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Abstract 

Electrooculography (EOG) is a non-invasive method employed for the measurement of the electrical potential produced 
by ocular movements. EOG signals frequently encounter contamination from diverse forms of interference, thereby 
impeding precise analysis and interpretation. In order to address these obstacles, numerous filtering methodologies 
have been devised to ameliorate the quality of EOG signals. The objective of this paper is to examine the filtering 
techniques commonly employed for EOG signals, elucidating their respective benefits and limitations. 
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1. Introduction

The electrical voltage produced by eye movements is measured using an approach that is not invasive called 
electrooculography (EOG) [1–3]. It is an important area of focus in the field of electrical and computer engineering due 
to its wide range of applications. EOG signals are useful in several fields, including interaction between humans and 
computers, biomedical engineering, and neurophysiology [4–7]. They provide insightful information about eye 
movements. This academic introduction aims to explore the fundamentals of EOG signals and highlight their 
applications in electrical and computer engineering. The corneo-retinal potential generates EOG signals through 
polarization variations between the cornea and retina. Electrodes placed around the eyes, typically in a bipolar 
configuration, capture these signals. The electrodes detect voltage changes resulting from eye movements like saccades, 
blinks, and smooth pursuit [8, 9]. EOG signals have been extensively utilized in electrical and computer engineering, 
particularly in the area of human-computer interaction. EOG-based interfaces enable individuals, especially those with 
motor disabilities, to control devices using eye movements. This technology facilitates interaction with computers, 
assistive devices, and even robotic systems. Biomedical engineering also benefits from EOG signal applications. EOG 
aids in diagnosing and monitoring ocular disorders such as nystagmus, strabismus, and amblyopia. Analyzing EOG 
signal characteristics provides clinicians with insights into ocular system functionality and the detection of 
abnormalities. Additionally, EOG signals have been employed in neurophysiology research to study cognitive processes 
and brain activity. By examining eye movements and their corresponding EOG signals, researchers gain insights into 
attention, perception, and decision-making processes, contributing to the advancement of models and theories on 
human cognition [10]. In the realm of electrical and computer engineering, EOG signals present both challenges and 
opportunities. Signal processing techniques, including filtering, artifact removal, and feature extraction, are crucial for 
extracting meaningful information from EOG signals. EOG signals can be reliably classified and interpreted using 
sophisticated machine learning algorithms, such as neural networks and pattern recognition methods. Additionally, 
combining EOG signals with other modalities like electromyography (EMG) and electroencephalography (EEG) creates 
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additional opportunities for study and application. The integration of these signals enables the creation of cutting-edge 
human-machine interfaces and offers a more thorough understanding of human behavior [11–13]. 

2. Various Types of Noise in EOG Signal 

In this section, we will explore the typical forms of interference encountered in EOG signals. Baseline Drift: Baseline 
drift refers to the gradual, slow changes in the EOG signal's baseline over time. It can be caused by electrode movement, 
variations in skin impedance, or environmental factors. Baseline drift can obscure the underlying EOG signal and hinder 
the accurate detection of eye movement-related information [14]. Power line Interference: Power line interference, also 
known as mains hum, arises from the coupling of the EOG electrodes with the electrical power supply network. It 
presents as periodic noise at the powerline frequency (typically 50 or 60 Hz) and its harmonics. Power-line interference 
can corrupt the EOG signal and make it challenging to extract meaningful eye movement information [15]. Muscle 
Artifacts: Muscle artifacts occur due to the contraction or relaxation of facial muscles surrounding the eyes. These 
artifacts can contaminate the EOG signal and introduce unwanted noise. Muscle artifacts are particularly noticeable 
during eye blinks or strong eye movements, and they can obscure the desired eye movement-related information [16]. 
Electrode Noise: Electrode noise refers to the noise introduced by the EOG electrodes themselves. It can stem from 
inadequate electrode-skin contact, electrode polarization, or impedance mismatch. Electrode noise can degrade the 
signal quality and introduce additional noise components that interfere with the analysis of the EOG signal [17, 18]. 
Environmental Noise: Environmental noise sources, such as electromagnetic interference (EMI) from nearby electronic 
devices, can corrupt the EOG signal. EMI can introduce high-frequency noise or spurious signals that overlap with the 
desired EOG signal, making it difficult to extract accurate eye movement information [19]. 

3. EOG Filtering Approaches 

Electrooculography (EOG) signals find extensive application in diverse fields, including eye movement analysis and 
human-computer interaction. The accuracy and dependability of the analysis might be significantly impacted by the 
noise that frequently taints these signals. Therefore, it is essential to provide effective filtering methods to reduce the 
negative impacts of noise in EOG signals. Following is a summary of the importance of filtering methods for EOG signals 
[20, 21]: 

 Enhancement of signal quality: EOG signals are susceptible to noise from various sources, such as electrical 
interference, muscle artifacts, and environmental factors. Filtering techniques play a critical role in reducing or 
eliminating these noise components, thereby improving the quality and fidelity of the EOG signals. 

 Facilitation of accurate analysis and interpretation: Noise in EOG signals can distort the underlying eye 
movement patterns, making it challenging to accurately analyze and interpret the data. By applying suitable 
filtering techniques, unwanted noise can be attenuated, enabling more reliable analysis and interpretation of 
the EOG signals. 

 Augmentation of diagnostic capabilities: EOG signals are employed in clinical settings for diagnosing eye-
related disorders and abnormalities. However, the presence of noise can impede the accurate detection and 
characterization of these conditions. Filtering techniques can aid in improving diagnostic capabilities by 
reducing noise and enhancing the visibility of relevant features in the EOG signals. 

 Enhancement of EOG-based system performance: EOG signals are utilized in various applications, such as gaze 
tracking systems and assistive technologies. The presence of noise can degrade the performance of these 
systems, leading to inaccurate results or unreliable user interactions. Effective filtering techniques can 
significantly enhance the robustness and accuracy of EOG-based systems. 

3.1. Low-Pass Filtering 

Low-pass filtering is a widely utilized method in EOG signal processing. It diminishes high-frequency noise and artifacts 
while preserving the low-frequency elements of the signal. The benefits of low-pass filtering encompass [22-24]: 

3.1.1. Advantages 

 Effective elimination of high-frequency noise and artifacts. 
 Preservation of low-frequency components that are pertinent to eye movement analysis. 
 Enhancement of the signal-to-noise ratio (SNR) for subsequent processing. 
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3.1.2. Drawbacks 

 Potential loss of high-frequency information, which may hold relevance in specific applications. 
 Introduction of phase distortion, resulting in a time delay in the filtered signal. 
 Challenges in selecting an appropriate cut-off frequency to strike a balance between noise removal and signal 

preservation. 

3.2. High-Pass Filtering 

High-pass filtering is utilized to eliminate low-frequency drift and baseline wander from EOG signals, facilitating the 
isolation of components associated with rapid eye movements. The benefits of employing high-pass filtering include 
[25, 26]: 

3.2.1. Advantages 

 Enhancement of eye movement-related components' clarity by eliminating low-frequency drift and baseline 
wander. 

 Improved temporal resolution for the detection of rapid eye movements. 
 Reduction of power line interference. 

3.2.2. Drawbacks 

 Potential loss of valuable information contained in low-frequency components. 
 Introduction of phase distortion, similar to low-pass filtering. 
 Difficulty in selecting an appropriate cut-off frequency to strike a balance between noise removal and signal 

preservation. 

3.3. Band-Pass Filtering 

Band-pass filtering combines the benefits of low-pass and high-pass filtering techniques, enabling the isolation of 
specific frequency bands that are relevant to the analysis of eye movements. The advantages of band-pass filtering 
encompass the selective elimination of noise and artifacts beyond the desired frequency range, improved preservation 
of frequency components of interest, and enhanced signal-to-noise ratio for subsequent analysis [27, 28]. However, 
there are certain drawbacks associated with band-pass filtering, including the potential loss of frequency components 
outside the chosen range, which may contain valuable information, the introduction of phase distortion similar to low-
pass and high-pass filtering, and the challenge of selecting appropriate cut-off frequencies to strike a balance between 
noise removal and signal preservation. 

3.4. Adaptive Filtering 

Adaptive filtering techniques aim to dynamically estimate and eliminate noise components from the EOG signal. These 
approaches employ adaptive algorithms to continuously update the coefficients of the filter based on the input signal. 
The benefits of adaptive filtering encompass the following advantages [29, 30]: 

3.4.1. Advantages 

 Capability to adapt to varying characteristics of noise, rendering it suitable for real-time applications. 
 Effective elimination of non-stationary noise sources, such as eye blinks and saccades. 
 Preservation of signal features by adaptively adjusting the coefficients of the filter. 

3.4.2. Drawbacks 

 Considerable computational complexity, particularly for intricate adaptive algorithms. 
 Sensitivity to initial conditions and parameter settings, necessitating meticulous tuning. 
 Limited performance in the presence of highly non-linear noise sources. 

3.5. Wavelet Transform 

Wavelet transform-based filtering methods have become increasingly popular in the processing of EOG signals, 
primarily due to their capability to capture both temporal and spectral information. The benefits associated with 
wavelet transform filtering are as follows [31-33]: 



Global Journal of Engineering and Technology Advances, 2023, 16(03), 163–171 

166 

3.5.1. Advantages 

 Multiresolution analysis enables simultaneous examination of various frequency components. 
 Improved noise elimination while preserving crucial signal characteristics. 
 Flexibility in the selection of wavelet functions and decomposition levels to achieve optimal filtering. 

3.5.2. Drawbacks 

 Complexity in determining appropriate wavelet functions and decomposition parameters. 
 Balancing the trade-off between noise reduction and potential signal distortion necessitates meticulous 

parameter adjustment. 
 Greater computational demands compared to simpler filtering techniques. 

3.6. Independent Component Analysis (ICA) 

ICA is a widely utilized technique in signal processing applications for filtering electrooculography (EOG) signals. The 
advantages and drawbacks of employing ICA for EOG signal processing are as follows [34, 35]: 

3.6.1. Advantages 

 Signal source separation: ICA effectively separates mixed signals into independent components, enabling the 
isolation of EOG signals from other sources of noise or interference. 

 Blind source separation: ICA does not necessitate prior knowledge about the characteristics of the EOG signal 
or the noise sources, making it suitable for scenarios where the signal sources are unknown or complex. 

 Non-invasive approach: EOG signals can be captured using non-invasive electrodes positioned around the eyes, 
making ICA a convenient and practical method for EOG signal processing. 

3.6.2. Drawbacks 

 Assumption of statistical independence: ICA assumes that the independent components are statistically 
independent, which may not always hold true in real-world situations. Deviation from this assumption can 
result in inaccurate separation of the EOG signal. 

 Sensitivity to noise: The performance of ICA can be influenced by the presence of noise in the signal. If the noise 
is highly correlated with the EOG signal, accurately separating them can be challenging. 

 Computational complexity: Implementing ICA algorithms can be computationally demanding, particularly for 
large datasets or real-time applications. This may restrict its practicality in certain scenarios. 

3.7. Kalman Filter 

The Kalman filter is a widely utilized technique in signal processing applications for the purpose of filtering 
electrooculography (EOG) signals. The following are the advantages and drawbacks associated with using the Kalman 
filter for EOG signal processing [36, 37]: 

3.7.1. Advantages 

 State estimation: The Kalman filter combines measurements with a dynamic system model to provide an 
optimal estimation of the true EOG signal. It is capable of effectively estimating the underlying EOG signal even 
in the presence of noise or missing data. 

 Adaptability: The Kalman filter can adapt to changes in the characteristics of the EOG signal over time. It 
continuously updates its estimates based on new measurements, making it suitable for dynamic EOG signal 
processing scenarios. 

 Real-time processing: The Kalman filter is computationally efficient and can be implemented in real-time 
applications, enabling immediate feedback or control based on the filtered EOG signal. 

3.7.2. Drawbacks 

 Model assumptions: The performance of the Kalman filter relies on accurate knowledge of the system dynamics 
and noise characteristics. If the model assumptions are violated or the noise characteristics are not well-known, 
the filter's performance may degrade. 

 Complexity of implementation: Implementing the Kalman filter requires a thorough understanding of the 
underlying system dynamics and noise characteristics. It may involve complex mathematical calculations and 
can be challenging to implement correctly. 
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 Sensitivity to model errors: If the dynamic model used in the Kalman filter does not accurately represent the 
EOG signal dynamics, the filter's performance may be compromised. Model errors can lead to inaccurate 
estimates and filtering results. 

3.8. Moving Average Filter 

The moving average filter is a widely utilized technique for the filtration of EOG signals. Presented below are the 
advantages and drawbacks associated with the application of a moving average filter for EOG signal filtering [38, 39]: 

3.8.1. Advantages 

 Simplicity: The moving average filter is characterized by its straightforward implementation and 
comprehensibility, rendering it accessible to users with varying levels of expertise. 

 Smoothing effect: It effectively diminishes high-frequency noise and fluctuations in the EOG signal, resulting in 
a more even output. 

 Real-time processing: Due to its simplicity and low computational requirements, the moving average filter can 
be employed in real-time applications. 

3.8.2. Drawbacks 

 Signal distortion: The utilization of a moving average filter can introduce signal distortion, particularly when 
applied to rapidly changing EOG signals or signals with abrupt transitions. This may lead to a delay or blurring 
effect in the filtered signal. 

 Attenuation of high-frequency components: The moving average filter tends to attenuate high-frequency 
components of the EOG signal, potentially resulting in the loss of crucial information. 

 Window length selection: The selection of an appropriate window length for the moving average filter is critical. 
A shorter window may not effectively eliminate noise, while a longer window can introduce a significant delay 
in the filtered signal. 

3.9. Butterworth Filter 

The Butterworth filter is a widely utilized technique for processing EOG signals. Here, we present the advantages and 
drawbacks associated with using the Butterworth filter for EOG signal filtering [40, 41]: 

3.9.1. Advantages 

 Smooth frequency response: The Butterworth filter exhibits a smooth frequency response, effectively 
eliminating unwanted noise or interference while preserving the desired EOG signal components. 

 Easy implementation: Implementing and comprehending Butterworth filters is relatively straightforward 
compared to other filter types. They possess a simple design and can be easily adjusted to meet specific filtering 
requirements. 

 Minimal distortion: Butterworth filters maintain a flat passband and minimal distortion within the passband 
region, ensuring that the filtered EOG signal closely resembles the original. 

3.9.2. Drawbacks 

 Non-linear phase response: Butterworth filters introduce a non-linear phase response, resulting in different 
delays for various frequency components of the EOG signal. This can introduce phase distortions in the filtered 
signal. 

 Limited stopband attenuation: In comparison to other filter types, Butterworth filters may exhibit limited 
stopband attenuation. Consequently, they may not effectively attenuate certain types of noise or interference 
in the stopband region. 

 Trade-off between sharpness and passband ripple: Adjusting the Butterworth filter's sharpness (order) can 
impact the passband ripple. Higher-order filters offer sharper roll-off but may introduce more passband ripple, 
while lower-order filters exhibit less ripple but a slower roll-off. 

3.10. Machine learning and deep learning Filters 

Machine learning and deep learning algorithms have gained increasing popularity in signal processing applications for 
the purpose of filtering EOG signals. In this regard, it is important to consider the advantages and drawbacks associated 
with the utilization of these algorithms [42-45]: 



Global Journal of Engineering and Technology Advances, 2023, 16(03), 163–171 

168 

3.10.1. Advantages 

 Adaptive filtering: Machine learning and deep learning algorithms possess the capability to adaptively learn 
and adjust their filtering parameters based on the specific characteristics of the EOG signal. This adaptability 
enables effective noise reduction and removal of artifacts. 

 Nonlinear filtering capabilities: These algorithms are capable of capturing intricate relationships and nonlinear 
patterns present in the EOG signal. Consequently, they offer more accurate filtering compared to traditional 
linear filtering techniques. 

 Feature extraction: Machine learning and deep learning algorithms can automatically extract pertinent features 
from the EOG signal. These extracted features can be valuable for subsequent analysis or classification tasks. 

3.10.2. Drawbacks 

 Data requirements: Optimal performance of machine learning and deep learning algorithms typically 
necessitates a substantial amount of labeled training data. The process of acquiring and labeling such data for 
EOG signals can be time-consuming and resource-intensive. 

 Computational complexity: Training and applying machine learning and deep learning models can be 
computationally demanding, particularly when dealing with large datasets or real-time applications. This may 
limit their practicality in certain scenarios. 

 Interpretability: Some deep learning models, such as deep neural networks, are often regarded as black-box 
models. Consequently, comprehending the filtering process and understanding the underlying reasons for their 
decisions can be challenging. 

4. Conclusions  

In conclusion, the selection of a filtering technique for EOG signal processing is contingent upon the specific 
requirements of the application, the characteristics of the signal and noise sources, and the available computational 
resources. Further research and development in this area are imperative to explore advanced filtering techniques and 
optimize their efficacy for EOG signal analysis. Future endeavors in reviewing filtering methods for EOG signals can 
focus on several key areas to enhance comprehension and application of these methods.  

Future works  

Potential academic future work directions include: 

 Comparative analysis: Conduct a comprehensive comparative analysis of various filtering methods for EOG 
signals, such as ICA, adaptive filtering, wavelet-based methods, and others. Evaluate their performance in terms 
of signal quality improvement, noise reduction, computational efficiency, and robustness to different noise 
sources. 

 Optimization of filtering parameters: Investigate the impact of different parameter settings on the performance 
of filtering methods. Explore optimization techniques, such as machine learning algorithms or metaheuristic 
algorithms, to automatically determine optimal parameter values for each filtering method. 

 Real-time implementation: Develop real-time implementations of filtering methods for EOG signals, 
considering challenges associated with low-latency requirements and limited computational resources. 
Evaluate the performance and feasibility of these methods in real-time applications, such as eye-tracking 
systems or human-computer interfaces. 

 Noise modeling and simulation: Enhance understanding of noise characteristics in EOG signals by developing 
realistic noise models and simulators. This can aid in evaluating and benchmarking filtering methods, as well 
as provide insights into limitations and challenges associated with EOG signal processing. 

 Combination of multiple filtering techniques: Investigate potential benefits of combining multiple filtering 
techniques, such as ICA with adaptive filtering or wavelet-based methods. Explore fusion strategies and 
evaluate performance improvement achieved by these hybrid approaches. 

 Validation on diverse datasets: Validate performance of filtering methods on diverse datasets, including 
different age groups, eye movement patterns, and pathological conditions. This can help assess generalizability 
and robustness of filtering methods across various EOG signal scenarios. 

 Application-specific evaluation: Evaluate performance of filtering methods in specific applications heavily 
reliant on EOG signals, such as sleep monitoring, driver fatigue detection, or neuro-rehabilitation. Assess 
effectiveness of filtering methods in improving accuracy and reliability of these applications  
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