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Abstract 

A nation's economic survival depends on its oil and gas pipelines. They must therefore be carefully inspected in order 
to enhance their efficiency and prevent product losses during the transportation of petroleum products. They could, 
however, fail, having negative effects on the environment, the economy, and safety. Therefore, evaluating the pipe's 
condition and quality would be extremely important. This research work performed an intelligent control for reducing 
third-party interference in oil and gas pipeline using Deep Q-Networks (DQN). The learning curve shows a steady 
improvement, indicating that the algorithm progressively learned and improved its performance over time. This 
observation demonstrates the effectiveness of the DQN algorithm in adapting and optimizing control strategies. Overall, 
the results of the analysis indicate that the DQN algorithm holds promise for mitigating third-party interference in oil 
pipelines.  
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1. Introduction

The safety of gas and oil transmission pipelines not only impacts the safety of pipeline operating, the provision of social 
energy, but also poses a threat to people's lives and the environment in which they live. Natural gas pipelines operate 
continuously and traverse several sites with complicated surroundings. This has received a lot of attention that the 
primary cause of natural gas pipeline accidents is third-party damage (vandalism, sabotage, and terrorism). Vandalism 
is when property, whether it be public or private, is intentionally destroyed. Vandalism, as used in the civic sphere, is 
the intentional destruction of public or government property for illegal or political purposes. The intentional 
destruction of oil pipelines with the aim of stealing petroleum products or undermining the government is thus 
considered oil pipeline vandalism [1]. 

Criminal organizations primarily responsible for oil pipeline damage in Nigeria are driven by the desire to plunder oil 
products for personal gain. This organized crime has the appearance of a franchise because state officials frequently 
assist and abet it. Oil pipeline vandalism, or oil bunkering as it is known in Nigeria, is the practice of digging into 
pipelines with the intention of stealing goods. Nigeria has a crude oil pipeline network that spans 5001 kilometers [2]. 

There are 666 km of oil and gas pipelines and 4315 km of multi-product pipelines in overall. The 22 petroleum data 
retention depots, the 4 refineries at Port-Harcourt (I and II), Warri, and Kaduna the offshore ports in Bonny and 
Escravos, and the jetties in Alas Cove, Calabar, Okirika, and Warri are all connected by this country-wide network of 
pipelines [3]. This 719-kilometer-long network of oil pipes is used to transfer crude oil to the refineries in Port-Harcourt 
(I and II), Warri, and Kaduna. The 22 petroleum storage depots located around the nation are served by the multi-
product pipelines, which transport goods from refineries and import receiving jetties. According to the Scientific Council 
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on the Assessment of Natural Gas Products Delivery Distribution, 2000, the preservation infrastructure, which consists 
of 22 loading depots connected by pipeline of various diameters, has installed capacities of 1,266890 (PMS), 676 400 
(DPK), 1007 900 (AGO), and 74 000 (ATK) m3 tonnes.  

Urban natural gas pipelines traversing paths and channels are susceptible to construction operations by outside parties 
since they are part of the infrastructure of cities and towns [4]. The gas pipeline burst during the excavating procedure 
was the cause. According to China Gas Association's Study on Current Situation and Countermeasures of Urban Gas 
Safety Regulation System, there were 608 urban gas incidents caused by third-party constriction activities out of the 
1789 that occurred between 2010 and 2012. Since third-party destruction is now a major contributing factor in gas 
pipeline accidents, research on the assessment of failure likelihood is required.  

Without considering natural disasters, non-gas supply organizations are always responsible for third-party (terrorism, 
sabotage, and vandalism) damage to urban gas pipelines. It is challenging to prevent third-party damage since the causes 
are numerous and strongly random in nature. The United States Gas Group concluded its study of the gas business in 
2005 and discovered that third-party damage was responsible for roughly 35% of significant occurrences. Third party 
interference contributed to 32.6% of pipeline failure incidents in Europe from 1971 to 1994, different mechanical failure 
accounted for 25.4%, and corrosion accounted for 30.4%. When the information that is given is ambiguous, incomplete, 
imprecise, or vague, fuzzy set theory can offer an effective mathematical framework for calculating failure rates. In order 
to create the intuitionistic fuzzy fault tree interval, [5] used triangular IFS to combine experts' assessments of the 
likelihood of bottom events failing with their failure analysis of printed circuit board assembly. Based on a global disaster 
investigation of oil tanks, [6] proposed an integration of enhanced Evaluation Structure Procedure (ESP) and fuzzy fault 
tree assessment (FFTA) to calculate the likelihood of explosions and fires injuries for storage tanks (FEASOST). Author[7] 
performed an extensive risk assessment of a submerged pipeline transporting LNG through the integration of the fuzzy 
approach alongside the bow-tie approach. Li et al. [8] designed three proportional–integral–derivative (PID) controllers 
for the lateral motion, longitudinal motion, and velocity on the basis of the motion characteristics of the parafoil system, 
which overcame the limitations of the traditional guidance-based tracking strategy. As for actual airdrop scenarios, the 
PID controller still occupies a dominant position, but the PID controller cannot achieve high tracking accuracy, especially 
under the disturbances of a complex environment. Tao et al. [9,10] used linear active disturbance rejection control 
(LADRC) to realize the accurate trajectory tracking of the parafoil system. LADRC is currently the most widely used 
control strategy in practice besides PID; however, the adjustment of the LADRC parameters remains a challenging 
problem to be studied. 

Active disturbance rejection control (ADRC) [11] was first proposed by Han [12], which combines the state observer in 
modern theory with the error-based ideas in PID. Specifically, ADRC uses an extended state observer (ESO) to observe 
the unknown disturbances in the system and uses a state error feedback (SEF) control law to eliminate the disturbance. 
With model-free characteristics and good control effects, ADRC has attracted the attention of many scholars. Gao [13] 
developed LADRC through the linearization of the ESO and SEF, which significantly promoted the theoretical and 
engineering application research of ADRC. In terms of theory, Chen [14] and Wang [15] provided proof of the stability 
of LADRC. LADRC has demonstrated its control advantages in applications such as power system load frequency control 
(LFC) [16], heading angle control [17], path-following control [18,19], and an electromechanical servo system [20]. For 
example, Li et al. [21] proposed a guidance law based on a ship’s nonlinear combination of lateral error and heading 
angle error, and LADRC was used to estimate and eliminate the disturbances. However, this guidance law could only 
realize path tracking in the y-direction. Inspired by this result, this paper proposes a new guidance law. 

This research work utilizes Machine Learning to evaluate the effect of third-party in urban gas pipeline, the uncertainty 
of third-party damage, the risk of failure and reduction of the maintenance cost spent yearly. The AHP was utilized to 
estimate expert ability. The methodology proposed in this work could provide insights for the safety evaluation for urban 
gas pipelines. 

2. Materials and Methods 

The detection methods for leaks utilizing Negative pressure waves (NPWs) are grounded on the fundamental principle 
that the occurrence of a leak induces changes in both pressure and flow velocity. These changes subsequently lead to 
an immediate reduction in pressure and variations in velocity along the pipeline. When there is decrease in the 
instantaneous pressure, it gives rise to opposite waves of the pressure at the location of the leak. This wave then 
propagates at a specific velocity towards both the upstream as well as the downstream sides of the piping. This wave 
carries information related to leakage, which can be approximated by visually examining and analysing the signals. This 
analysis helps identify the location of the leakage by comparing the time it takes for the waves to reach the ends of the 
pipeline. 
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The utilisation of a Negative Pressure Wave (NPW) based technique for detecting leaks in pipeline networks is 
considered to be a cost-effective approach due to its minimal hardware requirements. This technique enables the 
detection and localization of leaks with limited reliance on additional equipment throughout the whole pipeline 
network. The application of this methodology has been widely employed in the domain of pipelines monitoring due to 
its prompt response time and efficient leak detection capacity. However, the effectiveness of this method is constrained 
to cases when there are substantial and abrupt leaks, and it frequently produces false alarms due to the difficulty in 
differentiating between normal pressure variations and genuine leakages. Moreover, a crucial problem associated with 
this technology is the accurate identification of the seep site through the utilization of the differences in time in which 
the pressure wave is detected across the two edges of the pipeline. To address this limitation, many endeavors have 
been undertaken to enhance the processes for detecting and localizing leaks through the utilization of non-destructive 
testing methods. Small leakage's pressure wave signal is easily contaminated by background interference and noise. 
This makes precise signal detection difficult, which in turn makes the process of finding an oil leak difficult. a powerful 
technique for locating weak leakage signals that makes use of an enhanced harmonic wavelet. The system is employed 
in the elicitation of the signal of the pressure wave from the noises in the background, but this method has a flaw because 
the pressure wave signal decays quickly in time.  

2.1. The Deep Q-Network (DQN) algorithm 

The Q-learning algorithm encounters limitations when applied to state spaces with high dimensionality, making training 
challenging in cases whenever the state area is expansive. Consequently, a Deep Q-Network (DQN) is constructed 
utilising the principles of Q-learning, wherein a neural network is employed to encode the Q table. In this context, fµ(s, 
a) ≈ Q(s, a) represents a variable, while f denotes the output of a neural network with weight µ. It is worth noting that 
insertion of the neural network consists of the system state, while the output corresponds to the actions represented 
by fµ(s, a). Figure 1 depicts the structural diagram of the DQN. The DQN algorithm is a type of reinforcement concept 
learning technique that integrates deep neural networks with the Q-learning algorithm in order to address intricate 
decision-making challenges. A subset of machine learning called reinforcement training is concerned with teaching 
entities how to execute actions sequentially in a setting where the overall incentives are maximized. The Q-learning 
methods procedure is a well-liked learning through reinforcement method that educates the Q-function, an activity-
value variable which calculates the predicted progressive incentive for performing a specific action in a specific 
condition.  

DQN builds upon Q-learning by incorporating deep neural networks to approximate the Q-function. Deep artificial 
neural networks can pick up complex information representations and can effectively handle high-dimensional input 
spaces, making them suitable for solving real-world problems. 

In the DQN algorithm, Q-function is modelled using a network of deep neural networks, where the parameters are 
represented as. Given a state s, The predicted progressive incentive is estimated using the Q-function for each possible 
action a, referred to as Q(s, a; θ). 

The Q-learning update rule is applied to update the Q-function during training. The update principle is derived as a 
result of Bellman equation, of which, it can be mathematically represents the ideal For a specific state-action couple, the 
Q-parameter. It is defined as the summation of the immediate incentive received and the deferred maximum Q-value in 
the subsequent state. 

Q(s, a; θ) = r + γ * max(Q(s', a'; θ)), where r denotes the instantaneous incentive, denotes the reduction variable, s' 
denotes the following region, and a' denotes the following activity. 

To increase robustness and integration through training, the DQN method makes use of concentrated networks and 
gain knowledge repeat. Experience repeat requires selecting at random samples from the stored previous instances 
(state, behavior, incentive, and subsequent stage) in an updated queue from it to train the network. Target networks 
are used to provide stable target Q-values during training by periodically updating them with the weights of the main 
network. 

During training, the DQN algorithm minimizes the calculation of mean squared error losses performance by comparing 
the matching expected Q-values to desired qualitative values. L(θ) = E[(Q(s, a; θ) - (r + γ * max(Q(s', a'; θ_target))))^2] 

The network weights θ are updated using gradient descent to minimize this loss function, resulting in an improved 
approximation of the Q-function. 
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In practice, the DQN algorithm iteratively relates with its surroundings, selecting taking exploratory-exploitation 
measures a plan (such as epsilon-greedy) and updating the Q-function based on the observed rewards. The algorithm 
gradually learns to make better decisions by exploring different actions and leveraging the knowledge gained from 
previous experiences. 

(DQN) The integration of deep neural networks with reinforcement learning together constitutes a robust algorithmic 
approach for addressing intricate decision-making challenges. Subsequently has already been effectively employed in a 
variety of fields, including robotics, gaming, and control systems. The algorithm's ability to learn from raw sensory 
inputs and handle high-dimensional state spaces makes it well-suited for real-world applications. Through the iterative 
learning process, DQN can discover optimal control strategies and achieve superior performance in challenging 
environments. 

 

 Figure 1 Structure of the DQN 

3. Results and Analysis 

In this section, the experimental results obtained from applying different machine learning algorithms to high-Risk Area 
Identification, Minimize Estimated Loss and Developing intelligent control strategies to mitigate third-party 
interference in Urban Oil and Gas Pipelines Third-Party Interference was presented.  

The goal of the analysis was to evaluate the performance of the DQN agent in mitigating third-party interference in oil 
pipelines. Several performance metrics were used to assess the effectiveness of the DQN algorithm in this context. 

 Average Reward: The DQN agent achieved an average reward of 15.2 during the evaluation. This indicates that, 
on average, the agent was able to successfully mitigate third-party interference and maintain the integrity of 
the oil pipelines. A higher average reward suggests better performance in achieving the desired objective. 

 Maximal Reward: The highest reward obtained by the DQN agent during a single episode was 25. This indicates 
that the agent was able to achieve optimal performance in some instances, successfully mitigating all instances 
of third-party interference. This demonstrates the potential capability of the DQN algorithm in effectively 
controlling and mitigating interference. 

 Episode Length: The DQN agent took an average of 50 steps or time-steps to complete an episode. This suggests 
that the agent required a moderate number of actions to mitigate third-party interference. A lower episode 
length indicates faster convergence and better efficiency in achieving the goal. 

 Exploration vs. Exploitation: The DQN agent demonstrated a well-balanced exploration-exploitation trade-off. 
It was able to explore different actions to gather information and learn optimal strategies while effectively 
exploiting the learned knowledge to mitigate interference. This indicates that the agent was able to adapt and 
improve its performance over time. 

 Q-Value Convergence: The Q-values of the DQN agent converged satisfactorily during the learning process. The 
mean squared error between the current Q-values and the target Q-values reached a stable level, indicating 
that the agent successfully learned and updated its Q-values based on the observed rewards and experiences. 
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 Learning Curve: The learning curve depicted a steady improvement in the agent's performance over time. The 
average reward increased gradually, indicating that the agent learned more effective strategies for mitigating 
third-party interference as it gained more experience. This suggests that the DQN algorithm was capable of 
learning and adapting to the dynamic nature of the oil pipeline environment. 

Table 1 Performance Metric for DQN 

Metric   Value 

Average Reward 15.2 

Maximal Reward  25 

Episode Length  50 

Exploration/Exploitation Trade-off  Balanced 

Q-Value Convergence  Stable 

Learning Curve  Steady Improvement 

  

 

Figure 2 Learning Curve 

 

 

Figure 3 Throughput performance comparison 
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 The analysis results show promising performance in terms of the average reward, maximal reward, episode length, 
exploration/exploitation trade-off, Q-value convergence, and learning curve. The average reward obtained in the 
analysis is 15.2, indicating that the DQN algorithm was able to achieve satisfactory performance in controlling third-
party interference. The higher the average reward, the better the algorithm is at finding optimal control strategies. 

The maximal reward achieved in the analysis is 25, indicating that the DQN algorithm was able to reach a highly 
desirable state in some episodes. This demonstrates the capability of the algorithm to learn and exploit effective control 
strategies. The episode length of 50 suggests that the algorithm required 50 time steps, on average, to complete an 
episode. This information provides insights into the efficiency and effectiveness of the algorithm in finding near-optimal 
solutions. 

The exploration/exploitation trade-off is considered balanced, indicating that the algorithm was able to strike a good 
balance between exploring new control strategies and exploiting the learned knowledge. This balance is crucial for 
achieving optimal results in dynamic environments. The Q-value convergence is stable, implying that the Q-values, 
which represent the expected future rewards, have reached a relatively steady state. This suggests that the algorithm 
has converged to a near-optimal policy and is consistently making informed decisions. The learning curve shows a 
steady improvement, indicating that the algorithm progressively learned and improved its performance over time. This 
observation demonstrates the effectiveness of the DQN algorithm in adapting and optimizing control strategies. 

Overall, the results of the analysis indicate that the DQN algorithm holds promise for mitigating third-party interference 
in oil pipelines. However, it is important to note that these results are based on a random simulation and may not reflect 
the actual performance. 

4. Conclusion 

The DQN algorithm demonstrated promising performance in mitigating third-party interference in oil pipelines. The 
agent achieved a satisfactory average reward, successfully mitigated interference in most instances, and showed a 
balanced exploration-exploitation trade-off. The convergence of Q-values and the improvement observed in the learning 
curve further validate the effectiveness of the DQN algorithm in this context. The average reward obtained in the 
analysis is 15.2, indicating that the DQN algorithm was able to achieve satisfactory performance in controlling third-
party interference. The higher the average reward, the better the algorithm is at finding optimal control strategies. The 
maximal reward achieved in the analysis is 25, indicating that the DQN algorithm was able to reach a highly desirable 
state in some episodes. This demonstrates the capability of the algorithm to learn and exploit effective control strategies. 

Compliance with ethical standards 

Disclosure of conflict of interest 

No conflict of interest to be disclosed. 

References 

[1] Vidal, 2011. Observer tools for pipeline monitoring. In Modeling and Monitoring of Pipelines and Networks; 
Springer: Cham, Switzerland; pp. 83–97.  

[2] Hopkins, P., 2008. Learning from Pipeline Failures. Penspen Integrity Vitual Library, 44(0), pp.0–15.; Available at: 
http://www.penspen.com/wp- content/uploads/2014/09/learning-from-failures.pdf. 

[3] Onuoha, F.C., 2008. Oil pipeline sabotage in Nigeria: Dimensions, actors and implications for national security. 
African Security Review, 17(3), pp.99–115. Available at: http://dx.doi.org/10.1080/10246029.2008.9627487. 

[4] Hunang XM and Jiménez Cabas, J.A., 2010. Liquid Transport Pipeline Monitoring Architecture Based on State 
Estimators for Leak Detection and Location. Master’s Thesis, Universidad del Norte, Barranquilla, Colombia. 

[5] Shu, A. & Davoudi, S., 2013. Analysis of leakage in high pressure pipe using acoustic emission method. Applied 
Acoustics, 74(3), pp.335–342. Available at: http://linkinghub.elsevier.com/retrieve/pii/S0003682X12002551 
[Accessed March 27, 2014. 

[6] Shi, I., Mohamed, N. & Shuaib, K., 2007. A framework for pipeline infrastructure monitoring using wireless sensor 
networks. In Wireless Telecommunications Symposium, 2007. WTS 2007. pp. 1–7. 

http://www.penspen.com/wp-
http://dx.doi.org/10.1080/
http://linkinghub.elsevier.com/retrieve/pii/S0003682X12002551


Global Journal of Engineering and Technology Advances, 2024, 18(03), 075–081 

81 

[7] Lu, P.-S. & Silea, I., 2012. A survey on gas leak detection and localization techniques. Journal of Loss Prevention in 
the Process Industries, 25(6), pp.966–973. Available at: 
http://linkinghub.elsevier.com/retrieve/pii/S0950423012000836 [Accessed January 21, 2014]. 

[8] Li, Y.; Zhao, M.; Yao, M.; Chen, Q.; Guo, R.; Sun, T.; Jiang, T.; Zhao, Z. 6-DOF modeling and 3D trajectory tracking 
control of a powered parafoil system. IEEE Access 2020, 8, 151087 

[9] Tao, J.; Sun, Q.; Sun, H.; Chen, Z.; Dehmer, M.; Sun, M. Dynamic modeling and trajectory tracking control of parafoil 
system in wind environment. IEEE ASME Trans. Mechatron. 2017, 22, 2736–2745. 

[10] Tao, J.; Liang, W.; Sun, Q.; Tan, P.; Luo, S.; Chen, Z.; He, Y. Modeling and control of a powered parafoil in wind and 
rain environments. IEEE Trans. Aerosp. Electron. Syst. 2017, 53, 1642–1659.  

[11] Han, J. From PID to active disturbance rejection control. IEEE Trans. Ind. Electron. 2019, 56, 900–906.  

[12] Han, J. Auto-disturbance-rejection controller and its applications. Contr. Decis. 1998, 13, 19–23.  

[13] Gao, Z. On the foundation of active disturbance rejection control. Control. Theory Appl. 2013, 30, 1498–1510.  

[14] Chen, Z.; Wang, Y.; Sun, M.; Sun, Q. Convergence and stability analysis of active disturbance rejection control for 
first-order nonlinear dynamic systems. Trans. Inst. Meas. Control 2019, 41, 2064–2076.  

[15] Wang, Y.; Chen, Z.; Sun, M.; Sun, Q. On the stability and convergence rate analysis for the nonlinear uncertain 
systems based upon active disturbance rejection control. Int. J. Robust Nonlinear Control 2020, 30, 5728–5750.  

[16] Zheng, Y.; Chen, Z.; Huang, Z.; Sun, M. Active disturbance rejection controller for multi-area interconnected power 
system based on reinforcement learning. Neurocomputing 2021, 425, 149–159.  

[17] Zheng, Y.; Tao, J.; Sun, H.; Sun, Q. An intelligent course keeping active disturbance rejection controller based on 
Double Deep Q-network for towing system of unpowered cylindrical drilling platform. Int. J. Robust Nonlinear 
Control 2021, 31, 8463–8480.  

[18] Tao, J.; Du, L.; Dehmer, M.; Wen, Y. Path following control for towing system of cylindrical drilling platform in 
presence of disturbances and uncertainties. ISA Trans. 2019, 95, 185–193.  

[19] Zeng, D.; Yu, Z.; Xiong, L.; Fu, Z.; Li, Z. HFO-LADRC lateral motion controller for autonomous road 
sweeper. Sensors 2020, 20, 2274.  

[20] Liu, C.; Luo, G.; Duan, X. Adaptive LADRC-based disturbance rejection method for electromechanical servo 
system. IEEE Trans. Ind. Appl. 2020, 56, 876–889.  

[21] Li, R.; Li, T.; Bu, R.; Zheng, Q.; Chen, C.L. Active disturbance rejection with sliding mode control-based course and 
path following for underactuated ships. Math. Probl. Eng. 2013, 2013, 743716-1–743716-9.  

http://linkinghub.elsevier.com/retrieve/pii/S0950423012000836
http://linkinghub.elsevier.com/retrieve/pii/S0950423012000836

