

Global Journal of Engineering and Technology Advances

eISSN: 2582-5003 Cross Ref DOI: 10.30574/gjeta Journal homepage: https://gjeta.com/



(RESEARCH ARTICLE)

Check for updates

# Degree-based topological indices and QSPR analysis of lung cancer Drugs

## NAGARAJAN SETHUMADHAVAN and DURGA M $^{\ast}$

Département of Mathematics, Kongu Arts and Science collège, Erode.

Global Journal of Engineering and Technology Advances, 2024, 19(03), 079–102

Publication history: Received on 29 April 2024; revised on 09 June 2024; accepted on 12 June 2024

Article DOI: https://doi.org/10.30574/gjeta.2024.19.3.0100

## Abstract

A numerical value that characterizes the topology of a graph G is called topological index. It represents the theoretical characteristics of the chemical com- pounds when applied to their molecular structure. In this study, the chemical structures of lung cancer drugs are analyzed using well-known Degree-Based topological indices. The elements of a chemical structure are viewed as vertices, and the boundaries that separate them are represented as edges, in a graph. Furthermore, QSPR analysis of the said topological indices are discussed, and it is shown that these topological indices are highly correlated with the Physical properties of Lung cancer drugs. This theocratic approach may assist chemists and those working in the pharmaceutical industry in predicting the qualities of lung cancer drugs without experimenting.

Keywords: Topological indices; Lung cancer; QSPR; Physical properties; Molecular structure

## 1. Introduction

Human body is concocted with trillions of cells which normally grows over the life time and gets divided as needed and they die when the cells got old or become abnormal. But as the cells keep producing the new cells, if the old or abnormal cells don't die, the cancer starts. These cancer cells grow uncontrollably and they crowd the normal cells and hence the body does not function the way it is supposed to. When cancer starts in the lungs, it is called Lung cancer. It is also known as Lung carcinoma and is the leading cause of cancer deaths world wide. People who have the greatest risk of Lung cancer, through Lung cancer can also occur in people who have never smoked. This risk of Lung cancer increases with the length of time and number of cigarettes you've smoked. There are many cancers that affect the lungs, but we usually use the term 'lung cancer' for two main kinds: Non-small call Lung cancer and Small cell Lung cancer.

A molecular graph is a representation of the structural formula of a chemical compound cheminformatics of chemistry, Mathematics and information science. It studies Quantitative structure–activity (QSAR) and Quantitative structure –property (QSAR) relationships that are used to predict the biological activities and properties of different chemical compounds.

Topological indices (TIs) are commonly employed in the study of the physico-chemical properties of numerous medications. They are also known as numerical descriptor that are obtained using a molecular graph in order to comprehensively mention the chemical system. In this research, we calculated degree- based TIs for lung cancer drugs. These drugs are chemical compounds with well-defined topological indices analyzed using QSPR. This method's calculated feature has a strong correlation with lung cancer drugs characteristics using linear regression. Drug characteristics and TIs exhibit strong association.

\*Corresponding author: M.DURGA

Copyright © 2024 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution Liscense 4.0.

## 2. Material and Method

In drug structures, atoms denote vertices and the corresponding bonds connecting the atoms are termed edges. Graph G(V, E) is considered as simple, finite, and connected. Where as V and E represented in the chemical graph are termed as vertex and edge set respectively. Some of the Degree-Based Topological in- dices which we used in this work are defined as follows

• Definition: The First and Second Zagreb indices are proposed by Gutman and Trinajestic as

$$M_1(G) = \sum_{e=uv \in E(G)} [du + dv]$$

$$M_2(G) = \sum_{e=uv \in E(G)} [du \cdot dv]$$

• Definition: The Randic index is proposed by Milan Randic in, as

$$R(G) = \sum_{e=uv \in E(G)} \frac{1}{\sqrt{du \cdot dv}}$$

• Definition: The Reciprocal Randic index formulated by Gutman et al, as

$$RR(G) = \sum_{e=uv \in E(G)} \sqrt{du \cdot dv}$$

• Definition: The Reduced Reciprocal Randic index is proposed by Gutman et al,as

$$RR(G) = \sum_{e=uv \in E(G)} \sqrt{(du-1) \cdot (dv-1)}$$

• Definition: The Sum connectivity index is introduced by Zhou and Trinjstic in [3],

as 
$$SCI(G) = \sum_{e=uv \in E(G)} \frac{1}{\sqrt{du + dv}}$$

• Definition: The Harmonic index is proposed by Fajtlowicz et el, in [5] as

$$H(G) = \sum_{e=uv \in E(G)} \frac{2}{du + dv}$$

• Definition: The Forgotten index is proposed by Furtula et al, in [4]as

$$F(G) = \sum_{e=uv \in E(G)} [(du)^{2} + (dv)^{2}]$$

• Definition: The Y-index is proposed by Abdu Alameri et al, in [2]as

$$Y(G) = \sum_{e=uv \in E(G)} [(du)^{3} + (dv)^{3}]$$

• Definition: The Inverse sum index is proposed by Vukicevic et el, as

$$ISI(G) = \sum_{e=uv \in E(G)} \frac{du \cdot dv}{du + dv}$$

#### 3. Results and Discussion

The above defined ten topological in- dices are used the modeling of six Physical properties: Boiling point(BP), Enthalpy(E), Flash point(F), Molar refractivity(MR), and Polarizability(P) of 20 Lung cancer drugs: Alectinib, Brigatinib, Binimetinib, Encorafenib, Ceritinib, Crizotinib, Dacomitinib, Entrectinib, Pralsetinib, Gefitinib, Afatinib, Gemcitabine, Ipilimumab, Pembrolizumab, Sotorasib, Lortatinib, Paclitaxel, Tafinlar, Tepotinib, Docetaxel.

#### 3.1. Regression models

The Equation below correlates physical features of medications used to treat Lung cancer with topological indices. We applied the following linear regression model:

P = A + b[TI],

where P is physical property of drug. A is constant, b is regression coefficient, and TI is topological index. SPSS software calculates constant A and regression coefficient for six physical properties and ten degree-based topological indices of 20 medicine's molecular structure. [6-13]

- Regression models for First zagreb index: M1(G)
  - Boiling point = 279.919+2.079 [M1(G)]
  - ⊙Enthalpy = 47.091+0.286 [M1(G)]
  - Flash point = 123.097+1.258 [M1(G)]
  - $\circ$  Molar refractivity = 19.682+0.598 [M1(G)]
  - Molar volume = 47.274+1.681[M1(G)]
  - $\circ$  Polarizability = 7.791+0.237[M1(G)]
  - Regression models for Second zagreb index: M2(G)
    - Boiling point = 309.322+1.613 [M2(G)]
    - Enthalpy = 50.754+0.223 [M2(G)]
    - Flash point = 140.881+0.975 [M2(G)]
    - Molar refractivity =28.008+0.465 [M2(G)]
    - Molar volume = 70.236+1.308 [M2(G)]
    - Polarizability = 11.098+0.184 [M2(G)]
  - Regression models for Randic index: R(G)
    - Boiling point=392.085+12.356 [R(G)]
      - oEnthalpy=61.046+1.761 [R(G)]
      - o Flash point= 190.916+7.473 [R(G)]
    - Molar refractivity= 50.717+3.668 [R(G)]
    - Molar volume = 132.154+10.405 [R(G)]
    - $\circ$  Polarizability= 20.117+1.454 [R(G)]
  - Regression models for Reciprocal Randic index: RR(G)
    - Boiling point=260.137+4.572 [RR(G)]
    - o Enthalpy=44.896+0.662 [RR(G)]
    - Flash point= 111.136+2.765 [RR(G)]
    - o Molar refractivity= 14.229+1.313 [RR(G)]
    - Molar volume = 34.111+3.664 [RR(G)]
    - Polarizability= 5.632+0.521 [RR(G)]
  - Regression models for Reduced Reciprocal Randic index: RRR(G)
    - Boiling point=295.836+8.017 [RRR(G)]
    - o Enthalpy=49.653+1.093 [RRR(G)]
    - Flash point= 132.728+4.848 [RRR(G)]
    - Molar refractivity= 23.185+2.340 [RRR(G)]
    - Molar volume=59.264+6.525 [RRR(G)]
    - Polarizability= 9.182+0.928 [RRR(G)]
  - Regression models for Sum Connectivity index: SCI(G)
    - Boiling point=314.452+15.418 [SCI(G)]
    - Enthalpy=51.773+2.146 [SCI(G)]
    - Flash point= 143.949+9.326 [SCI(G)]
    - Molar refractivity=38.205+4.148 [SCI(G)]
    - Molar volume=102.315+11.517 [SCI(G)]
    - Polarizability= 15.154+1.644 [SCI(G)]
  - Regression models for Harmonic index: H(G)
    - Boiling point=231.213+10.823 [H(G)]
      - Enthalpy=40.763+1.478 [H(G)]
      - Flash point= 93.642+6.545 [H(G)]
      - Molar refractivity= 5.866+3.110 [H(G)]
      - Molar volume = 9.053+8.721 [H(G)]

```
◦ Polarizability= 1.096+1.260 [H(G)]
• Regression models for Forgotten index: F(G)
    o Boiling point = 322.677+0.693 [F(G)]
    o Enthalpy = 52.445+0.96 [F(G)]
    ◦ Flash point = 148.971+0.419 [F(G)]
    \circ Molar refractivity = 32.810+0.197 [F(G)]
    o Molar volume = 83.192+0.557 [F(G)]
    \circ Polarizability = 12.067+0.080 [F(G)]
• Regression models for Y-index: Y(G)
    • Boiling point=378.336+0.208 [Y(G)]
    o Enthalpy=59.522+0.029 [Y(G)]
    • Flash point= 182.616+0.126 [Y(G)]
    ◦ Molar refractivity= 49.678+0.059 [Y(G)]
    • Molar volume = 129.229+0.168 [Y(G)]
    • Polarizability= 19.688+0.023 [Y(G)]
• Regression models for Inverse sum index: ISI(G)
    o Boiling point=233.301+9.814 [ISI(G)]
    o Enthalpy=40.774+1.346 [ISI(G)]
    • Flash point= 94.905+5.935 [ISI(G)]
    \circ Molar refractivity = 6.516+2.819 [ISI(G)]
    \circ Molar volume = 9.225+7.942 [ISI(G)]
```

```
• Polarizability= 2.569+1.118 [ISI(G)]
```

Table 1 Physical properties of drugs used for the treatment of Lung Cancer

| Lung<br>cancer<br>drug | Boiling<br>point | Enthalpy | Flash<br>point | Refraction | Molar<br>refractivity | Polar<br>surface<br>area | Polari<br>zability | Surface<br>tension | Molar<br>volume |
|------------------------|------------------|----------|----------------|------------|-----------------------|--------------------------|--------------------|--------------------|-----------------|
| Alectinib              | 722.5            | 105.5    | 390.7          | 1.673      | 140.4                 | 72                       | 55.7               | 66.3               | 374.7           |
| Brigatinib             | 781.8            | 113.8    | 426.6          | 1.641      | 160.1                 | 96                       | 63.5               | 65.0               | 443.6           |
| Binimetinib.           | -                | -        | -              | 1.652      | 96.6                  | 88                       | 38.3               | 51.2               | 264.1           |
| Encorafenib            | -                | -        | -              | 1.641      | 134.1                 | 149                      | 53.2               | 50.2               | 371.7           |
| Ceritinib              | 720.7            | 105.3    | 389.6          | 1.595      | 151.5                 | 114                      | 60.1               | 52.5               | 446.0           |
| Crizotinib             | 599.2            | 89.2     | 316.2          | 1.673      | 114.4                 | 78                       | 45.4               | 51.1               | 305.2           |
| Dacomitinib            | 665.7            | 97.9     | 356.4          | 1.663      | 129.5                 | 79                       | 51.3               | 62.2               | 349.5           |
| Entrectinib            | 717.5            | 104.8    | 387.7          | 1.672      | 156.6                 | 86                       | 62.1               | 62.8               | 418.1           |
| Pralsetinib            | 799.1            | 116.2    | 437.1          | 1.683      | 144.5                 | 136                      | 57.3               | 52.4               | 381.0           |
| Gefitinib              | 586.8            | 87.6     | 308.7          | 1.621      | 118.8                 | 69                       | 47.1               | 55.3               | 337.8           |
| Afatinib               | 676.9            | 99.4     | 363.2          | 1.668      | 131.2                 | 89                       | 52.0               | 60.1               | 352.0           |
| Gemcitabine            | 482.7            | 86.2     | 245.7          | 1.652      | 52.1                  | 108                      | 20.6               | 65.4               | 142.3           |
| Ipilimumab             | 627.2            | 92.8     | 333.1          | 1.700      | 108.6                 | 82                       | 43.1               | 64.8               | 280.9           |
| Pembroli<br>zumab      | 235.0            | 45.3     | 95.9           | 1.555      | 43.7                  | 22                       | 17.3               | 42.2               | 136.2           |
| Sotorasib              | 730.5            | 110.4    | 395.6          | 1.651      | 150.5                 | 102                      | 59.6               | 47.3               | 411.9           |
| Lorlatinib             | 675.0            | 99.1     | 362.1          | 1.687      | 108.5                 | 110                      | 43.0               | 53.4               | 285.0           |
| Paclitaxel             | 957.1            | 146.0    | 532.6          | 1.637      | 219.3                 | 221                      | 86.9               | 68.5               | 610.6           |
| Dabrafenib             | 653.7            | 96.3     | 349.2          | 1.626      | 127.4                 | 147                      | 50.7               | 61.0               | 359.9           |
| Tepotinib              | 626.5            | 92.7     | 332.7          | 1.660      | 144.5                 | 95                       | 57.3               | 52.1               | 391.6           |
| Docetaxel              | 900.5            | 137.1    | 498.4          | 1.618      | 205.2                 | 224                      | 81.4               | 66.2               | 585.7           |

| Lung cancer drugs | M1(G) | M2(G) | R(G)   | RR(G)   | RRR(G) | SCI(G) | H(G)   | F(G) | Y(G) | ISI(G) |
|-------------------|-------|-------|--------|---------|--------|--------|--------|------|------|--------|
| Alectinib         | 202   | 251   | 16.878 | 98.447  | 53.938 | 18.002 | 43.085 | 548  | 1570 | 47.63  |
| Brigatinib        | 223   | 266   | 19.234 | 107.78  | 56.971 | 20.999 | 47.019 | 595  | 1681 | 51.76  |
| Binimetinib.      | 140   | 166   | 12.89  | 68.014  | 34.55  | 12.825 | 30.39  | 364  | 992  | 33.11  |
| Encorafenib       | 186   | 214   | 16.852 | 88.72   | 42.187 | 17.324 | 41.133 | 504  | 1104 | 45.25  |
| Ceritinib         | 200   | 235   | 18.032 | 96.402  | 46.284 | 18.734 | 43.415 | 532  | 1444 | 47.96  |
| Crizotinib        | 160   | 190   | 14.428 | 77.95   | 40.798 | 26.588 | 34.73  | 414  | 1120 | 37.65  |
| Dacomitinib       | 170   | 197   | 24.02  | 83.150  | 43.87  | 22.063 | 38.4   | 426  | 1118 | 40.902 |
| Entrectinib       | 222   | 261   | 28.565 | 108.51  | 58.592 | 19.777 | 47.73  | 566  | 1516 | 50.45  |
| Pralsetinib       | 210   | 248   | 19.262 | 101.81  | 53.586 | 26.135 | 46.011 | 606  | 1559 | 52.163 |
| Gefitinib         | 160   | 186   | 24.296 | 74.891  | 42.041 | 22.941 | 36.396 | 398  | 1036 | 42.516 |
| Afatinib          | 176   | 203   | 23.876 | 85.650  | 44.284 | 24.576 | 38.73  | 446  | 1184 | 41.45  |
| Gemcitabine       | 92    | 108   | 13.28  | 44.22   | 20.899 | 12.748 | 21.399 | 244  | 680  | 24.316 |
| Ipilimumab        | 136   | 157   | 15.642 | 65.482  | 32.455 | 17.273 | 29.733 | 356  | 976  | 32.45  |
| Pembrolizumab     | 44    | 49    | 7.879  | 21.626  | 10.656 | 6.85   | 11.899 | 104  | 262  | 14.366 |
| Sotorasib         | 221   | 268   | 23.321 | 107.427 | 55.213 | 28.577 | 47.399 | 585  | 1619 | 50.11  |
| Lorlatinib        | 154   | 179   | 21.589 | 72.192  | 32.798 | 25.593 | 33.733 | 400  | 1090 | 35.616 |
| Paclitaxel        | 348   | 436   | 45.954 | 167.87  | 88.358 | 42.997 | 70.801 | 982  | 2976 | 78.297 |
| Dabrafenib        | 192   | 229   | 27.879 | 91.528  | 45.015 | 23.069 | 40.608 | 538  | 1620 | 45.797 |
| Tepotinib         | 188   | 220   | 25.362 | 92.983  | 49.941 | 25.957 | 41.733 | 476  | 1246 | 44.45  |
| Docetaxel         | 326   | 403   | 43.321 | 137.074 | 76.702 | 38.589 | 66.001 | 948  | 2978 | 73.097 |

Table 2 Lung cancer drug sand computed topological indices

Table 3 Correlation coefficients

| Topological<br>index | Correlation<br>coefficients<br>of Boiling<br>point | Correlation<br>coefficients<br>of Enthalpy | Correlation<br>coefficients<br>of Flash<br>point | Correlation<br>coefficients<br>of Molar<br>refractivity | Correlation<br>coefficients<br>of Molar<br>volume | Correlation<br>coefficients of<br>Polarizability |
|----------------------|----------------------------------------------------|--------------------------------------------|--------------------------------------------------|---------------------------------------------------------|---------------------------------------------------|--------------------------------------------------|
| M1(G)                | 0.939                                              | 0.949                                      | 0.939                                            | 0.979                                                   | 0.976                                             | 0.979                                            |
| M2(G)                | 0.928                                              | 0.945                                      | 0.928                                            | 0.970                                                   | 0.968                                             | 0.969                                            |
| R(G)                 | 0.754                                              | 0.790                                      | 0.754                                            | 0.831                                                   | 0.837                                             | 0.831                                            |
| RR(G)                | 0.941                                              | 0.943                                      | 0.941                                            | 0.980                                                   | 0.971                                             | 0.980                                            |
| RRR(G)               | 0.921                                              | 0.925                                      | 0.921                                            | 0.976                                                   | 0.967                                             | 0.976                                            |
| SCI(G)               | 0.817                                              | 0.837                                      | 0.818                                            | 0.831                                                   | 0.819                                             | 0.830                                            |
| H(G)                 | 0.943                                              | 0.947                                      | 0.943                                            | 0.985                                                   | 0.980                                             | 0.985                                            |
| Y(G)                 | 0.929                                              | 0.950                                      | 0.929                                            | 0.960                                                   | 0.960                                             | 0.958                                            |
| F(G)                 | 0.894                                              | 0.928                                      | 0.894                                            | 0.924                                                   | 0.930                                             | 0.924                                            |
| ISI(G)               | 0.934                                              | 0.943                                      | 0.934                                            | 0.977                                                   | 0.977                                             | 0.977                                            |

| Physical property  | N  | Α       | b     | r     | r2    | F       | р     | Std error of estimate |
|--------------------|----|---------|-------|-------|-------|---------|-------|-----------------------|
| Boiling point      | 18 | 279.919 | 2.079 | 0.939 | 0.881 | 118.494 | 0.000 | 55.5988               |
| Enthalpy           | 18 | 47.091  | 0.286 | 0.949 | 0.900 | 144.542 | 0.000 | 6.9146                |
| Flashpoint         | 18 | 123.097 | 1.258 | 0.939 | 0.881 | 118.432 | 0.000 | 33.6322               |
| Molar refractivity | 20 | 19.682  | 0.598 | 0.979 |       | 411.985 | 0.000 | 8.6378                |
| Molar volume       | 20 | 47.274  | 1.681 | 0.976 | 0.953 | 366.742 | 0.000 | 25.9007               |
| Polarizability     | 20 | 7.791   | 0.237 | 0.979 | 0.958 | 414.732 | 0.000 | 3.4391                |

**Table 4** Statistical parameter for the linear QSPR model for M1(G)

Table 5 Statistical parameter for the linear QSPR model for M2(G)

| Physical property  | N  | Α       | b     | r     | r2    | F       | р     | Std error of estimate |
|--------------------|----|---------|-------|-------|-------|---------|-------|-----------------------|
| Boiling point      | 18 | 309.322 | 1.613 | 0.928 | 0.862 | 99.816  | 0.000 | 59.9145               |
| Enthalpy           | 18 | 50.754  | 0.223 | 0.945 | 0.894 | 134.858 | 0.000 | 7.1331                |
| Flashpoint         | 18 | 140.881 | 0.975 | 0.928 | 0.862 | 99.760  | 0.000 | 36.2433               |
| Molar refractivity | 20 | 28.008  | 0.465 | 0.970 | 0.940 | 282.400 | 0.000 | 10.4062               |
| Molar volume       | 20 | 70.236  | 1.308 | 0.968 | 0.937 | 269.488 | 0.000 | 29.9630               |
| Polarizability     | 20 | 11.098  | 0.184 | 0.969 | 0.940 | 280.591 | 0.000 | 4.1401                |

Table 6 Statistical parameter for the linear QSPR model for R(G)

| Physical property  | N  | Α       | b      | r     | r2    | F      | р     | Std error of estimate |
|--------------------|----|---------|--------|-------|-------|--------|-------|-----------------------|
| Boiling point      | 18 | 392.085 | 12.356 | 0.754 | 0.568 | 21.038 | 0.000 | 105.947               |
| Enthalpy           | 18 | 61.046  | 1.761  | 0.790 | 0.625 | 26.616 | 0.000 | 13.4207               |
| Flashpoint         | 18 | 190.916 | 7.473  | 0.754 | 0.568 | 21.043 | 0.000 | 64.0697               |
| Molar refractivity | 20 | 50.717  | 3.668  | 0.831 | 0.691 | 40.298 | 0.000 | 23.6219               |
| Molar volume       | 20 | 132.154 | 10.405 | 0.837 | 0.701 | 42.230 | 0.000 | 65.4617               |
| Polarizability     | 20 | 20.117  | 1.454  | 0.831 | 0.690 | 40.110 | 0.000 | 9.3847                |

Table 7 Statistical parameter for the linear QSPR model for RR(G)

| Physical property  | N  | Α       | b     | r     | r2    | F       | р     | Std error of estimate |
|--------------------|----|---------|-------|-------|-------|---------|-------|-----------------------|
| Boiling point      | 18 | 260.137 | 4.572 | 0.941 | 0.886 | 124.518 | 0.000 | 54.3939               |
| Enthalpy           | 18 | 44.896  | 0.622 | 0.943 | 0.889 | 128.198 | 0.000 | 7.2959                |
| Flashpoint         | 18 | 111.136 | 2.765 | 0.941 | 0.886 | 124.433 | 0.000 | 32.9057               |
| Molar refractivity | 20 | 14.229  | 1.313 | 0.980 | 0.960 | 435.973 | 0.000 | 8.4650                |
| Molar volume       | 20 | 34.111  | 3.664 | 0.971 | 0.942 | 294.732 | 0.000 | 28.7282               |
| Polarizability     | 20 | 5.632   | 0.521 | 0.980 | 0.960 | 430.791 | 0.000 | 3.3770                |

| Physical property  | Ν  | Α       | b     | r     | r2    | F       | р     | Std error of estimate |
|--------------------|----|---------|-------|-------|-------|---------|-------|-----------------------|
| Boiling point      | 18 | 295.836 | 8.017 | 0.921 | 0.849 | 89.908  | 0.000 | 62.6543               |
| Enthalpy           | 18 | 49.653  | 1.093 | 0.925 | 0.855 | 94.297  | 0.000 | 8.3422                |
| Flashpoint         | 18 | 132.728 | 4.848 | 0.921 | 0.849 | 89.849  | 0.000 | 37.9021               |
| Molar refractivity | 20 | 23.185  | 2.340 | 0.976 | 0.953 | 368.879 | 0.000 | 9.1697                |
| Molar volume       | 20 | 59.264  | 6.525 | 0.967 | 0.935 | 257.607 | 0.000 | 30.6021               |
| Polarizability     | 20 | 9.182   | 0.928 | 0.976 | 0.953 | 365.802 | 0.000 | 3.6517                |

**Table 8** Statistical parameter for the linear QSPR model for RRR(G)

Table 9 Statistical parameter for the linear QSPR model for SCI(G)

| Physical property  | N  | Α       | b      | r     | r2    | F      | р     | Std error of estimate |
|--------------------|----|---------|--------|-------|-------|--------|-------|-----------------------|
| Boiling point      | 18 | 314.452 | 15.418 | 0.817 | 0.668 | 32.232 | 0.000 | 92.8432               |
| Enthalpy           | 18 | 51.773  | 2.146  | 0.837 | 0.701 | 37.555 | 0.000 | 11.9718               |
| Flashpoint         | 18 | 143.949 | 9.326  | 0.818 | 0.668 | 32.254 | 0.000 | 56.1355               |
| Molar refractivity | 20 | 38.205  | 4.148  | 0.831 | 0.690 | 40.023 | 0.000 | 23.6777               |
| Molar volume       | 20 | 102.315 | 11.517 | 0.819 | 0.670 | 36.584 | 0.000 | 68.7643               |
| Polarizability     | 20 | 15.154  | 1.644  | 0.830 | 0.689 | 39.872 | 0.000 | 9.4040                |

Table 10 Statistical parameter for the linear QSPR model for H(G)

| Physical property  | Ν  | Α       | b      | r     | r2    | F       | р     | Std error of estimate |
|--------------------|----|---------|--------|-------|-------|---------|-------|-----------------------|
| Boiling point      | 18 | 231.213 | 10.823 | 0.943 | 0.889 | 128.055 | 0.000 | 53.7219               |
| Enthalpy           | 18 | 40.763  | 1.478  | 0.947 | 0.898 | 140.316 | 0.000 | 7.0074                |
| Flashpoint         | 18 | 93.642  | 6.545  | 0.943 | 0.889 | 127.989 | 0.000 | 32.4969               |
| Molar refractivity | 20 | 5.866   | 3.110  | 0.985 | 0.970 | 584.510 | 0.000 | 7.3478                |
| Molar volume       | 20 | 9.053   | 8.721  | 0.980 | 0.961 | 448.056 | 0.000 | 23.5329               |
| Polarizability     | 20 | 1.096   | 1.260  | 0.985 | 0.970 | 585.960 | 0.000 | 2.9725                |

Table 11 Statistical parameter for the linear QSPR model for F(G)

| Physical<br>property | N  | Α       | b     | r     | r2    | F       | р     | Std error of estimate |
|----------------------|----|---------|-------|-------|-------|---------|-------|-----------------------|
| Boiling point        | 18 | 322.677 | 0.693 | 0.929 | 0.864 | 101.476 | 0.000 | 59.4923               |
| Enthalpy             | 18 | 52.445  | 0.96  | 0.950 | 0.902 | 147.053 | 0.000 | 6.8611                |
| Flashpoint           | 18 | 148.971 | 0.419 | 0.929 | 0.864 | 101.431 | 0.000 | 35.9845               |
| Molar refractivity   | 20 | 32.810  | 0.197 | 0.960 | 0.921 | 209.391 | 0.000 | 11.9606               |
| Molar volume         | 20 | 83.192  | 0.557 | 0.960 | 0.922 | 212.307 | 0.000 | 33.4767               |
| Polarizability       | 20 | 12.067  | 0.080 | 0.958 | 0.918 | 202.210 | 0.000 | 4.9227                |



Figure 1 Medicine with topological indices

| Physical property  | N  | Α       | b     | r     | r2    | F       | р     | Std error of estimate |
|--------------------|----|---------|-------|-------|-------|---------|-------|-----------------------|
| Boiling point      | 18 | 378.336 | 0.208 | 0.894 | 0.799 | 63.646  | 0.000 | 72.2495               |
| Enthalpy           | 18 | 59.522  | 0.029 | 0.928 | 0.861 | 98.877  | 0.000 | 8.1742                |
| Flashpoint         | 18 | 182.616 | 0.126 | 0.894 | 0.799 | 63.624  | 0.000 | 43.7003               |
| Molar refractivity | 20 | 49.678  | 0.059 | 0.924 | 0.853 | 104.619 | 0.000 | 16.2878               |
| Molar volume       | 20 | 129.226 | 0.168 | 0.930 | 0.865 | 115.600 | 0.000 | 43.9355               |
| Polarizability     | 20 | 19.688  | 0.023 | 0.924 | 0.853 | 104.333 | 0.000 | 6.4681                |

**Table 12** Statistical parameter for the linear QSPR model for Y(G)

Table 13 Statistical parameter for the linear QSPR model for ISI(G)

| Physical property  | N  | Α       | b     | r     | r2    | F       | р     | Std error of estimate |
|--------------------|----|---------|-------|-------|-------|---------|-------|-----------------------|
| Boiling point      | 18 | 233.301 | 9.814 | 0.934 | 0.873 | 110.120 | 0.000 | 57.4149               |
| Enthalpy           | 18 | 40.774  | 1.346 | 0.943 | 0.890 | 129.081 | 0.000 | 7.2737                |
| Flashpoint         | 18 | 94.905  | 5.935 | 0.934 | 0.873 | 110.083 | 0.000 | 34.7306               |
| Molar refractivity | 20 | 6.516   | 2.819 | 0.977 | 0.954 | 373.272 | 0.000 | 9.1180                |
| Molar volume       | 20 | 9.225   | 7.942 | 0.977 | 0.954 | 375.815 | 0.000 | 25.6006               |
| Polarizability     | 20 | 2.569   | 1.118 | 0.977 | 0.954 | 370.946 | 0.000 | 3.6255                |

**Table 14** Comparison of actual and computed values for Boiling point from regression models

| Name of drug   | Boiling       | Boiling <b>p</b> | ooint co | mputed | l from re | gression | model  | for    |        |        |        |
|----------------|---------------|------------------|----------|--------|-----------|----------|--------|--------|--------|--------|--------|
|                | point of drug | M1(G)            | M2(G)    | R(G)   | RR(G)     | RRR(G)   | SCI(G) | H(G)   | F(G)   | Y(G)   | ISI(G) |
| Alectinib      | 722.5         | 699.87           | 714.18   | 600.62 | 710.23    | 728.25   | 592.00 | 697.52 | 702.44 | 704.89 | 700.74 |
| Brigatinib     | 781.8         | 743.53           | 738.38   | 629.74 | 752.90    | 752.57   | 638.21 | 740.09 | 735.01 | 727.98 | 741.27 |
| Binimetinib.   | -             | 570.97           | 577.08   | 551.35 | 571.09    | 572.82   | 512.18 | 560.12 | 574.92 | 584.67 | 558.24 |
| Encorafenib    | -             | 666.61           | 654.50   | 600.30 | 665.76    | 634.04   | 581.55 | 676.39 | 671.94 | 607.96 | 677.38 |
| Ceritinib      | 720.7         | 695.71           | 688.37   | 614.88 | 700.88    | 666.89   | 603.29 | 701.09 | 691.35 | 678.68 | 703.98 |
| Crizotinib     | 599.2         | 612.55           | 615.79   | 570.35 | 616.52    | 622.91   | 724.38 | 607.09 | 609.57 | 611.29 | 602.79 |
| Dacomitinib    | 665.7         | 633.34           | 627.08   | 688.87 | 640.29    | 647.54   | 654.61 | 646.81 | 613.73 | 610.88 | 634.71 |
| Entrectinib    | 717.5         | 741.45           | 730.31   | 745.03 | 756.24    | 765.56   | 619.37 | 747.79 | 714.91 | 693.66 | 728.41 |
| Pralsetinib    | 799.1         | 716.509          | 709.34   | 630.08 | 725.61    | 725.43   | 717.40 | 729.19 | 742.63 | 702.60 | 745.22 |
| Gefitinib      | 586.8         | 612.55           | 609.34   | 692.28 | 602.53    | 632.87   | 668.15 | 625.12 | 598.49 | 593.82 | 650.55 |
| Afatinib       | 676.9         | 645.82           | 636.76   | 687.09 | 651.72    | 650.86   | 693.36 | 650.38 | 631.75 | 624.60 | 640.09 |
| Gemcitabine    | 482.7         | 471.18           | 483.52   | 556.17 | 462.31    | 463.38   | 511.00 | 462.81 | 491.76 | 519.77 | 471.93 |
| Ipilimumab     | 627.2         | 562.66           | 562.56   | 585.35 | 559.52    | 556.02   | 580.76 | 553.01 | 569.38 | 581.34 | 551.76 |
| Pembroli zumab | 235.0         | 371.39           | 388.35   | 489.43 | 359.01    | 381.26   | 420.06 | 359.99 | 394.74 | 432.83 | 374.28 |
| Sotorasib      | 730.5         | 739.37           | 741.60   | 680.23 | 751.29    | 738.47   | 755.05 | 744.21 | 728.08 | 715.08 | 725.08 |

| Lorlatinib | 675.0 | 600.08  | 598.04 | 658.83 | 590.19  | 558.77  | 709.04 | 596.30 | 599.87 | 605.05 | 582.83 |
|------------|-------|---------|--------|--------|---------|---------|--------|--------|--------|--------|--------|
| Paclitaxel | 957.1 | 1003.41 | 1012.5 | 959.89 | 1027.63 | 1004.20 | 977.37 | 997.49 | 1001.8 | 997.34 | 1001.7 |
| Dabrafenib | 653.7 | 679.08  | 619.01 | 736.55 | 678.60  | 656.72  | 670.12 | 670.71 | 695.51 | 715.29 | 682.75 |
| Tepotinib  | 626.5 | 670.77  | 609.34 | 705.45 | 685.25  | 696.21  | 714.65 | 682.88 | 652.54 | 637.50 | 669.53 |
| Docetaxel  | 900.5 | 957.67  | 959.36 | 927.35 | 886.83  | 910.75  | 909.41 | 945.54 | 979.64 | 997.76 | 950.67 |

Table 15 Comparison of actual and computed values for Enthalpy from regression models

| Name of           | Enthalpy | Enthalpy | y compu | ted from | regress | ion mode | l for  |        |        |        |        |
|-------------------|----------|----------|---------|----------|---------|----------|--------|--------|--------|--------|--------|
| drug              | of drug  | M1(G)    | M2(G)   | R(G)     | RR(G)   | RRR(G)   | SCI(G) | H(G)   | F(G)   | Y(G)   | ISI(G) |
| Alectinib         | 105.5    | 104.86   | 106.72  | 90.76    | 106.13  | 108.60   | 90.40  | 104.44 | 578.52 | 105.05 | 104.88 |
| Brigatinib        | 113.8    | 110.86   | 110.07  | 94.91    | 111.93  | 111.92   | 96.83  | 110.25 | 623.64 | 108.27 | 110.44 |
| Binimetinib       | -        | 87.13    | 87.77   | 83.74    | 87.20   | 87.41    | 79.29  | 85.67  | 401.88 | 88.29  | 85.34  |
| Encorafenib       | -        | 100.28   | 98.47   | 90.72    | 100.07  | 95.76    | 88.95  | 101.55 | 536.28 | 91.53  | 101.68 |
| Ceritinib         | 105.3    | 104.29   | 103.15  | 92.800   | 104.85  | 100.24   | 91.97  | 104.93 | 563.16 | 101.39 | 105.32 |
| Crizotinib        | 89.2     | 92.85    | 93.12   | 86.45    | 93.38   | 94.24    | 108.83 | 92.09  | 449.88 | 92.00  | 91.45  |
| Dacomitinib       | 97.9     | 95.71    | 94.68   | 103.34   | 96.61   | 97.60    | 99.12  | 97.51  | 455.64 | 91.94  | 95.82  |
| Entrectinib       | 104.8    | 110.58   | 108.95  | 111.34   | 112.38  | 113.69   | 94.21  | 111.30 | 595.80 | 103.48 | 108.67 |
| Pralsetinib       | 116.2    | 107.15   | 106.05  | 94.96    | 108.22  | 108.22   | 107.85 | 108.76 | 634.20 | 104.73 | 110.98 |
| Gefitinib         | 87.6     | 92.58    | 92.23   | 103.83   | 91.47   | 95.60    | 101.00 | 94.55  | 434.52 | 89.56  | 98.00  |
| Afatinib          | 99.4     | 97.42    | 96.02   | 103.09   | 98.17   | 98.05    | 104.51 | 98.00  | 480.60 | 93.85  | 96.56  |
| Gemcitabine       | 86.2     | 73.40    | 74.83   | 84.43    | 72.40   | 72.49    | 79.13  | 72.39  | 286.68 | 79.24  | 73.50  |
| Ipilimumab        | 92.8     | 85.98    | 85.76   | 88.59    | 85.62   | 85.12    | 88.84  | 84.70  | 394.20 | 87.82  | 84.45  |
| Pembroli<br>zumab | 45.3     | 59.67    | 61.68   | 74.92    | 58.34   | 61.30    | 66.47  | 58.34  | 152.28 | 67.12  | 60.11  |
| Sotorasib         | 110.4    | 110.29   | 110.51  | 102.11   | 111.71  | 110.00   | 113.09 | 110.81 | 614.04 | 106.47 | 108.22 |
| Lorlatinib        | 99.1     | 91.13    | 90.67   | 99.06    | 89.79   | 85.50    | 106.69 | 90.62  | 436.44 | 91.13  | 88.71  |
| Paclitaxel        | 146.0    | 146.61   | 147.98  | 141.97   | 149.31  | 146.22   | 144.04 | 145.40 | 995.16 | 145.82 | 146.16 |
| Dabrafenib        | 96.3     | 102.00   | 101.82  | 110.14   | 101.82  | 98.85    | 101.27 | 100.78 | 568.92 | 106.50 | 102.41 |
| Tepotinib         | 92.7     | 100.859  | 99.81   | 105.70   | 102.73  | 104.23   | 107.51 | 102.44 | 509.40 | 95.65  | 100.60 |
| Docetaxel         | 137.1    | 140.32   | 140.62  | 137.33   | 130.15  | 133.48   | 134.58 | 138.31 | 962.52 | 145.88 | 139.16 |

| Name of           | Flash            | Flash p | oint com | puted fr | om regre | ession mo | del for |        |        |        |        |
|-------------------|------------------|---------|----------|----------|----------|-----------|---------|--------|--------|--------|--------|
| drug              | point of<br>drug | M1(G)   | M2(G)    | R(G)     | RR(G)    | RRR(G)    | SCI(G)  | H(G)   | F(G)   | Y(G)   | ISI(G) |
| Alectinib         | 390.7            | 377.21  | 385.60   | 317.04   | 383.34   | 394.21    | 311.83  | 375.63 | 378.58 | 380.43 | 377.58 |
| Brigatinib        | 426.6            | 403.63  | 400.23   | 334.65   | 409.14   | 408.92    | 339.78  | 401.38 | 398.27 | 394.42 | 402.10 |
| Binimetinib.      | -                | 299.21  | 302.73   | 287.24   | 299.19   | 300.22    | 263.55  | 292.54 | 301.48 | 307.60 | 291.41 |
| Encorafenib       | -                | 357.08  | 349.53   | 316.85   | 356.44   | 337.25    | 305.51  | 362.85 | 360.14 | 321.72 | 363.46 |
| Ceritinib         | 389.6            | 374.69  | 370.00   | 325.66   | 377.68   | 357.11    | 318.66  | 377.79 | 371.87 | 364.56 | 379.54 |
| Crizotinib        | 316.2            | 324.37  | 326.13   | 298.73   | 326.66   | 330.51    | 391.90  | 320.94 | 322.43 | 323.73 | 318.35 |
| Dacomitinib       | 356.4            | 336.95  | 332.95   | 370.41   | 341.04   | 345.40    | 349.70  | 344.97 | 324.95 | 323.48 | 337.65 |
| Entrectinib       | 387.7            | 402.37  | 395.35   | 404.38   | 411.16   | 416.78    | 328.38  | 406.03 | 386.12 | 373.63 | 394.32 |
| Pralsetinib       | 437.1            | 387.27  | 382.68   | 334.86   | 392.64   | 392.51    | 387.68  | 394.78 | 402.88 | 379.05 | 404.49 |
| Gefitinib         | 308.7            | 324.37  | 322.23   | 372.48   | 318.20   | 336.54    | 357.89  | 331.85 | 315.73 | 313.15 | 347.23 |
| Afatinib          | 363.2            | 344.50  | 338.00   | 369.34   | 347.95   | 347.41    | 373.14  | 374.12 | 335.84 | 331.8  | 340.91 |
| Gemcitabine       | 245.7            | 238.83  | 246.18   | 290.15   | 233.40   | 234.04    | 262.83  | 233.69 | 251.20 | 268.29 | 239.22 |
| Ipilimumab        | 333.1            | 294.18  | 293.95   | 307.80   | 292.19   | 290.06    | 305.03  | 288.24 | 298.13 | 305.59 | 287.49 |
| Pembroli<br>zumab | 95.9             | 178.44  | 188.65   | 249.79   | 170.93   | 184.38    | 207.83  | 171.52 | 192.54 | 215.62 | 180.16 |
| Sotorasib         | 395.6            | 401.11  | 402.18   | 365.19   | 408.17   | 400.40    | 410.45  | 403.86 | 394.08 | 386.61 | 392.30 |
| Lorlatinib        | 362.1            | 316.82  | 315.40   | 352.25   | 310.74   | 291.73    | 382.62  | 314.42 | 316.57 | 319.95 | 306.61 |
| Paclitaxel        | 532.6            | 560.88  | 565.98   | 534.33   | 575.29   | 561.08    | 544.93  | 557.03 | 560.42 | 557.59 | 559.59 |
| Dabrafenib        | 349.2            | 364.63  | 364.15   | 399.25   | 364.21   | 350.96    | 359.09  | 359.42 | 374.39 | 386.73 | 366.71 |
| Tepotinib         | 332.7            | 359.60  | 355.38   | 380.44   | 368.23   | 374.84    | 386.23  | 366.78 | 348.41 | 339.61 | 358.71 |
| Docetaxel         | 498.4            | 533.20  | 533.80   | 514.65   | 490.14   | 504.57    | 503.83  | 525.61 | 546.18 | 557.84 | 528.73 |

Table 16 Comparision of actual and computed values for Flash point from regression models

Table 17 Comparison of actual and computed values for Molar refractivity from regression models

| Name of drug | Molar                   | Molar I | Molar Refractivity computed from regression model for |        |        |        |        |        |        |        |        |  |  |  |  |
|--------------|-------------------------|---------|-------------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--|--|--|--|
|              | Refractivity<br>of drug | M1(G)   | M2(G)                                                 | R(G)   | RR(G)  | RRR(G) | SCI(G) | H(G)   | F(G)   | Y(G)   | ISI(G) |  |  |  |  |
| Alectinib    | 140.4                   | 140.47  | 144.72                                                | 112.62 | 143.48 | 149.39 | 112.87 | 139.86 | 140.76 | 142.30 | 140.78 |  |  |  |  |
| Brigatinib   | 160.1                   | 153.03  | 151.69                                                | 121.26 | 155.74 | 156.49 | 125.30 | 152.09 | 150.02 | 148.85 | 152.42 |  |  |  |  |
| Binimetinib. | 96.6                    | 103.40  | 105.19                                                | 97.99  | 103.53 | 104.03 | 91.40  | 100.37 | 104.51 | 108.20 | 99.85  |  |  |  |  |
| Encorafenib  | 134.1                   | 130.91  | 127.51                                                | 112.53 | 130.71 | 121.90 | 110.06 | 133.78 | 132.09 | 114.81 | 134.07 |  |  |  |  |
| Ceritinib    | 151.5                   | 139.28  | 137.28                                                | 116.85 | 140.80 | 131.48 | 115.91 | 140.88 | 137.61 | 134.87 | 141.71 |  |  |  |  |
| Crizotinib   | 114.4                   | 115.36  | 116.35                                                | 103.63 | 116.57 | 118.65 | 148.49 | 113.87 | 114.36 | 115.75 | 112.65 |  |  |  |  |
| Dacomitinib  | 129.5                   | 121.34  | 119.61                                                | 138.82 | 123.40 | 125.84 | 129.72 | 125.29 | 115.55 | 115.64 | 121.81 |  |  |  |  |
| Entrectinib  | 156.6                   | 152.43  | 149.37                                                | 155.49 | 156.70 | 160.29 | 120.23 | 154.30 | 144.31 | 139.12 | 148.73 |  |  |  |  |

| 1           |       |        |        |        |         |        |        |        |        |        |        |
|-------------|-------|--------|--------|--------|---------|--------|--------|--------|--------|--------|--------|
| Pralsetinib | 144.5 | 145.26 | 143.32 | 121.37 | 147.905 | 148.57 | 146.61 | 148.96 | 152.19 | 141.65 | 153.56 |
| Gefitinib   | 118.8 | 115.36 | 114.49 | 139.83 | 112.56  | 121.56 | 133.36 | 119.05 | 111.21 | 110.80 | 126.36 |
| Afatinib    | 131.2 | 124.93 | 122.40 | 138.29 | 126.68  | 126.80 | 140.14 | 126.31 | 120.67 | 119.53 | 123.36 |
| Gemcitabine | 52.1  | 74.69  | 78.22  | 99.42  | 72.28   | 72.08  | 91.08  | 72.41  | 80.87  | 89.79  | 75.06  |
| Ipilimumab  | 108.6 | 101.01 | 101.01 | 108.09 | 100.20  | 99.12  | 109.85 | 98.33  | 102.94 | 107.26 | 97.99  |
| Pembroli    | 43.7  | 45.99  | 50.79  | 79.61  | 42.62   | 48.12  | 66.61  | 42.87  | 53.29  | 65.13  | 47.01  |
| zumab       |       |        |        |        |         |        |        |        |        |        |        |
| Sotorasib   | 150.5 | 151.84 | 152.62 | 136.25 | 155.28  | 152.38 | 156.74 | 153.27 | 148.05 | 145.19 | 147.77 |
| Lorlatinib  | 108.5 | 111.77 | 111.24 | 129.90 | 109.01  | 97.59  | 144.36 | 110.77 | 111.61 | 113.98 | 106.91 |
| Paclitaxel  | 219.3 | 227.78 | 230.74 | 219.27 | 234.64  | 229.94 | 216.55 | 226.05 | 226.26 | 225.26 | 227.23 |
| Dabrafenib  | 127.4 | 134.49 | 134.49 | 152.97 | 134.40  | 128.52 | 133.89 | 132.15 | 138.79 | 145.25 | 135.61 |
| Tepotinib   | 144.5 | 132.10 | 130.30 | 143.74 | 136.31  | 140.04 | 145.87 | 135.65 | 126.58 | 123.19 | 131.82 |
| Docetaxel   | 205.2 | 214.63 | 215.40 | 209.61 | 194.20  | 202.66 | 198.27 | 211.12 | 219.56 | 225.38 | 212.57 |

Table 18 Comparison of actual and computed values for Molar volume from regression models

| Name of drug      | Molar             | Molar  | volume | comput | ed from | regressi | on mod | el for |        |        |        |
|-------------------|-------------------|--------|--------|--------|---------|----------|--------|--------|--------|--------|--------|
|                   | Volume<br>Of drug | M1(G)  | M2(G)  | R(G)   | RR(G)   | RRR(G)   | SCI(G) | H(G)   | F(G)   | Y(G)   | ISI(G) |
| Alectinib         | 374.7             | 386.83 | 398.54 | 307.76 | 394.82  | 411.20   | 309.64 | 384.79 | 388.42 | 392.98 | 387.50 |
| Brigatinib        | 443.6             | 422.13 | 418.16 | 332.28 | 429.01  | 430.99   | 344.16 | 419.10 | 414.60 | 411.63 | 420.30 |
| Binimetinib.      | 264.1             | 282.61 | 287.36 | 266.27 | 283.31  | 284.70   | 250.02 | 274.08 | 285.94 | 295.88 | 272.18 |
| Encorafenib       | 371.7             | 359.94 | 350.14 | 307.49 | 359.18  | 334.53   | 301.83 | 367.77 | 363.92 | 314.69 | 368.60 |
| Ceritinib         | 446.0             | 383.47 | 377.61 | 319.77 | 387.32  | 361.26   | 318.07 | 387.67 | 379.51 | 371.81 | 390.12 |
| Crizotinib        | 305.2             | 316.23 | 318.75 | 282.27 | 319.71  | 325.47   | 408.52 | 311.93 | 313.79 | 317.38 | 308.24 |
| Dacomitinib       | 349.5             | 333.04 | 327.91 | 382.08 | 338.77  | 345.51   | 356.41 | 343.93 | 317.13 | 317.05 | 334.06 |
| Entrectinib       | 418.1             | 420.45 | 411.62 | 429.37 | 431.69  | 441.57   | 330.08 | 425.30 | 398.45 | 383.91 | 409.89 |
| Pralsetinib       | 381.0             | 400.28 | 394.62 | 332.57 | 407.14  | 408.91   | 403.31 | 410.31 | 420.73 | 391.13 | 423.50 |
| Gefitinib         | 337.8             | 316.23 | 313.52 | 384.95 | 308.51  | 333.58   | 366.52 | 326.46 | 304.87 | 303.27 | 346.88 |
| Afatinib          | 352.0             | 343.13 | 335.76 | 380.58 | 347.93  | 348.21   | 385.35 | 346.81 | 331.61 | 328.13 | 338.42 |
| Gemcitabine       | 142.3             | 201.92 | 211.5  | 270.33 | 196.13  | 195.62   | 249.13 | 195.67 | 219.1  | 243.46 | 202.34 |
| Ipilimumab        | 280.9             | 275.89 | 275.59 | 294.90 | 274.03  | 271.03   | 301.24 | 268.35 | 281.48 | 293.19 | 266.94 |
| Pembroli<br>zumab | 136.2             | 121.23 | 134.32 | 214.13 | 113.34  | 128.79   | 181.20 | 112.82 | 141.12 | 173.24 | 123.31 |
| Sotorasib         | 411.9             | 418.77 | 420.78 | 374.80 | 427.72  | 419.52   | 431.43 | 422.41 | 409.03 | 401.21 | 407.19 |
| Lorlatinib        | 285.0             | 306.14 | 304.36 | 356.78 | 298.62  | 273.27   | 397.06 | 303.23 | 305.99 | 312.34 | 292.08 |
| Paclitaxel        | 610.6             | 632.26 | 640.52 | 610.30 | 649.18  | 635.79   | 597.51 | 626.50 | 630.16 | 629.19 | 631.05 |
| Dabrafenib        | 359.9             | 370.02 | 369.76 | 422.23 | 369.46  | 352.98   | 368.00 | 363.19 | 382.85 | 401.38 | 372.94 |
| Tepotinib         | 391.6             | 363.30 | 357.99 | 396.04 | 374.80  | 385.12   | 401.26 | 373.00 | 348.32 | 338.55 | 362.24 |

| Docetaxel | 585.7 | 595.28 | 597.36 | 582.90 | 539.35 | 559.74 | 546.74 | 584.64 | 611.22 | 629.53 | 589.76 |
|-----------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|-----------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|

| Name of           | Polari-             | Polariza | ability co | mputed | l from re | gression | model fo | r     |       |       |        |
|-------------------|---------------------|----------|------------|--------|-----------|----------|----------|-------|-------|-------|--------|
| drug              | zability of<br>drug | M1(G)    | M2(G)      | R(G)   | RR(G)     | RRR(G)   | SCI(G)   | H(G)  | F(G)  | Y(G)  | ISI(G) |
| Alectinib         | 55.7                | 55.66    | 57.28      | 44.65  | 56.92     | 59.23    | 44.74    | 55.38 | 55.90 | 55.79 | 55.81  |
| Brigatinib        | 63.5                | 60.64    | 60.04      | 48.08  | 61.78     | 62.05    | 49.67    | 60.33 | 59.66 | 58.35 | 60.43  |
| Binimetinib.      | 38.3                | 40.97    | 41.64      | 38.85  | 41.06     | 41.24    | 36.23    | 39.38 | 41.18 | 42.50 | 39.58  |
| Encorafenib       | 53.2                | 51.87    | 50.47      | 44.61  | 51.85     | 48.33    | 43.63    | 52.92 | 52.38 | 45.08 | 53.15  |
| Ceritinib         | 60.1                | 55.19    | 54.33      | 46.33  | 55.85     | 52.13    | 45.95    | 55.79 | 54.62 | 52.9  | 56.18  |
| Crizotinib        | 45.4                | 45.71    | 46.05      | 41.09  | 46.24     | 47.04    | 58.86    | 44.85 | 45.18 | 45.44 | 44.66  |
| Dacomitinib       | 51.3                | 48.08    | 47.34      | 55.04  | 48.95     | 49.89    | 51.42    | 49.48 | 45.66 | 45.40 | 48.29  |
| Entrectinib       | 62.1                | 60.40    | 59.12      | 61.65  | 62.16     | 63.55    | 47.66    | 61.23 | 57.34 | 54.55 | 58.97  |
| Pralsetinib       | 57.3                | 57.56    | 56.73      | 48.12  | 58.67     | 58.90    | 58.11    | 59.06 | 60.54 | 55.54 | 60.88  |
| Gefitinib         | 47.1                | 45.71    | 45.32      | 55.44  | 44.65     | 48.19    | 52.86    | 46.95 | 43.90 | 43.51 | 50.10  |
| Afatinib          | 52.0                | 49.503   | 48.45      | 54.83  | 50.25     | 50.27    | 55.55    | 49.89 | 47.74 | 46.92 | 48.91  |
| Gemcitabine       | 20.6                | 29.59    | 30.97      | 39.42  | 28.67     | 28.57    | 36.11    | 28.05 | 31.58 | 35.32 | 29.75  |
| Ipilimumab        | 43.1                | 40.02    | 39.98      | 42.86  | 39.74     | 39.30    | 43.55    | 38.55 | 40.54 | 42.13 | 38.84  |
| Pembroli<br>zumab | 17.3                | 18.21    | 20.11      | 31.57  | 16.89     | 19.07    | 26.41    | 16.08 | 20.38 | 25.71 | 18.63  |
| Sotorasib         | 59.6                | 60.16    | 60.41      | 54.02  | 61.60     | 60.41    | 62.13    | 60.81 | 58.86 | 56.92 | 58.59  |
| Lorlatinib        | 43.0                | 44.28    | 44.03      | 51.50  | 43.24     | 39.61    | 57.22    | 43.59 | 44.06 | 44.75 | 42.38  |
| Paclitaxel        | 86.9                | 90.26    | 91.32      | 86.93  | 93.09     | 91.17    | 85.84    | 90.30 | 90.62 | 88.13 | 90.10  |
| Dabrafenib        | 50.5                | 53.29    | 53.23      | 60.65  | 53.31     | 50.95    | 53.07    | 52.26 | 55.10 | 56.94 | 53.77  |
| Tepotinib         | 57.3                | 52.34    | 51.57      | 56.99  | 54.07     | 55.52    | 57.82    | 53.67 | 50.14 | 48.34 | 52.26  |
| Docetaxel         | 81.4                | 85.05    | 85.25      | 83.10  | 77.04     | 80.36    | 78.59    | 84.25 | 87.90 | 88.18 | 84.29  |

## Table 19 Comparison of actual and computed values for Polarizability from regression models



Figure 2 Molecular structure of Lung cancer drugs

## 4. NM-polynomial of Lung cancer drugs

Verma and Mondal defined the Neighborhood NM-polynomial in 2019.[1,14]

$$NM(G:x, y) = \sum_{\psi \le i \le j \le \Psi} \chi_{ij}(G) x^i y^j$$

Where  $\psi = \min \{ dx | x \in VG \}$  $\Psi = \max \{ dx | x \in VG \}$ 

 $\chi_{ij}$  denotes the number of edges uv  $\in$  E(G), where {du, dv} = {i, j}. Here du, dv denotes the degree of the vertices u and v respectively. In this section we expressed the NM-polynomial of molar graphs of Alectinib, Brigatinib, Binimetinib, Encorafenib, Ceritinib, Crizotinib, Dacomitinib, Entrectinib, Pralsetinib, Gefitinib, Afatinib, Gemcitabine, Ipilimumab, Pembrolizumab, Sotorasib, Lortatinib, Paclitaxel, Tafinlar, Tepotinib, Docetaxel.

#### 3.2. Theorem 4.1

Let A be the graph of Alectinib. Then NM-polynomial of A is

 $NM(A: x,y) = xy^2 + 2xy^3 + 2xy^4 + 7x^2y^2 + 17x^2y^3 + 9x^3y^3 + 2x^3y^4$ 

Proof: The edge partitions of Alectinib as follows

|*E*1,2|=1, |*E*1,3|=2, |*E*1,4|=2, |*E*2,2|=7, |*E*2,3|=17, |*E*3,3|=9, |*E*3,4|=2

From definition of NM-polynomial

$$NM(A:x,y) = \sum_{\psi \le i \le j \le \Psi} \chi_{ij}(A) x^i y^j$$

$$NM(A:x,y) = \chi_{12}(A)x^{1}y^{2} + \chi_{13}(A)x^{1}y^{3} + \chi_{14}(A)x^{1}y^{4} + \chi_{22}(A)x^{2}y^{2} + \chi_{23}(A)x^{2}y^{3} + \chi_{33}(A)x^{3}y^{3} + \chi_{34}(A)x^{3}y^{4}$$

 $= xy^2 + 2xy^3 + 2xy^4 + 7x^2y^2 + 17x^2y^3 + 9x^3y^3 + 2x^3y^4$ 

#### 3.3. Theorem 4.2

Let B be the graph of Brigatinib. Then NM-polynomial of B is

 $NM(B:x,y)=3xy^3+3xy^4+8x^2y^2+23x^2y^3+7x^3y^3+x^3y^4$ 

Proof: The edge partitions of Brigatinib as follows

From definition of NM-polynomial

$$NM(B:x,y) = \sum_{\psi \le i \le j \le \Psi} \chi_{ij}(B) x^i y^j$$

$$NM(B:x,y) = \chi_{13}(B)x^{1}y^{3} + \chi_{14}(B)x^{1}y^{4} + \chi_{22}(B)x^{2}y^{2} + \chi_{23}(B)x^{2}y^{3} + \chi_{33}(B)x^{3}y^{3} + \chi_{34}(B)x^{3}y^{4}$$

 $= 3xy^3 + 3xy^4 + 8x^2y^2 + 23x^2y^3 + 7x^3y^3 + x^3y^4$ 

#### 3.4. Theorem 4.3

Let Bi be the graph of Binimetinib. Then NM-polynomial of Bi is

 $NM(Bi:x,y) = 5xy^3 + 11x^2y^3 + xy^2 + 5x^2y^2 + 7x^3y^3$ 

Proof: The edge partitions of Binimetinib as follows

$$|E_{1,3}|=5, |E_{2,3}|=11, |E_{1,2}|=1, |E_{2,2}|=5, |E_{3,3}|=7,$$

From definition of NM-polynomial

$$NM(Bi:x,y) = \sum_{\psi \le i \le j \le \Psi} \chi_{ij}(Bi)x^i y^j$$

$$NM(Bi:x,y) = \chi_{13}(Bi)x^{1}y^{3} + \chi_{22}(Bi)x^{2}y^{2} + \chi_{23}(Bi)x^{2}y^{3} + \chi_{33}(Bi)x^{3}y^{3} + \chi_{12}(Bi)x^{1}y^{2}$$
$$= 5xy^{3} + 11x^{2}y^{3} + xy^{2} + 5x^{2}y^{2} + 7x^{3}y^{3}$$

#### 3.5. Theorem 4.4

Let E be the graph of Encorfenib. Then NM-polynomial of E is

$$NM(E:x, y) = xy^2 + 6xy^3 + 3xy^4 + 18x^2y^3 + 6x^3y^3 + x^2y^4 + 3x^2y^2$$

Proof: The edge partitions of Encorfenib as follows

From definition of NM-polynomial

$$NM(E:x, y) = \sum_{\psi \le i \le j \le \Psi} \chi_{ij}(E) x^i y^j$$

$$NM(E:x,y) = \chi_{12}(E)x^{1}y^{2} + \chi_{13}(E)x^{1}y^{3} + \chi_{14}(E)x^{1}y^{4} + \chi_{22}(E)x^{2}y^{2} + \chi_{23}(E)x^{2}y^{3} + \chi_{33}(E)x^{3}y^{3} + \chi_{24}(E)x^{2}y^{4}$$

 $=xy^{2}+6xy^{3}+3xy^{4}+18x^{2}y^{3}+6x^{3}y^{3}+x^{2}y^{4}+3x^{2}y^{2}$ 

## 3.6. Theorem 4.5

Let C be the graph of Ceritinib. Then NM-polynomial of C is

$$NM(C:x,y) = 6xy^3 + 2xy^4 + 18x^2y^3 + 5x^3y^3 + 8x^2y^2 + 2x^3y^4$$

Proof: The edge partitions of Ceritinib as follows

$$|E_{1,3}|=6, |E_{1,4}|=2, |E_{2,3}|=18, |E_{3,3}|=5, |E_{2,2}|=8, |E_{3,4}|=2,$$

From definition of NM-polynomial

$$NM(C:x,y) = \sum_{\psi \le i \le j \le \Psi} \chi_{ij}(C) x^i y^j$$

$$NM(C:x,y) = \chi_{13}(C)x^{1}y^{3} + \chi_{14}(C)x^{1}y^{4} + \chi_{22}(C)x^{2}y^{2} + \chi_{23}(C)x^{2}y^{3} + \chi_{33}(C)x^{3}y^{3} + \chi_{34}(C)x^{3}y^{4}$$

 $=6xy^3 + 2xy^4 + 18x^2y^3 + 5x^3y^3 + 8x^2y^2 + 2x^3y^4$ 

## 3.7. Theorem 4.6

Let Cr be the graph of Crizotinib. Then NM-polynomial of Cr is

$$NM(Cr:x,y) = 5xy^3 + 14x^2y^3 + 7x^2y^2 + 7x^3y^3$$

Proof: The edge partitions of Crizotinib as follows

$$|E_{1,3}|=5, |E_{2,3}|=14, |E_{3,3}|=7, |E_{2,2}|=7,$$

From definition of NM-polynomial

$$NM(Cr:x,y) = \sum_{\psi \le i \le j \le \Psi} \chi_{ij}(Cr) x^i y^j$$

$$NM(Cr:x, y) = \chi_{13}(Cr)x^{1}y^{3} + \chi_{22}(Cr)x^{2}y^{2} + \chi_{23}(Cr)x^{2}y^{3} + \chi_{33}(Cr)x^{3}y^{3}$$
$$= 5xy^{3} + 14x^{2}y^{3} + 7x^{2}y^{2} + 7x^{3}y^{3}$$

#### 3.8. Theorem 4.7

Let D be the graph of Dacomitinib. Then NM-polynomial of D is

 $NM(D:x,y) = xy^2 + 3xy^3 + 9x^2y^2 + 19x^2y^3 + 4x^3y^3$ 

Proof: The edge partitions of Dacomitinib as follows

$$|E_{1,2}|=1, |E_{1,3}|=3, |E_{2,2}|=9, |E_{2,3}|=19, |E_{3,3}|=4$$

From definition of NM-polynomial

$$NM(D:x,y) = \sum_{\psi \le i \le j \le \Psi} \chi_{ij}(D) x^i y^j$$
$$NM(D:x,y) = \chi_{12}(D) x^1 y^2 + \chi_{13}(D) x^1 y^3 + \chi_{22}(D) x^2 y^2 + \chi_{23}(D) x^2 y^3$$
$$+ \chi_{33}(D) x^3 y^3$$

 $= xy^{2} + 3xy^{3} + 9x^{2}y^{2} + 19x^{2}y^{3} + 4x^{3}y^{3}$ 

#### 3.9. Theorem 4.8

Let En be the graph of Entrectinib. Then NM-polynomial of En is

$$NM(En:x,y) = 4xy^3 + 9x^2y^2 + 28x^2y^3 + 5x^3y^3$$

Proof: The edge partitions of Entrectinib as follows

$$|E_{1,3}|=4, |E_{2,2}|=9, |E_{2,3}|=28, |E_{3,3}|=5,$$

$$NM(En:x,y) = \sum_{\psi \le i \le j \le \Psi} \chi_{ij}(En) x^i y^j$$

$$NM(En: x, y) = \chi_{13}(En)x^{1}y^{3} + \chi_{22}(En)x^{2}y^{2} + \chi_{23}(En)x^{2}y^{3} + \chi_{33}(En)x^{3}y^{3}$$

 $=4xy^{3}+9x^{2}y^{2}+28x^{2}y^{3}+5x^{3}y^{3}$ 

#### 3.10. Theorem 4.9

Let P be the graph of Pralsetinib. Then NM-polynomial of P is

 $NM(P:x,y) = 5xy^3 + xy^2 + 6x^2y^2 + 24x^2y^3 + 3x^2y^4 + 3x^3y^3 + x^3y^4$ 

Proof: The edge partitions of Pralsetinib as follows

|*E*1,3|=5, |*E*1,2|=1, |*E*2,2|=6, |*E*2,3|=24, |*E*3,3|=3, |*E*3,4|=1, |*E*2,4|=3

From definition of NM-polynomial

$$NM(P:x,y) = \sum_{\psi \le i \le j \le \Psi} \chi_{ij}(P) x^i y^j$$

$$NM(P:x,y) = \chi_{12}(P)x^{1}y^{2} + \chi_{13}(P)x^{1}y^{3} + \chi_{24}(P)x^{2}y^{4} + \chi_{22}(P)x^{2}y^{2} + \chi_{23}(P)x^{2}y^{3} + \chi_{33}(P)x^{3}y^{3} + \chi_{34}(P)x^{3}y^{4}$$

$$=5xy^{3}+xy^{2}+6x^{2}y^{2}+24x^{2}y^{3}+3x^{2}y^{4}+3x^{3}y^{3}+x^{3}y^{4}$$

3.11. Theorem 4.10

Let G be the graph of Gefitinib. Then NM-polynomial of G is

$$NM(G:x,y) = xy^2 + 2xy^3 + 10x^2y^2 + 17x^2y^3 + 4x^3y^3$$

Proof: The edge partitions of Gefitinib as follows

$$|E_{1,2}|=1, |E_{1,3}|=2, |E_{2,2}|=10, |E_{2,3}|=17, |E_{3,3}|=4$$

From definition of NM-polynomial

$$NM(G:x,y) = \sum_{\psi \le i \le j \le \Psi} \chi_{ij}(G) x^i y^j$$

$$NM(G:x,y) = \chi_{12}(G)x^{1}y^{2} + \chi_{13}(G)x^{1}y^{3} + \chi_{22}(G)x^{2}y^{2} + \chi_{23}(G)x^{2}y^{3} + \chi_{33}(G)x^{3}y^{3}$$
$$= xy^{2} + 2xy^{3} + 10x^{2}y^{2} + 17x^{2}y^{3} + 4x^{3}y^{3}$$

3.12. Theorem 4.11

Let Af be the graph of Afatinib. Then NM-polynomial of Af is

$$NM(Af:x,y) = 5xy^3 + 8x^2y^2 + 20x^2y^3 + 4x^3y^3$$

Proof: The edge partitions of Afatinib as follows

$$NM(Af:x,y) = \sum_{\psi \le i \le j \le \Psi} \chi_{ij}(Af) x^i y^j$$

$$NM(Af:x,y) = \chi_{13}(Af)x^{1}y^{3} + \chi_{22}(Af)x^{2}y^{2} + \chi_{23}(Af)x^{2}y^{3} + \chi_{33}(Af)x^{3}y^{3}$$
$$= 5xy^{3} + 8x^{2}y^{2} + 20x^{2}y^{3} + 4x^{3}y^{3}$$

#### 3.13. Theorem 4.12

Let Ge be the graph of Gemcitabine. Then NM-polynomial of Ge is

$$NM(Ge:x,y) = xy^2 + 5xy^3 + x^2y^2 + 7x^2y^3 + 5x^3y^3$$

Proof: The edge partitions of Gemcitabine as follows

From definition of NM-polynomial

$$NM(Ge: x, y) = \sum_{\psi \le i \le j \le \Psi} \chi_{ij}(Ge) x^i y^j$$

$$NM(Ge:x, y) = \chi_{12}(Ge)x^{1}y^{2}\chi_{13}(Ge)x^{1}y^{3} + \chi_{22}(Ge)x^{2}y^{2} + \chi_{23}(Ge)x^{2}y^{3} + \chi_{33}(Ge)x^{3}y^{3}$$

 $=5xy^3 + 8x^2y^2 + 20x^2y^3 + 4x^3y^3$ 

#### 3.14. Theorem 4.13

Let I be the graph of Ipilimumab. Then NM-polynomial of I is

$$NM(I:x,y) = 6xy^3 + x^2y^2 + 18x^2y^3 + 3x^3y^3$$

Proof: The edge partitions of Ipilimumab as follows

From definition of NM-polynomial

$$NM(I:x,y) = \sum_{\psi \le i \le j \le \Psi} \chi_{ij}(I) x^i y^j$$

$$NM(I:x, y) = \chi_{13}(I)x^{1}y^{3} + \chi_{22}(I)x^{2}y^{2} + \chi_{23}(I)x^{2}y^{3} + \chi_{33}(I)x^{3}y^{3}$$
$$= 6xy^{3} + x^{2}y^{2} + 18x^{2}y^{3} + 3x^{3}y^{3}$$

## 3.15. Theorem 4.14

Let Pe be the graph of Pembrolizumab. Then NM-polynomial of Pe is

 $NM(Pe:x,y)=2xy^2+3x^2y^2+4x^2y^3+x^3y^3$ 

Proof: The edge partitions of Pembrolizumab as follows

$$NM(Pe:x,y) = \sum_{\psi \le i \le j \le \Psi} \chi_{ij}(Pe) x^i y^j$$

$$NM(Pe:x,y) = \chi_{12}(Pe)x^{1}y^{2} + \chi_{22}(Pe)x^{2}y^{2} + \chi_{23}(Pe)x^{2}y^{3} + \chi_{33}(Pe)x^{3}y^{3}$$
$$= 2xy^{2} + 3x^{2}y^{2} + 4x^{2}y^{3} + x^{3}y^{3}$$

#### 3.16. Theorem 4.15

Let S be the graph of Sotorasib. Then NM-polynomial of S is

$$NM(S:x,y)=2xy^2+8xy^3+6x^2y^2+15x^2y^3+14x^3y^3$$

Proof: The edge partitions of Sotorasib as follows

$$|E_{1,2}|=2, |E_{1,3}|=8, |E_{2,2}|=6, |E_{2,3}|=15, |E_{3,3}|=14$$

From definition of NM-polynomial

$$NM(S:x,y) = \sum_{\psi \le i \le j \le \Psi} \chi_{ij}(S) x^i y^j$$

$$NM(S:x,y) = \chi_{12}(S)x^{1}y^{2}\chi_{13}(S)x^{1}y^{3} + \chi_{22}(S)x^{2}y^{2} + \chi_{23}(S)x^{2}y^{3} + \chi_{33}(S)x^{3}y^{3}$$

 $=2xy^{2}+8xy^{3}+6x^{2}y^{2}+15x^{2}y^{3}+14x^{3}y^{3}$ 

#### 3.17. Theorem 4.16

Let L be the graph of Lortatinib. Then NM-polynomial of L is

 $NM(L:x,y)=7xy^3+5x^2y^2+14x^2y^3+6x^3y^3$ 

Proof: The edge partitions of Lortatinib as follows

From definition of NM-polynomial

$$NM(L:x,y) = \sum_{\psi \le i \le j \le \Psi} \chi_{ij}(L) x^i y^j$$

$$NM(L:x,y) = \chi_{13}(L)x^{1}y^{3} + \chi_{22}(L)x^{2}y^{2} + \chi_{23}(L)x^{2}y^{3} + \chi_{33}(L)x^{3}y^{3}$$

$$=7xy^3+5x^2y^2+14x^2y^3+6x^3y^3$$

#### 3.18. Theorem 4.17

Let Pa be the graph of Paclitaxel. Then NM-polynomial of Pa is

$$NM(Pa:x,y) = 10xy^3 + 3xy^4 + 13x^2y^2 + 20x^2y^3 + 10x^3y^3 + 4x^2y^4 + 7x^3y^4 + x^4y^4$$

Proof: The edge partitions of Paclitaxel as follows

$$|E_{1,3}|=10, |E_{1,4}|=3, |E_{2,3}|=20, |E_{3,3}|=10, |E_{2,2}|=13, |E_{2,4}|=4|E_{3,4}|=7, |E_{4,4}|=1$$

$$NM(Pa:x,y) = \sum_{\psi \le i \le j \le \Psi} \chi_{ij}(Pa)x^i y^j$$
$$NM(Pa:x,y) = \chi_{13}(Pa)x^1 y^3 + \chi_{14}(Pa)x^1 y^4 + \chi_{22}(Pa)x^2 y^2 + \chi_{23}(Pa)x^2 y^3 + \chi_{24}(Pa)x^2 y^4 + \chi_{33}(Pa)x^3 y^3 + \chi_{34}(Pa)x^3 y^4 + \chi_{44}(Pa)x^4 y^4$$
$$= 10xy^3 + 3xy^4 + 13x^2y^2 + 20x^2y^3 + 10x^3y^3 + 4x^2y^4 + 7x^3y^4 + x^4y^4$$

#### 3.19. Theorem 4.18

Let Da be the graph of Dabrafinib. Then NM-polynomial of Da is

$$NM(Da : x,y) = 4xy^3 + 5xy^4 + 6x^2y^2 + 13x^2y^3 + 7x^3y^3 + x^2y^4 + 2x^3y^4$$

Proof: The edge partitions of Dabrafinib as follows

From definition of NM-polynomial

$$NM (Da:x,y) = \sum_{\psi \le i \le j \le \Psi} \chi_{ij} (Da) x^i y^j$$
  

$$NM (Da:x,y) = \chi_{13} (Da) x^1 y^3 + \chi_{14} (Da) x^1 y^4 + \chi_{22} (Da) x^2 y^2 + \chi_{23} (Da) x^2 y^3 + \chi_{24} (Da) x^2 y^4 + \chi_{33} (Da) x^3 y^3 + \chi_{34} (Da) x^3 y^4 + 6x^2 y^2 + 13x^2 y^3 + 7x^3 y^3 + x^2 y^4 + 2x^3 y^4$$

#### 3.20. Theorem 4.19

Let T be the graph of Tepotinib. Then NM-polynomial of T is

$$NM(T:x,y)=3xy^3+10x^2y^2+24x^2y^3+3x^3y^3$$

Proof: The edge partitions of Tepotinib as follows

$$|E_{1,3}|=3, |E_{2,2}|=10, |E_{2,3}|=24, |E_{3,3}|=3$$

From definition of NM-polynomial

$$NM(T:x,y) = \sum_{\psi \le i \le j \le \Psi} \chi_{ij}(T) x^i y^j NM(T:x,y) = \chi_{13}(T) x^1 y^3 + \chi_{22}(T) x^2 y^2 + \chi_{23}(T) x^2 y^3 + \chi_{33}(T) x^3 y^3$$

 $=3xy^3+10x^2y^2+24x^2y^3+3x^3y^3$ 

#### 3.21. Theorem 4.20

Let Do be the graph of Docetaxel. Then NM-polynomial of Do is

$$NM(Do:x,y) = 10xy^3 + 7xy^4 + 9x^2y^2 + 16x^2y^3 + 9x^3y^3 + 4x^2y^4 + 7x^3y^4 + x^4y^4$$

Proof: The edge partitions of Docetaxel as follows

$$NM (Do: x, y) = \sum_{\psi \le i \le j \le \Psi} \chi_{ij} (Do) x^i y^j$$
$$NM (Do: x, y) = \chi_{13} (Do) x^1 y^3 + \chi_{14} (Do) x^1 y^4 + \chi_{22} (Do) x^2 y^2 + \chi_{23} (Do) x^2 y^3 + \chi_{24} (Do) x^2 y^4 + \chi_{33} (Do) x^3 y^3 + \chi_{34} (Do) x^3 y^4 + \chi_{44} (Do) x^4 y^4$$
$$= 10xy^3 + 7xy^4 + 9x^2y^2 + 16x^2y^3 + 9x^3y^3 + 4x^2y^4 + 7x^3y^4 + x^4y^4$$





Figure 3 NM-Polynomials for Lung cancer drugs

## 4. Conclusion

This study examines drugs used to treat Lung cancer and computes several numerical descriptors. To design a new medicine, its important to understand its structure. QSPR modeling with TI's can provide this information. This work aims to use topological indices to acquire data about structure topology in a cost effective and time efficient manner. The correlation coefficient between topological indices against the six physicochemical properties of the drugs is represented in table 14. By inspection, it is observed that BP has the highest correlation with H(G) with r=0.943. Also Enthalpy has the highest correlation with F(G) with r=0.985, MV with H(G) has r=0.980 and polarizability with H(G) has r=0.985. The results show strong correlation coefficients between physical attributes and topological indices. The study indicates that MR and Polarizability has a strong association with all topological indices. The work guides chemists and pharmacists in developing new drugs for treating various diseases. TI's are often used for anticipating physicochemical qualities. The indices are utilized in prediction studies for models designed for soil absorption, boiling point, viscosity, organic solvent densities, and data retention via chromotography. We also derived the NM-polynomials of these drugs.

## **Compliance with ethical standards**

## Disclosure of conflict of interest

No conflict of interest to be disclosed.

## References

- [1] S. Nagarajan and M. Durga. A Computational Approach on Fenofibrate Drug Using Degree-Based Topological Indices and M-Polynomials, "Asian Journal of Chemical Sciences" Volume 14, Issue 2, Page 43-57, 2024;ISSN:2456-7795.
- [2] S. Nagarajanan and M. Durga .Computing Y-index of Different Corona Products of Graphs, "Asian Research Journal of Mathematics", Volume 19, Issue 10, Page 67-74, 2023; Article no. AR JOM.104529 ISSN: 2456-477X
- [3] B. Zhou and N. Trinajstic, "On generalsum-connectivityindex, "Journal of MathematicalChemistry", vol. 47, pp. 210–218, 2010.
- [4] B. Furtula and I. Gutman, A forgotton topological index,"Journal of Mathematical Chemistry", vol. 53, pp. 213–220, 2015.
- [5] Iranmanesh MA, Saheli M. On the harmonic index and harmonic polynomial ofCaterpillars with diameter four. Iran. J. Math. Chem. 2014;5:35–43.
- [6] M. Imran, S. Akhter, and S. Manzoor, "Molecular, topological invariants of certain chemical networks," Main Group Met.Chem. vol. 44, pp. 141–149, 2021.
- [7] Adnan, S. AhtshamUlHaqBokhary, M. K. Siddiqui, and M. Cancan, "On topological indices and QSPR analysis of drugs used for the treatment of breast cancer," Polycyclic Aromatic Compounds, vol. 23, 2021.
- [8] I. Gutman, "Degree based topological indices," Croatica Chemica Acta, vol. 86, pp.351–361,2013.

- [9] D. H. Rouvray and B. C. Crafford, "The dependence of physical-chemical properties on topological factors," South African Journal of Science, vol. 72, p. 47, 1976.
- [10] L. I. Stiel and G. Thodos, "The normal boiling points and critical constants of saturated aliphatic hydrocarbons," AIChE Journal, vol. 8, no. 4, Article ID 5276529, 1962.
- [11] D. V.-B. Furtula, "Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges," Journal of Mathematical Chemistry, vol. 46, pp.1369–1376, 2009.
- [12] R. Gozalbes, J. Doucet, and F. Derouin, "Application of topological descriptors in QSAR and drug design: history and new trends," Current Drug Targets Infectious Disorders, vol. 2, no. 1, pp. 93-102, 2002.
- [13] S. A. K. Kirmani, P. Ali, and F. Azam, "Topological indices and QSPR/QSAR analysis of some antiviral drugs being investigated for the treatment of COVID-19patients," International Journal of Quantum Chemistry, vol. 121, no. 9, pp. 1–22.
- [14] M. C. Shanmukha, A.Usha, N. S.Basavarajappa, and K. C. Shilpa, "M-polynomials and topological indices of styrenebutadiene rubber (SBR)," Polycyclic Aromatic Compounds, vol. 6, pp. 1–16, Article ID e04235, 2020.