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Abstract 

This article presents a comprehensive examination of various techniques used to extract features from 
Electroretinogram (ERG) signals for analysis purposes. ERG signals are crucial in the diagnosis and study of retinal 
diseases. The accurate extraction of informative features from ERG signals is vital for understanding retinal function 
and identifying abnormalities. This review specifically focuses on different methods employed for feature extraction in 
ERG signal analysis, highlighting their respective advantages and disadvantages. The article explores a range of 
established methods, namely time-domain, frequency-domain, time-frequency domain analysis, and machine learning 
delves into the difficulties and constraints linked to these strategies, such as signal noise, artifacts, and computational 
complexity. Its objective is to offer a thorough evaluation of the merits and drawbacks of diverse feature extraction 
techniques, with the aim of aiding researchers and clinicians in their selection of suitable methods for the analysis of 
ERG signals. 
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1. Introduction

Electroretinogram (ERG) signals are indispensable for diagnosing, monitoring, and studying retinal diseases. These 
signals, generated by the retina in response to light stimuli, offer valuable insights into retinal function and health. 
Analyzing ERG signals involves extracting informative features that capture the underlying physiological 
characteristics, enabling accurate interpretation and detection of abnormalities. The extraction of these features is 
crucial for understanding retinal function, identifying diseases, and abnormalities [1-4]. Numerous feature extraction 
approaches have been developed over the years to analyze ERG signals and extract relevant information. These 
approaches encompass various techniques that capture different aspects of the ERG waveform, including amplitude, 
latency, frequency components, and temporal patterns. Quantifying these features provides valuable insights into 
retinal health, facilitating early diagnosis, treatment monitoring, and prognosis evaluation. This paper aims to 
comprehensively review feature extraction approaches for ERG signal analysis, focusing on their advantages and 
drawbacks [5-8]. The review aims to assist researchers and clinicians in selecting appropriate methods for their specific 
needs. Feature extraction approaches play a critical role in unraveling the complex information within ERG signals, 
providing insights into retinal function, disease diagnosis, and treatment monitoring. The complexity of ERG signals 
underscores the importance of feature extraction approaches. ERG waveforms consist of multiple components 
representing different retinal processes. Extracting relevant features allows researchers to focus on specific aspects, 
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unraveling underlying physiological mechanisms. Quantifying features such as amplitude, latency, and frequency 
characteristics helps identify abnormalities, monitor disease progression, and evaluate treatment outcomes [9, 10]. 
Feature extraction approaches also enable comparison and analysis of ERG signals across subjects and conditions, 
establishing objective criteria for evaluating retinal function and disease severity. Standardization allows consistent 
interpretation, facilitating reliable comparisons. Moreover, feature extraction approaches enable the development of 
automated diagnostic tools and computer-aided systems [11-14]. Machine learning algorithms trained on informative 
features can classify ERG signals, differentiate normal from abnormal responses, and detect specific retinal diseases. 
Automation enhances efficiency and accuracy, supporting clinicians in decision-making. Feature extraction approaches 
provide insights into underlying mechanisms of retinal diseases by identifying patterns and markers associated with 
different conditions. This understanding advances knowledge, identifies biomarkers, and guides targeted interventions. 
Furthermore, feature extraction enables monitoring of disease progression and treatment efficacy over time. 
Longitudinal quantification of relevant features assesses changes, tracks progression, and optimizes patient outcomes. 
In summary, feature extraction approaches are crucial in ERG signal analysis. They interpret complex waveforms, 
support diagnosis and monitoring, facilitate comparisons, develop automated tools, and provide insights into retinal 
conditions. Extracting informative features advances understanding of retinal function and improves patient care. 

2. Time-Domain Feature Extraction Approaches 

In the analysis of Electroretinogram (ERG) signals, time-domain feature extraction approaches play a significant role in 
capturing the temporal characteristics of the ERG waveform. These approaches focus on extracting features related to 
the morphology, peak time, and amplitude of the signal. By quantifying these features, researchers and clinicians can 
gain valuable insights into the underlying physiological processes and detect abnormalities [15-18]. 

One commonly used time-domain feature extraction method is the analysis of waveform morphology. This involves 
visually examining the shape of the ERG waveform and identifying characteristic features such as peaks and troughs. 
The presence, absence, or changes in the morphology of the waveform can provide indications of retinal dysfunction or 
disease progression [19, 20]. 

An essential component of time-domain feature extraction involves quantifying the timing and magnitude of specific 
peaks or troughs within the waveform following the stimulus onset. Peak time measurement enables the evaluation of 
retinal response timing, offering valuable insights into the performance of retinal cells. Conversely, amplitude 
represents the magnitude of the ERG response. Variations in amplitude can indicate changes in retinal sensitivity or the 
presence of abnormalities [21-25]. 

Time-domain feature extraction approaches offer several advantages in ERG signal analysis. Firstly, ERG signals offer a 
direct evaluation of the temporal attributes of the waveform, enabling correlation with specific retinal processes. 
Secondly, these methods do not necessitate complex signal processing techniques, rendering them uncomplicated and 
computationally efficient. Moreover, time-domain analysis facilitates the detection of subtle alterations in waveform 
morphology that may be challenging to identify using alternative methodologies. 

However, time-domain feature extraction approaches also have their limitations. One drawback is their sensitivity to 
noise and artifacts present in the ERG signals. These disturbances can introduce inaccuracies in the extracted features, 
affecting the reliability of the analysis. Additionally, time-domain analysis may not fully capture complex temporal 
patterns or frequency-related information present in the signals [26, 27]. 

Despite these limitations, time-domain feature extraction approaches remain valuable tools in ERG signal analysis. ERG 
signals offer valuable information regarding the temporal aspects of the waveform, enabling the identification of 
abnormalities and providing relevant data for clinical decision-making. When researchers and clinicians choose feature 
extraction methods for their specific research or clinical purposes, it is crucial to thoroughly evaluate the benefits and 
constraints associated with time-domain analysis. 

3. Frequency-Domain Feature Extraction Approaches 

Examining the frequency-domain characteristics of the ERG signal offers valuable insights into the underlying 
physiological processes and aids in the detection of abnormalities. This section explores various approaches for 
extracting frequency-domain features when analyzing the ERG signal [28 - 33]. 
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 Fourier Transform: The Fourier Transform is a widely employed method for frequency-domain analysis of 
signals, including the ERG. It decomposes the signal into its constituent frequency components, revealing the 
power spectrum and frequency distribution. By analyzing the amplitudes and phases of specific frequency 
components, researchers can obtain significant information about retinal function. 

 Power Spectrum Analysis: Power spectrum analysis involves calculating the power spectral density (PSD) of 
the ERG signal. This approach provides a quantitative measure of the signal's energy distribution across 
different frequencies. By examining the PSD, researchers can identify frequency bands that are particularly 
relevant to retinal function and abnormalities. 

 Spectral Entropy: Spectral entropy quantifies the complexity of the signal in the frequency domain by 
measuring the distribution of energy across different frequency components. Higher spectral entropy values 
indicate a more diverse and complex frequency distribution, while lower values suggest a more focused and 
concentrated distribution. Analyzing spectral entropy can provide insights into the complexity of retinal 
responses and help differentiate between normal and abnormal ERG signals. 

 Coherence Analysis: Coherence analysis measures the degree of linear relationship between two signals in the 
frequency domain. By examining the coherence between different components of the ERG signal, researchers 
can assess the functional connectivity and synchronization of retinal responses. Coherence analysis provides 
valuable insights into the temporal relationship between different frequency components and their 
contribution to retinal function. 

 Higher-Order Spectral Analysis: Higher-order spectral analysis techniques, such as bispectrum and 
bicoherence analysis, surpass traditional power spectrum analysis by capturing nonlinear interactions 
between different frequency components. These techniques unveil hidden relationships and nonlinear 
dynamics in the ERG signal, offering a deeper understanding of retinal function and abnormalities.  

4. Time-Frequency Domain Feature Extraction Approaches 

Time-frequency domain feature extraction methods offer a combined representation of the time and frequency 
characteristics of Electroretinogram (ERG) signals. These methods aim to capture the dynamic changes in the spectral 
content of the signals over time, enabling a thorough analysis of both temporal and frequency components. By extracting 
features from the time-frequency domain, valuable insights into the temporal dynamics and frequency variations of ERG 
signals can be obtained by researchers and clinicians. One commonly utilized technique for time-frequency domain 
feature extraction is the Wavelet Transform, which allows for a multi-resolution analysis, enabling the examination of 
the signal's frequency content at different scales [34-36]. By decomposing the ERG signal into time-frequency 
components, the Wavelet Transform can effectively capture transient events and frequency variations that may not be 
easily detectable using other methods. Scalogram and spectrogram analysis, two popular techniques based on the 
Wavelet Transform, provide visual representations of the time-frequency characteristics of the signal. Time-frequency 
domain feature extraction approaches offer several advantages in ERG signal analysis Firstly; these methods provide a 
direct evaluation of the temporal attributes of the waveform, allowing for correlation with specific retinal processes. 
Secondly, these approaches are relatively simple and computationally efficient, as they do not necessitate complex 
signal processing techniques. Moreover, time-domain analysis facilitates the detection of subtle alterations in waveform 
morphology that may be challenging to identify using alternative methods. Nevertheless, it is crucial to recognize the 
constraints associated with time-domain feature extraction techniques [37, 38]. One limitation is their vulnerability to 
noise and artifacts present in the ERG signals, which can introduce inaccuracies in the extracted features and affect the 
analysis's dependability. The decomposition of the signal into time-frequency components requires additional 
computational resources and careful selection of analysis parameters. Additionally, the interpretation of time-frequency 
representations can be challenging, as it necessitates expertise in understanding the trade-offs between time and 
frequency resolution. Despite these limitations, time-frequency domain feature extraction approaches remain valuable 
tools in ERG signal analysis. They offer a unique perspective on the temporal and frequency characteristics of the 
waveform, facilitating a more comprehensive understanding of retinal function and the detection of abnormalities. 
Researchers and clinicians should consider the advantages and limitations of time-frequency analysis when selecting 
appropriate feature extraction methods for their specific research or clinical applications [39, 40].  

5. Artificial Neural Network Feature Extraction Approaches 

Artificial Neural Networks (ANNs) have garnered considerable attention in recent years due to their capacity to extract 
features from complex datasets, including Electroretinogram (ERG) signals. ANNs are computational models inspired 
by the structure and functioning of the human brain, comprising interconnected layers of artificial neurons [41-43]. 
These networks possess the ability to learn and extract meaningful features from raw data, making them well-suited for 
feature extraction in ERG signal analysis. One commonly employed approach for feature extraction using ANNs is the 
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utilization of deep learning architectures, such as Convolutional Neural Networks (CNNs) or Recurrent Neural Networks 
(RNNs). CNNs excel in extracting spatial features from multidimensional data, making them particularly suitable for 
analyzing ERG signals. By training the network on a large dataset of ERG signals, CNNs can automatically learn 
discriminative features that are relevant for specific tasks, such as disease classification or abnormality detection. On 
the other hand, RNNs are designed to capture temporal dependencies in sequential data, which can be advantageous in 
analyzing time-varying aspects of ERG signals. ANN-based feature extraction approaches offer several advantages in 
ERG signal analysis. Firstly, they possess the capability to extract high-level abstract features from raw data, which may 
not be easily discernible using traditional feature extraction methods. This enables a more comprehensive analysis of 
ERG signals, potentially leading to improved accuracy in disease diagnosis and monitoring. Secondly, ANNs can adapt 
and learn from large datasets, facilitating automated and data-driven feature extraction without the need for manual 
feature engineering. This reduces reliance on domain expertise and potentially paves the way for objective and 
automated analysis of ERG signals [44-46]. However, it is important to acknowledge the limitations of ANN-based 
feature extraction approaches. One significant drawback is the requirement for large amounts of annotated training 
data. ANNs typically necessitate a substantial dataset to effectively learn representative features. Acquiring such 
datasets with well-labeled ERG signals can be challenging, particularly for rare or specialized retinal diseases. 
Additionally, ANNs are often perceived as "black-box" models, as the learned features may not be directly interpretable, 
limiting the insights gained from the feature extraction process. Another limitation is the computational complexity and 
resource requirements associated with training and deploying ANNs. Training deep learning models can be 
computationally intensive and often demands specialized hardware. Moreover, deploying these models in real-time or 
resource-constrained environments may pose challenges due to the computational demands [47, 48]. Despite these 
limitations, ANN-based feature extraction approaches hold promise in ERG signal analysis. Their ability to automatically 
learn discriminative features from raw data can contribute to improved accuracy and efficiency in disease diagnosis 
and monitoring. Researchers and clinicians should carefully consider the advantages and limitations of ANN-based 
approaches when selecting appropriate feature extraction methods for their specific research or clinical applications. 

6. Conclusions and Future Works 

This comprehensive review examines and compares various approaches for feature extraction in the analysis of 
Electroretinogram (ERG) signals. The approaches discussed include time-domain analysis, frequency-domain analysis, 
time-frequency domain analysis, and artificial neural network (ANN) analysis. Each approach has its own advantages 
and drawbacks, providing valuable insights into ERG signals and influencing their suitability for specific research or 
clinical applications. Time-domain analysis focuses on the morphology and temporal parameters of the ERG waveform, 
allowing for the identification of key features such as peak time and amplitude. It excels in detecting subtle changes in 
waveform morphology and is computationally efficient. However, it may be sensitive to noise and artifacts, which can 
affect the accuracy of feature extraction. Frequency-domain analysis explores the frequency components and power 
distribution of ERG signals, providing insights into their spectral characteristics and identifying abnormalities 
associated with specific frequency ranges. It offers quantitative measures of power distribution and facilitates objective 
comparisons. However, careful consideration of spectral analysis methods and signal-to-noise ratio is necessary. Time-
frequency domain analysis combines time and frequency information, capturing dynamic changes in ERG signals. It 
provides a comprehensive representation of the signals, enabling the detection of transient events and frequency 
variations. This approach offers insights into the temporal dynamics of retinal responses and underlying physiological 
processes. However, it introduces complexities in parameter selection and computational requirements. ANN-based 
feature extraction approaches, such as deep learning architectures like CNNs and RNNs, have emerged as powerful tools 
in ERG signal analysis. They automatically learn discriminative features from raw data, eliminating the need for manual 
feature engineering. ANN-based approaches capture complex patterns and relationships in the data. However, 
challenges such as the requirement for large labeled datasets, interpretability of learned features, and computational 
demands should be considered. In conclusion, the choice of feature extraction approach depends on specific research 
or clinical objectives. Time-domain analysis captures waveform morphology, frequency-domain analysis identifies 
abnormalities in specific frequency ranges, time-frequency domain analysis provides comprehensive insights, and ANN-
based analysis automates feature extraction from raw data. Understanding the advantages and limitations of each 
approach is crucial in selecting appropriate methods for specific applications. Future research in feature extraction for 
ERG signal analysis can focus on integrating different approaches to leverage their strengths and mitigate limitations. 
Combining time-domain, frequency-domain, and time-frequency domain features could provide a more comprehensive 
understanding of ERG signals. Additionally, incorporating ANN-based feature extraction with traditional approaches 
may improve accuracy and efficiency. Addressing challenges associated with ANN-based approaches, such as 
interpretability and visualization of learned features, and mitigating the requirement for large labeled datasets are 
important areas of exploration. Further research is also warranted in the development of automated and objective 
feature extraction methods, including integration with advanced signal processing techniques and exploration of novel 
feature extraction approaches.  
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