detail is depicted in Fig. 5. Despite the low bottleneck of this tunnel, 
the ligand may reach its end using the alternative pathway. 

 

Figure 4 (a) Classic bottleneck for spherical probe (top) and visualization of throughput (bottom) for the ligand L1. 
(b) Successful (green, top) trajectories that reached end points of the tunnels and unsuccessful ones (red, bottom) for 

smin = 0.4. (c) Successful and unsuccessful trajectories for smin = 0.5 

 

 

Figure 5 Detailed view of alternative pathway around the third tunnel in 1CQW. The successful trajectories are in 
green (a) and the unsuccessful in red (b). (c) Shows visualization of protein atoms around the tunnel 

5. Discussion 

The computed trajectories cannot be considered ‘real’; they should rather be considered a hint for the biochemists. One 
of the reasons is that the trajectories are computed inside a static protein and static tunnels. Real proteins are dynamic 
structures, and consequently, the tunnels are also dynamic: they move, merge, or even disappear due to the motions of 
protein atoms. On the contrary, usually static tunnels are used in protein engineering. Despite such a simplification, 
researchers often used information about the static tunnels to estimate the possibility of chemical reactions at the active 
sites. 

The utilization of scaled-down ligands causes the second limitation. The protein atoms fill the internal void space; 
therefore, the tunnels identified inside proteins without ligands tend to be very narrow. Scaling down the ligand atoms 
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is necessary to enable at least some motion of the ligands inside such narrow tunnels. It is used also in other related tool, 
e.g. [6]. 

Due to these reasons, the computed trajectories can be considered either as too optimistic (e.g., because they are 
computed on a wide tunnel that can be, in fact, closed due to molecular dynamics), or too pessimistic (e.g., the trajectory 
is not found because of a narrow passage around the tunnel, which can be opened due to the molecular dynamics). 
Despite these limitations, testing the tunnel traversability using motion planning technique can provide chemists with more 
information then the simple bottleneck radius, which is used nowadays. For example, possible detours from the tunnel 
can be identified, which indicates that even a tunnel with a small bottleneck can be traversed (Fig. 5). 

The proposed planner is very simple, and it can be improved in many ways: by using a less aggressive scaling-down 
technique (in order to obtain better trajectories) or by using only a subset of conformations and a better expansion (in 
order to speed it up). However, having a better motion planner (in terms of speed or even success rate) does not 
automatically mean that the resulting trajectories will help the biochemists more. The presented work shows possible 
advantages of the analysis based on ligand trajectories. By comparing the planned trajectories with trajectories observed 
in MD simulations, thresholds for the success rate or minimal tunnel throughput can be set, which will help biochemists 
make decisions. 

6. Conclusion 

The protein tunnels transport pathways for ligands to the active sites. In this paper, we propose to analyze the 
traversability in the tunnels using motion planning that can consider both the shape of the protein and ligand. We 
proposed modifications to the RRT method to compute trajectories for a ligand represented by a library of common 
conformations. The corresponding configuration space is sampled using guided sampling, where a virtual sphere moves 
along the tunnel and attracts growth of the tree towards it. To enable trajectory computation in narrow tunnels, the atomic 
radii of the ligand are scaled down. Computed trajectories allow us to evaluate the traversability of the tunnels using 
accessibility and throughput and by visualizing typical pathways found by the planner. These properties can help us 
understand the importance of tunnels better. 
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