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Abstract

This study comprehensively analyses various optimisation techniques applied to Liquefied Natural Gas (LNG)
production. Two datasets were used to assess the performance of these techniques, with a focus on improving LNG
output. The results revealed that the genetic algorithm exhibited the highest average percentage improvement in the
first dataset, achieving a 12% optimisation, followed closely by a custom-developed optimisation method at 11%.
Bayesian optimisation showed an average of 4%, while gradient descent demonstrated the lowest optimisation with -
2%. Notably, the second dataset displayed even more significant improvements, with the custom optimisation algorithm
leading at an average of 32%, surpassing the genetic optimization method's 30%. This study underscores the efficacy
of the custom algorithm and its potential for enhancing LNG production, positioning it as a promising alternative to
traditional optimisation approaches.

Keywords: LNG Production; Optimisation Techniques; Custom Algorithm; Genetic Algorithm and Bayesian
Optimisation

1. Introduction

The world is already making the switch to natural gas as a cheaper and cleaner energy source. It is mostly replacing coal
as the most eco-friendly choice because it produces fewer carbon emissions (Mofid & Fetanat, 2019; Salehi, 2018; Wang,
2017). The amount of natural gas used is expected to rise by a large 40% between 2014 and 2040. (BP, 2017). Jackson,
Eiksund, and Brodal's study from 2017 found that natural gas-powered plants made up 37% of fossil fuel energy in
2030, up from 30% in 2013.

Because it burns cleaner and releases fewer greenhouse gases, liquefied natural gas (LNG) is quickly becoming the
world's main energy source. This trend has sped up since the recent energy crisis (Sang et al., 2020). Pipelines or
liquefaction are the main ways that natural gas is moved. Energy companies often use liquefying natural gas for long-
distance transport because pipeline restrictions, fixed transit routes, and long-term contracts make it hard to get
pipeline gas (Lee et al., 2020).
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Gases are liquefied, which turns them into liquids. LNG is made by cooling natural gas to -162 degrees Celsius at room
temperature and pressure. Natural gas is much easier to transport when it is liquefied because it takes up only one-six
hundredth as much space as when it is gaseous (Khalilpour & Karima, 2009).

To getthese very low temperatures, you need refrigerants, and the way they heat up and cool down must be very similar
to natural gas. Refrigerants, which are often found in air conditioning and refrigeration systems, are very important for
keeping LNG at the low temperatures it needs to be stored and transported.

Because of this, how well this refrigeration process works is very important, since a bad system can cause less
production. The industry needs refrigerants that are good for the environment and use little energy. As time has gone
on, different types and methods of refrigerants have been used to make LNG. These include the turbo-expander process,
the cascade process, and single/dual mixed refrigerant (SMR/DMR) technology. The main differences between these
methods are their start-up and running costs, which depend on things like how much they can produce, how much
equipment they need, and how much labour costs.

Mixed-refrigerant (MR) processes, on the other hand, make design and operation more difficult because there are more
thermodynamic interactions. This makes it harder to manage and improve the process (Shukri, 2004). Which
refrigerant to use depends on things like the temperature range you want, how easy it is to get, how much it costs, and
what you know from past experience. For example, an olefins factory might have ethylene and propylene on hand, while
a natural gas processing plant might have ethane and propane on hand. To keep things clean, it's important to use the
right refrigerant. Halocarbons are often preferred because they don't catch fire.

The Propane Precooled Mixed Refrigerant (C3MR) system is a common way to cool things down these days. This method
uses a propane refrigeration system to cool LNG to -35°C before it goes into a mixed refrigeration system that has
methane, ethane, propane, and nitrogen (Bahadori et al., 2014).

2. Material and methods

To optimise the liquefied natural gas production of an industry, an artificial intelligence (AI) program was used.
Specifically, the python programming language was the optimum and readily available software to be used.

This study collected data comprising the LNG production, refrigerants, temperature, and pressure of the refrigeration
processes. These data were processed in the software using four regression analysis models.

2.1. Material

The material used in this research include: An artificial intelligent (Python programming language) software, PI
Processbook software 2015 version 3.6.2.271, PI datalinks, Visual studio (VS) code editor and Microsoft Excel 365.
Python is an interpreted, high-level programming language that may be used for various projects. The principle behind
its design prioritizes the readability of the code by heavily indenting it. The PI processbook and PI datalink add-in were
basically used for data collection from the plant site. While the VS code editor is mainly an Integrated Development
Environment (IDE) source code editor used to debug, highlight syntax and for coding of the GUI script. It is a user-
friendly coding environment.

2.2. Process Optimisation Description

Figure 1 shows the sequential order or steps used to achieve the aim and objectives of this research. It depicts the
schematic breakdown of the optimisation process using the artificial intelligence data driven approach.
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2.3. Data Collection

Figure 1 Process description of Artificial Intelligence optimisation

The data collection for this work was done using PI Processbook 2015 software version 3.6.2.271 R2 and PI datalink. PI
Processbook is an OSIsoft vendor software that enable users to retrieve real-time data from the PI system which is

linked to a live process plant. The software application has the capability to create dynamical graphical display, trends

from historical and real time data. To retrieve the data used for the work, the PI datalink was connected to the PI server
and then to the liquefaction plant via several process control schemes as shown in Figure 2. The PI datalink is a Microsoft
Excel add-in feature linked to the PI software. The sample data multiple value function of the PI datalink was used to
retrieve about 10 years liquefaction unit data set at an hourly interval.

2.4. Optimisation Algorithms Tested

PI Datalink

Process Controls Liquefaction plant

PI Server

Figure 2 PI System data Collection scheme

Three optimisation algorithms were used in the process and these are’

Bayesian Optimisation
Genetic optimisation

Gradient Descent Optimisation
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3. Result

3.1. First Dataset

Table 1 Average Percentage Increase on First 20 observations in the First Sample set

No Initial Custom Gradient Bayesian Genetic

1 13575.38 | 13690.92672 | 12408.69984 | 13286.58859 | 13640.8994
2 11672.666 | 13878.96094 | 11414.97127 | 12046.54229 | 13595.3128
3 13388.155 | 13570.98471 | 12327.32382 | 13126.86519 | 13621.9232
4 12687.996 | 13326.51261 | 12258.71911 | 12031.73332 | 13593.8581
5 11994.082 | 13291.19481 | 12795.36119 | 13483.87126 | 13492.2626
6 12854.625 | 13578.56662 | 12418.47643 | 13092.26836 | 13636.4246
7 13238.532 | 13708.82436 | 13029.82239 | 12112.42656 | 13482.9398
8 9791.7119 | 12724.55071 | 10764.20079 | 12132.75837 | 13580.4337
9 13011.92 | 13560.2891 | 12695.11191 | 11937.67382 | 13582.5959
10 12745.037 | 13689.32319 | 11510.46207 | 12127.82168 | 13631.7646
11 10310.596 | 13260.75199 | 10816.96873 | 13063.15677 | 13609.6981
12 12422.842 | 13733.09121 | 11013.41439 | 13298.60512 | 13366.8523
13 8127.2803 | 12672.0695 | 8298.333296 | 13503.3147 | 13630.3422
14 12024.938 | 12514.84944 | 11989.99156 | 13515.43054 | 13608.465
15 12265.893 | 13618.32549 | 12089.75725 | 12058.69319 | 13595.4567
16 12296.931 | 13508.91553 | 13108.9153 | 13402.33799 | 13595.3373
17 12576.334 | 13348.72273 | 11665.48343 | 12129.38427 | 13595.3116
18 12305.014 | 13529.32789 | 12516.85648 | 11999.2301 | 13565.2765
19 12714.961 | 13361.63746 | 12431.58694 | 11931.28539 | 13372.6477
Average Percentage Increase 11% -2% 4% 12%
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Figure 3 Overall Optimisation Result on First Dataset
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Figure 4 Genetic Optimisation result on First Dataset
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Figure 5 Gradient Descent Optimisation result on First dataset
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Figure 6 Custom Optimisation result on First dataset
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3.2. Second Dataset

Table 2 The Average Percentage Increase on the First 20 observations in the second Sample set

Figure 7 Bayesian Optimisation result on First dataset

No Initial Custom Gradient | Bayesian Genetic

1 9469.942 | 12500.27655 | 9605.8074 | 11903.22683 | 11909.47272
2 9507.516 | 12767.79539 | 7.738E-05 | 11929.14465 | 12578.28478
3 9519.393 | 12575.07081 | 9791.5131 | 12049.67537 | 11778.76945
4 9497.821 | 12681.60965 | 9839.8082 | 11928.7085 | 12293.87974
5 9516.682 | 12459.98689 | 8688.4875 | 11362.76731 | 12358.01606
6 9522.152 | 12650.87519 | 8781.4379 | 11956.23706 | 13190.72628
7 9525.817 | 12288.37789 | 9839.0206 | 11928.46048 | 12645.4177
8 9526.972 | 12252.29457 | 8781.6409 | 11573.72382 | 13010.37597
9 9493.407 | 12553.85172 | 10040.611 | 11957.85412 | 12208.0415
10 9448.166 | 11899.0564 | 5020.9062 | 11939.44838 | 11568.7573
11 9450.67 | 12907.64916 | 9797.7888 | 11929.24294 | 12172.05655
12 9362.8 12390.50338 | 10241.193 | 11860.93731 | 11754.67057
13 9332.197 | 11706.353 10583.188 | 11928.70445 | 12465.95528
14 9320.287 | 12316.978 9877.7832 | 11826.7475 | 12076.78333
15 9300.343 | 12799.35098 | 7626.7525 | 11366.09037 | 11358.94368
16 9303.986 | 12758.33018 | 11176.033 | 11957.7574 | 12233.65892
17 9312.156 | 11910.23625 | 4325.2674 | 12049.44558 | 11584.85472
18 9332.209 | 12465.95529 | 11992.965 | 11928.55336 | 12463.47605
19 9346.166 | 12490.48372 | 9472.0143 | 11368.1586 | 12208.13999
20 9389.598 | 12472.47473 | 9472.1984 | 11928.96994 | 12463.37431
Average Percentage 32% -7% 26% 30%
Increase
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Figure 10 Gradient Descent Optimisation result on Second dataset
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Figure 12 Genetic Optimisation result on Second dataset

4, Discussion of Results

Tables 1 and 2 demonstrate, respectively, the average percentage improvement in the flow of 20 observations from the
first and second datasets that each of the various optimisation techniques were able to accomplish. In Table 1, it can be
observed that the genetic algorithm had the greatest optimisation, which resulted in a 12 % gain on average, followed
by the custom optimisation method (11 %). The Bayesian method produced an average of 4%, while the gradient
descent method produced the lowest percentage, which was -2 %. Figures 3 to 12 provide a visual representation of the
optimisation findings, respectively. According to Table 2, the average optimisation result achieved by the custom
optimisation algorithm was 32 %, which was higher than the average optimisation result achieved by the genetic
optimisation method, which was 30 %. Figure 3 to Figure 12 provide a graphical representation of the performance of
each optimisation technique, respectively.
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5. Conclusion

The Genetic algorithm achieved the best results, with an average improvement of 12 % in optimisation, followed by the
custom-developed optimisation method that we produced, which achieved 11 %. The Bayesian method produced an
average of 4 %, while the gradient descent method produced the lowest percentage, which was -2 %. We found that our
built bespoke optimisation method had the greatest average optimisation result of 32 % for the second validation LNG
data set. This was followed by genetic optimisation, which had a result of 30 % for average optimization.
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