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Abstract 

It is demonstrated here that the initial phase estimation of a sine wave corrupted by additive noise using the least 
squares sine fitting algorithm is not biased, even for low number of samples, contrary to what happens in the case of 
the amplitude estimation. Monte Carlo simulations are presented which corroborate the conclusion reached. This result 
is of particular importance when studying the uncertainty of measurement methods based on phase estimation like 
ultrasonic non-destructive testing. 
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1. Introduction

Many signals encountered in innumerous applications is sinusoidal. This can be due to the engineer choice of a 
sinusoidal stimulus signal for system characterization, due to normal operation, like the power grid, of due to the 
bandpass nature of the phenomena which can be considered quasi-sinusoidal. 

An example of the first case is the measurement of distance using ultrasound waves, like that used as parking assistant 
in cars. A sinewave is applied to the ultrasonic emitter and the signal obtained in the receiver located next to it will be 
sinusoidal, due to the reflected acoustic wave sensed [1]. Information about the distance can be obtained from the time 
of flight which can be estimated, for example, by fitting sinewave to the generated and received signals. The time of 
flight will lead to a phase difference between those two sinewaves that need to be estimated [2]. Many other applications 
use the same idea as sonar [3], underwater surveillance, liquid velocity [4]-[6], geophysical exploration [7], etc. 

Other examples where the stimulus signal is chosen to be sinusoidal is in defect detection in conductive materials [8] 
and in impedance measurement [9]. A sinusoidal voltage is applied to the unknown impedance and the current, which 
turns out to be also sinusoidal due to the linear behavior of the impedance, is measured. The difference in the initial 
phase of the two sinewaves fitted to the voltage and current waveforms gives information about the argument of the 
complex number which is the impedance, and which is related with the reactive part of the electronic circuit under test, 
that is, with the amount and flow of energy stored. 

A third example of choosing sinusoidal stimulus signals is analog-to-digital converter (ADC) characterization where 
different test methods use sinewaves to estimate the linearity, gain or hysteresis of the ADC, for example [10], by fitting 
data points to sinewaves. 

An example where the normal operation of a system involves the use of sinewave is the power grid. Information 
regarding the phase of the current flowing relates with the capacitive or inductive behavior of the loads [11]. 
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There are also situations where the signals involved are naturally bandpass and can thus be considered approximately 
sinusoidal. A common reason for heart failure is insufficient pump function which is usually diagnosed with magnetic 
resonance imaging (MRI). The characterization of this pathology can be done from a sequence of images of the cross-
section of the heart obtained using MRI [12]. Displacement over time of the heart walls is mapped over time using optical 
flow techniques. The sequence of images obtained is bandpass filtered around the first harmonic. This allows the 
modeling of the image by a sine wave with spatial variation of phase [13]. Sine fitting techniques are used to estimate 
that variation. 

In the following we derive the bias of the initial phase estimated using the three-parameter sine fitting algorithm as 
described in [14]-[15] for any number of samples. At the end we conclude that this bias is null. Note that this estimator 
is a function of the estimated in-phase and in-quadrature amplitudes, as it will be shown in section II and these two 
estimators are the maximum likelihood estimators which leads to the amplitude and initial phase being asymptotically 
unbiased, that is, unbiased when an infinite number of samples is used ([16], chapter 7). Here we show that the phase 
estimation is unbiased even for a low number of samples. 

Considering the mathematical approximations made, it is advisable to substantiate this claim using numerical 
simulations using a Monte Carlo procedure. This will confirm the initial findings made. 

This work addresses the presence of additive noise in the measurement system [17]-[19]. There are, however many 
other factors that also have an influence, like sampling jitter [20]-[22], phase noise [23], noise in the power supply [24], 
quantization error [25]-[27], frequency error [28]-[29] and harmonic distortion [30]-[31]. 

Additive noise affects also the precision of other estimators like, for example, the histogram test of ADCs [32]-[35] or 
procedures that determine the amount of noise present in a setup [36]-[37]. Here we considered exclusively the case 
where sinusoidal shaped signals are involved, there are, however, other types of stimulus signals that could be used 
[38]-[39]. 

2. Sinewave Fitting 

Consider M data points acquired at instants ti with voltages zi, given by  

𝑧𝑖 = 𝐶 + 𝐴 ⋅ cos(𝜔𝑥𝑡𝑖 + 𝜑)………..(1) 

where 𝐴 is the amplitude (greater than 0), 𝐶 is the offset, 𝜑 is the initial phase (between −𝜋 and 𝜋) and 𝜔𝑥  is the angular 
frequency (2𝜋𝑓𝑥).  

This data is affected by additive voltage white Gaussian noise, 𝑑𝑖 , with null mean and standard deviation 𝜎𝑣  

𝑦𝑖 = 𝑧𝑖 + 𝑑𝑖 ,…………….. (2) 

where 

𝑦𝑖 = 𝐶 + 𝐴 ⋅ cos(𝜔𝑥𝑡𝑖 + 𝜑) + 𝑑𝑖 ,,……….. (3) 

is the sample voltage in the absence of additive noise. 

We wish to estimate the sine wave that best fits, in a least square error sense, to these M points. The estimates of the 
sine wave are obtained, in a matrix form, with [14] 

[

𝐴𝐼̂

𝐴𝑄̂

𝐶̂

] = (𝐷𝑇𝐷)−1𝐷𝑇 [

𝑦1

𝑦2

…
𝑦𝑀

] …………..(4) 

where 
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𝐷 = [

cos(𝜔𝑎𝑡1) sin(𝜔𝑎𝑡1) 1

cos(𝜔𝑎𝑡2) sin(𝜔𝑎𝑡2) 1
… … …

cos(𝜔𝑎𝑡𝑀) sin(𝜔𝑎𝑡𝑀) 1

],………..(5) 

and where a is the angular frequency of the sinusoid we are trying to adjust to the data. The estimated sine wave 
amplitude is given by 

𝐴̂ = √𝐴𝐼
2 + 𝐴𝑄

2  ………..(6) 

and the initial phase by 

𝜑̂ = arctan (
𝐴𝑄̂

𝐴𝐼̂
)………….. (7) 

Here we will assume that the number of samples acquired (M) covers exactly an integer number of periods (J) of the 
sine wave we are trying to fit to the data. This means that the sine wave frequency (fa), sampling frequency (fs) and 
number of samples satisfy 

𝑓𝑎

𝑓𝑠
=

𝐽

𝑀
∈ ℕ………..(8) 

Note that J and M should be mutually prime so that the M different samples acquired at M different time instants, 
correspond to M different sine wave phases. If not, you will have less than M different phases which will increase the 
uncertainty in the estimation of the sine wave parameters. In the case that J is a multiple of M/2, the sampling instants 
will correspond to only 2 different sine wave phases and matrix DTD will be singular and hence not invertible (you 
cannot estimate the 3 sine wave parameters with only two data points).  

Note that the sampling instants are given by i st i f . The assumption is reasonable because we can choose whatever 

values we want for those frequencies and the number of samples. In practice, however, due to instrument inaccuracies, 
the actual value of those frequencies may not be exactly the values chosen and which satisfy (8) but are close enough 
considering typical frequency errors smaller than 100 ppm. If a non-integer number of periods is acquired a bias will 
affect the estimator. In this work, however, we will not consider this scenario. 

If the samples cover an integer number of sine wave periods, we have 

∑ cos(𝜔𝑎𝑡𝑖)
𝑀
𝑖=1 = 0 , ∑ sin(𝜔𝑎𝑡𝑖)

𝑀
𝑖=1 = 0,

∑ cos(𝜔𝑎𝑡𝑖)sin(𝜔𝑎𝑡𝑖)
𝑀
𝑖=1 = 0

 ………..(9) 

and 

∑ cos2(𝜔𝑎𝑡𝑖)
𝑀

𝑖=1
=

𝑀

2
, ………..(10) 

∑ sin2(𝜔𝑎𝑡𝑖)
𝑀

𝑖=1
=

𝑀

2
.  …………..(11) 

Consequently, matrix DTD is 

𝐷𝑇𝐷 = [

𝑀

2
0 0

0
𝑀

2
0

0 0 𝑀

]…………..(12) 

and its inverse becomes 
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(𝐷𝑇𝐷)−1 =

[
 
 
 
 
2

𝑀
0 0

0
2

𝑀
0

0 0
1

𝑀]
 
 
 
 

. ……….(13) 

The sine wave parameters can thus be estimated with 

[

𝐴𝐼̂

𝐴𝑄̂

𝐶̂

] =

[
 
 
 
 
2

𝑀
∑ 𝑦𝑖cos(𝜔𝑎𝑡𝑖)

𝑀
𝑖=1

2

𝑀
∑ 𝑦𝑖sin(𝜔𝑎𝑡𝑖)

𝑀
𝑖=1

1

𝑀
∑ 𝑦𝑖

𝑀
𝑖=1 ]

 
 
 
 

,……….(14) 

3. In-Phase and In-Quadrature Amplitude Mean 

The in-phase amplitude is thus given by 

𝐴𝐼̂ =
2

𝑀
∑ 𝑦𝑖cos(𝜔𝑎𝑡𝑖)

𝑀
𝑖=1 ……………. (15) 

The expected value of the in-phase amplitude estimation is 

𝐸{𝐴𝐼̂} =
2

𝑀
∑ 𝐸{𝑦𝑖}cos(𝜔𝑎𝑡𝑖)

𝑀
𝑖=1 ,………… (16) 

Using (2) and (3) we can write 

𝐸{𝐴𝐼̂} =

= 𝐸 {
2

𝑀
∑ [𝐶 + 𝐴cos(𝜔𝑥𝑡𝑖 + 𝜑) + 𝑑𝑖]cos(𝜔𝑎𝑡𝑖)

𝑀
𝑖=1 }

…………. (17) 

In this work we consider that the frequency of the sine wave is known, and we use its value in the sine fitting algorithm 
that is, we make a = x. We thus have 

𝐸{𝐴𝐼̂} =

= 𝐸 {
2

𝑀
∑ [𝐶 + 𝐴cos(𝜔𝑥𝑡𝑖 + 𝜑) + 𝑑𝑖]cos(𝜔𝑥𝑡𝑖)

𝑀
𝑖=1 }

. …………..(18) 

Since the additive noise, d, is considered here as having null mean, we get 

𝐸{𝐴𝐼̂} =
2𝐴

𝑀
∑ 𝐸{cos(𝜔𝑥𝑡𝑖 + 𝜑)}cos(𝜔𝑥𝑡𝑖)

𝑀
𝑖=1 . …………(19) 

Since we it is also assumed that the acquisition is done during an integer number of periods we have 

𝐸{𝐴𝐼̂} = 𝐴cos(𝜑)………(20) 

For the expected value of the in-quadrature amplitude, given by 

𝐴𝑄̂ =
2

𝑀
∑ 𝑦𝑖sin(𝜔𝑎𝑡𝑖)

𝑀
𝑖=1 ,…….. (21) 

the reasoning is similar, and the result is 

𝐸{𝐴𝑄̂} = −𝐴sin(𝜑)………..(22) 
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4. In-Phase and In-Quadrature Amplitude Second Moment 

From (15) we can write 

𝐴𝐼̂
2

=
4

𝑀2 ∑ ∑ 𝑦𝑖𝑦𝑗cos(𝜔𝑥𝑡𝑖)cos(𝜔𝑥𝑡𝑗)𝑗
𝑖

. ……….(23) 

And so, the second moment is given by 

𝐸 {𝐴𝐼̂
2
} =

4

𝑀2 ∑ ∑ 𝐸{𝑦𝑖𝑦𝑗}cos(𝜔𝑥𝑡𝑖)cos(𝜔𝑥𝑡𝑗)𝑗
𝑖

…………. (24) 

The expected value of the product of yi and yj is, using (2), 

𝐸{𝑦𝑖𝑦𝑗} = 𝑧𝑖𝑧𝑗 + 𝐸{𝑑𝑖𝑑𝑗} + 2𝐸{𝑧𝑖𝑑𝑗}. …………. (25) 

Since the null mean additive noise d is considered here independent of the stimulus signal, we have 

𝐸{𝑧𝑖𝑑𝑗} = 𝐸{𝑧𝑖}𝐸{𝑑𝑗} = 0. ………….( 26) 

Equation (25) thus becomes 

𝐸{𝑦𝑖𝑦𝑗} = 𝑧𝑖𝑧𝑗 + 𝐸{𝑑𝑖𝑑𝑗}. …………. (27) 

Inserting it into (24) leads to 

𝐸 {𝐴𝐼̂
2
} =

4

𝑀2 ∑ 𝑧𝑖𝑧𝑗cos(𝜔𝑥𝑡𝑖)cos(𝜔𝑥𝑡𝑗)𝑖,𝑗
+

4

𝑀2 ∑ 𝐸{𝑑𝑖𝑑𝑗}cos(𝜔𝑥𝑡𝑖)cos(𝜔𝑥𝑡𝑗)𝑖,𝑗
. ………….(28) 

Using (3) it is possible to write the first summation as 

∑𝑧𝑖𝑧𝑗cos(𝜔𝑥𝑡𝑖)cos(𝜔𝑥𝑡𝑗)

𝑖,𝑗

= [∑𝑧𝑖cos(𝜔𝑥𝑡𝑖)

𝑖

]

2

= 

= [∑ (𝐶 + 𝐴cos(𝜔𝑥𝑡𝑖 + 𝜑))cos(𝜔𝑥𝑡𝑖)𝑖
]
2

. …………. (29) 

Since it is being considered that the acquisition is done during an integer number of periods, we have 

∑ 𝑧𝑖𝑧𝑗cos(𝜔𝑥𝑡𝑖)cos(𝜔𝑥𝑡𝑗)𝑖,𝑗
=

𝑀2

4
𝐴2cos2(𝜑). ………….(30) 

Considering that the additive noise of two different samples is uncorrelated, we have 

𝐸{𝑑𝑖𝑑𝑗} = {
𝜎𝑣

2 , 𝑖 = 𝑗
0 , 𝑖 ≠ 𝑗

. …………. (31) 

𝐸 {𝐴𝐼̂
2
} = 𝐴2cos2(𝜑) +

4

𝑀2 ∑ 𝜎𝑣
2cos2(𝜔𝑥𝑡𝑖)𝑖

. ………….(32) 

𝐸 {𝐴𝐼̂
2
} = 𝐴2cos2(𝜑) +

2

𝑀
𝜎𝑣

2. ………….(33) 

For the case of the in-quadrature component we used a similar derivation which leads to 

𝐸 {𝐴𝑄̂
2
} = 𝐴2sin2(𝜑) +

2

𝑀
𝜎𝑣

2. ………….(34) 
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5. In-Phase and In-Quadrature Amplitude Variance 

The variance of both in-phase and in-quadrature amplitudes can be obtained from the mean and the second moment 
using 

𝜎𝑥
2 = 𝐸{𝑥2} − 𝐸{𝑥}2, ………….( 35) 

where x is any random. The variance of the in-phase amplitude is thus, using (20) and (33), 

Var{𝐴𝐼̂} =
2

𝑀
𝜎𝑣

2. ………….(36) 

For the case of the in-quadrature amplitude we have, using (22) and (34), 

Var{𝐴𝑄̂} =
2

𝑀
𝜎𝑣

2. …………. (37) 

6. In-Phase and In-Quadrature Amplitude Covariance 

The covariance between the in-phase and in-quadrature components is obtained from 

Cov{𝐴𝐼̂ , 𝐴𝑄̂} = 𝐸{𝐴𝐼̂𝐴𝑄̂} − 𝐸{𝐴𝐼̂}𝐸{𝐴𝑄̂}. ………….(38) 

The expected value of the product of the two amplitudes is, using (15) and (21), 

𝐸{𝐴𝐼̂𝐴𝑄̂} =
4

𝑀2 ∑ 𝐸{𝑦𝑖𝑦𝑗}cos(𝜔𝑎𝑡𝑖)sin(𝜔𝑎𝑡𝑗)𝑖,𝑗
. ………….(39) 

Inserting (27) leads to 

𝐸{𝐴𝐼̂𝐴𝑄̂} =
4

𝑀2 ∑ {𝑧𝑖𝑧𝑗}cos(𝜔𝑎𝑡𝑖)sin(𝜔𝑎𝑡𝑗)𝑖,𝑗
+

4

𝑀2 ∑ {𝑑𝑖𝑑𝑗}cos(𝜔𝑎𝑡𝑖)sin(𝜔𝑎𝑡𝑗)𝑖,𝑗
. …………. (40) 

Using (31), the second summation can be written as 

4

𝑀2 ∑ {𝑑𝑖𝑑𝑗}cos(𝜔𝑎𝑡𝑖)sin(𝜔𝑎𝑡𝑗)𝑖,𝑗
=

=
4

𝑀2 𝜎𝑣
2 ∑ cos(𝜔𝑎𝑡𝑖)sin(𝜔𝑎𝑡𝑖)𝑖

. …………. (41) 

Considering an integer number of periods in the data this summation is zero and thus 

𝐸{𝐴𝐼̂𝐴𝑄̂} =
4

𝑀2 ∑ {𝑧𝑖𝑧𝑗}cos(𝜔𝑎𝑡𝑖)sin(𝜔𝑎𝑡𝑗)𝑖,𝑗
. …………. (42) 

Following the same procedure as before it is possible to reach the conclusion that this term is also zero. We thus have 

Cov{𝐴𝐼̂ , 𝐴𝑄̂} = 0, …………. (43) 

which proves that the in-phase and in-quadrature amplitudes have a null covariance. This is going to be used next when 
we determine the expected value of the estimated initial phase. 

7. Estimated Phase 

To obtain the expected value of the estimated sine wave initial phase from the moments of the in-phase an in-quadrature 
amplitudes, we are going to use a Taylor series approximation given in [14], namely 

𝐸{𝜑̂} ≈ 𝜑 +
1

2

𝜕2𝜑̂

𝜕𝐴𝐼̂
2 𝜎𝐴𝐼̂

2 +
1

2

𝜕2𝜑̂

𝜕𝐴𝐼̂
2 𝜎𝐴𝑄̂

2 +
𝜕2𝜑̂

𝜕𝐴𝐼̂𝜕𝐴𝑄̂
Cov{𝐴𝐼̂ , 𝐴𝑄̂}. ………….(44) 

Applying it to estimator (7) leads to 
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𝐸{𝜑̂} ≈ 𝜑 +
𝜇𝐴𝑄̂

𝜇𝐴𝐼̂
𝜇

𝐴̂
2 (

𝜇
𝐴𝑄̂

2

𝜇
𝐴̂
2 − 1)𝜎𝐴𝐼̂

2 +
𝜇𝐴𝐼̂

𝜇𝐴𝑄̂

𝜇
𝐴̂
4 𝜎𝐴𝑄̂

2 + (
1

𝜇
𝐴̂
2 −

2𝜇
𝐴𝑄̂

2

𝜇
𝐴̂
4 )Cov{𝐴𝐼̂ , 𝐴𝑄̂}. ………….(45) 

As seen in the previous section, the covariance of the two amplitudes in the presence of additive noise is zero. Also, it 
was seen that their variances are the same. We thus have 

𝐸{𝜑̂} ≈ 𝜑 + [
𝜇𝐴𝑄̂

𝜇𝐴𝐼̂
𝜇

𝐴̂
2 (

𝜇
𝐴𝑄̂

2

𝜇
𝐴̂
2 − 1) +

𝜇𝐴𝐼̂
𝜇𝐴𝑄̂

𝜇
𝐴̂
4 ] 𝜎𝐴𝐼̂

2 . ………….(46) 

The term in the square brackets turns out to be 0 and thus we have 

𝐸{𝜑̂} ≈ 𝜑. ………….(47) 

which shows that the phase estimator is unbiased for any number of samples. 

8. Monte Carlo Analysis 

To validate the approximations made in the mathematical derivations, a numerical simulation, using a Monte Carlo 
procedure was carried out where a sinusoidal stimulus signal with amplitude 𝐴, null offset, (𝐶 = 0) and frequency 
𝑓𝑥 was created, a set of data points were sampled at a rate 𝑓𝑠 covering an integer number of periods of the stimulus 
signal. The parameters of the best fit sinusoid were obtained using the least squares procedure studied here, and the 
value of the resulting estimated initial phase was plotted as a function of additive noise standard deviation (Figure 1), 

initial phase value (  
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Figure 2) and number of samples (  

Figure 3). 

 

Figure 1 Expected value of the estimated sine wave initial phase as a function of the additive noise standard deviation. 
The circles represent the values obtained with the Monte Carlo analysis. The confidence intervals for a confidence 

level of 99.9% are represented by the vertical bars 

The sine fitting procedure was repeated many times (𝑅) in the same conditions and the average value of estimated 
initial phase was computed and the difference to the actual value was determined – the phase estimation error, 
represented by 𝑒𝜑̂ . That is what is shown in the vertical axis of the charts. 

In Figure 1 we plot the average value of the estimated sinewave as a function of the additive noise standard deviation 
(circles). The vertical bars represent the confidence interval obtained from the standard deviation of the values obtained 
for a normal distribution considering a probability of the actual value being on the interval of 99.9% (for all simulations). 
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Figure 2 Expected value of the estimated sine wave initial phase as a function of the initial phase. The circles 
represent the values obtained with the Monte Carlo analysis. The confidence intervals for a confidence level of 99.9% 

are represented by the vertical bars 

In  

Figure 2 we plot the same estimation error as a function of the actual value of initial phase. As before we see that the 
vertical bars are all around 0. 
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Figure 3 Expected value of the estimated sine wave initial phase as a function of the number of samples. The circles 
represent the values obtained with the Monte Carlo analysis. The confidence intervals for a confidence level of 99.9% 

are represented by the vertical bars 

Finally, in  

Figure 3, we varied the number of samples up to 100 for the case of a null initial phase and 0.2 V of additive noise 
standard deviation (10% the signal amplitude). The signal frequency was adjusted at each point so that the data covered 
a single sinusoidal period. Once again, all the error bars are located around the zero-error value. 

9. Conclusion 

The least squares procedure of fitting a sinewave to a set of data points was studied from a mathematical point of view. 
The focus here was on the estimation of initial phase. The derivation of its bias lead to the result that this particular 
estimator is not biased in the case where just additive random noise with a normal distribution is present. 

This proves useful in many applications that use sine fitting to estimate different physical quantities, as exemplified in 
the introduction, and the knowledge of which needs to be unbiased. This complements existing work in the literature 
that addressed the bias and precision of the estimates of sinusoidal amplitude which is also important for many 
applications.  
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In the future we will address the issue of precision of the initial phase estimation of sinewave fitted to a set of data 
points. Note that many quantities that are derived from the sinewave amplitude and initial phase, like total harmonic 
distortion (THD), signal to noise ratio (SNR), signal to noise and distortion ratio (SINAD) and noise floor, for example, 
could also be the subject of studies relating to their bias and precision in different situations like the presence of additive 
noise, phase noise, jitter, frequency error in the signal or the sampling frequency. 
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