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Abstract 

Predictive maintenance greatly enhances equipment health monitoring and performance, this strategy predicts failures 
before they occur, allowing for focused and timely interventions; it does this by combining real-time sensor data 
trending, machine learning, and sophisticated data analytics. This study compares equational calculations with sensor-
generated data, it further investigates the stability, accuracy, and reliability of electric motor RPM data collected at 
different intervals to find the most proficient data acquisition techniques for effective predictive maintenance decisions. 
Statistical metrics such as Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), 
and Absolute Error (AE) were utilized to quantify variances, the assessment approach consisted of two distinct phases: 
an initial accuracy assessment to measure discrepancies between sensor-generated data and calculated value; this was 
followed by evaluating the stability, accuracy, and reliability of RPM data collected at short intervals and those collected 
at longer intervals. Key findings indicate that sensor-generated RPM readings at short intervals provide detailed insights 
into electric motor transient behaviours despite greater variability and error margins. This high-frequency data 
provides a detailed insight into motor function by capturing extensive deviation patterns that long-term data trending 
could not. Also, sensor-generated data shows a substantial ability to give precise insights into transitory behaviors 
compared to equationally computed value, making it an appropriate option for predictive maintenance. The study 
advances the subject of predictive maintenance by providing useful recommendations for improving maintenance 
procedures, increasing equipment reliability, and reducing downtime and costs.  

Keywords: Comparative analysis; Predictive maintenance; Reliability; Electric motor; Revolution per minute (RPM); 
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1. Introduction

With the advent of the Internet of Things (IoT) and predictive technologies, there has been tremendous growth in the 
amount of data generated [1]. The advent of big data and attendant machine learning renaissance offers opportunities 
for and challenges to data quality research [2]. In the realm of predictive maintenance, accurate and reliable data is 
crucial for predicting equipment failures and optimizing performance. Machine-generated data, derived from advanced 
sensors monitoring and recording systems offers real-time insights into equipment conditions. However, the accuracy 
and reliability of this data can be influenced by various factors such as sensor calibration, data processing algorithms, 
and environmental conditions. Relational databases with a high degree of quality may be the gateway for predictive 
modelling and enhanced business analytics [3], this data is invaluable for its granularity and immediate relevance, 
potentially enabling more precise predictions about equipment health. In contrast, equational calculations rely on 
mathematical models and theoretical frameworks to predict equipment behaviour, these models are based on 
established principles and historical data, providing a different approach to predictive maintenance. While these 
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calculations can offer a stable and theoretically sound basis for predictions, their effectiveness can be limited by the 
assumptions and simplifications inherent in the models. The study aims to evaluate the comparative performance of 
these two approaches by analyzing data accuracy, quality, and reliability across different temporal intervals. Short 
intervals, characterized by high-frequency data collection capture detailed and transient behaviors of equipment. Long 
intervals, on the other hand, provide a more seemingly stable and aggregated view of performance trends over time. By 
assessing both machine-generated data and equational calculations within the framework of short and long temporal 
intervals, this research seeks to identify the strengths and limitations of each method. The findings will contribute to 
the understanding of how different data acquisition strategies affect predictive maintenance, offering valuable insights 
for optimizing maintenance practices and decisions, and enhancing equipment reliability. This investigation not only 
addresses the technical aspects of data accuracy and reliability but also aims to provide practical recommendations for 
implementing effective predictive maintenance strategies. Through rigorous comparative analysis, the study aspires to 
advance the field of predictive maintenance and improve the overall efficiency and lifespan of industrial equipment. 

This study examines how operational data from sensors has been integrated into industrial settings by analyzing earlier 
research on the subject. In an attempt to close a research gap, it examines the advantages and disadvantages of utilizing 
sensor data to improve predictive maintenance techniques in industrial settings. Utilizing data can significantly boost 
manufacturing efficiency [4][5], companies are increasingly taking advantage of data analytics to make informed 
decisions that enhance production and profitability [6] [7] [8] [9], data science facilitates this by enabling large-scale, 
data-driven decision-making and automation, supported by technologies for big data storage and processing [10]. 
However, maintaining data security and integrity is crucial, requiring robust frameworks to avoid risks such as financial 
losses and legal issues [11], according to [12], continuous condition monitoring, which involves frequent sensor 
measurements is advantageous for early fault detection in critical equipment and is further improved by advanced data 
processing techniques. [13], further adduced that the advent of Industry 4.0 introduced machine learning-based 
solutions for predictive maintenance, utilizing historical data to predict and prevent failures. However, extracting 
valuable insights from sensor data remains challenging and is often used reactively rather than proactively [14], 
because, enhancing data quality is essential for effective data analytics and decision-making [15] [16]. In its study, [17] 
introduced a six-step approach for improving data quality, which is crucial for precise analysis and effective monitoring 
in performance systems. The accuracy of online performance monitoring systems heavily depends on the quality of the 
input data, which is often compromised due to the low precision of installed plant sensors, automated predictive 
maintenance is closely linked with advancements in production automation and intelligent sensor technologies[18], 
necessitating efficient data analysis to support complex decision-making and system management.   

2. Materials and Methods   

The study's methodology involves defining and establishing key parameters and variables and a comprehensive review 
of sensor-generated operational data and equational calculations to evaluate data accuracy, reliability, and quality. RPM 
data from an electric motor was collected using condition monitoring, a human-machine interface, and a recorder over 
60 seconds, with records taken at 10-second and 1-second intervals. Statistical error metrics such as Mean Absolute 
Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Absolute Error (AE) were used to 
assess the differences between sensor-generated and equationally computed data. The data analysis process included 
two stages: initially, an accuracy assessment using these metrics, quantified the discrepancies between the sensor-
generated and equationally calculated data. Following this, a reliability and qualitative assessment evaluated the 
consistency of sensor data over time (10-second and 1-second intervals) and under the same operational conditions, 
ensuring its robustness and predictability to determine the best methods of data collection for predictive maintenance. 
The results of the comparative analysis of these scenarios were visualized using graphs and error analysis was 
conducted to identify discrepancies, leading to a detailed investigation into potential causes of deviations. 

2.1. Sensor-generated operational data  

Operational data generated by sensors is the data produced by machinery and equipment during operation. Examples 
of this type of data include vibration, temperature, pressure, speed, RPM etc. The gathering and examination of this data 
provide many advantages. Continuous data collection allows for equipment performance to be monitored in real-time, 
which enables the prompt identification of irregularities and possible malfunctions. By examining past data and 
recognizing trends, companies can adopt predictive maintenance strategies to predict equipment breakdowns in 
advance, ultimately decreasing downtime and maintenance expenses. In-depth understanding of how equipment 
functions helps improve operations by making them more efficient and productive. Moreover, precise and thorough 
information aids in making well-informed decisions at every stage, from day-to-day activities to long-term strategy. 
Data generated by machines also guarantees accurate and timely reporting for regulatory compliance and internal 
audits. In general, utilizing this information improves the reliability, productivity, and security of industrial processes.  
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2.2. Equational calculations  

Equational computations use mathematical equations and formulas to determine precise values and outcomes using 
given parameters and variables. These computations play a fundamental role in multiple scientific, engineering, and 
technical fields by providing representations, assessments, and forecasts of behaviors and results. Equational 
calculations in predictive maintenance can aid in predicting equipment's remaining useful life, failure rates, and 
optimizing maintenance schedules. The precision of equational computations relies on the correctness of the data 
provided and the suitability of the selected models and equations. Despite being accurate and based on theory, 
equational calculations may not always accurately represent intricate real-world dynamics like data-driven methods 
do. However, they continue to be a vital resource for engineers and analysts, providing a systematic method for 
problem-solving and decision-making across different industries. 

2.3. Data accuracy, reliability, and quality 

In the field of data management and analytics, data quality, accuracy, and reliability are key elements. The term "data 
accuracy" describes the correctness of data, making sure that it accurately depicts real-world values or situations. 
Precise analysis and well-informed decision-making depend on accurate data. On the other hand, data credibility and 
uniformity throughout time are related to data reliability. It is essential to observe trends and make prediction because 
consistent data yields the same outcomes under consistent conditions. Accuracy and reliability are only two aspects of 
the larger idea of data quality, which also includes timeliness, completeness, and relevance. Good data is complete, 
relevant to the situation, and readily available. When combined, these qualities guarantee that data is reliable and useful 
for a range of analytical objectives, eventually resulting in improved operational efficiency and decision-making.  

2.4. Mean absolute error (MAE) 

Mean Absolute Error is commonly used in statistical analysis and machine learning to assess the precision of predictive 
models. MAE calculates the mean error size between predicted and actual values, regardless of their direction. MAE is 
calculated by taking the average of the absolute differences between sensor-generated data (yi) and equational 
calculations (y), where n represents the total number of observations. The equation for MAE is: 

MAE = 
1

𝑛 
  ∑  (𝑦𝑖 − 𝑦)𝑛 

𝑖=1 ………… (1) 

In contrast to other error measurements, MAE calculates errors without squaring them, resulting in a linear score that 
gives equal importance to all errors. This feature of MAE makes it easy to understand, as it is in the same units as the 
target and shows the average error size clearly. MAE stands out because it is more robust when dealing with outliers 
compared to metrics such as MSE and RMSE which are more sensitive to outliers. Nevertheless, it does not reprove 
significant errors as harshly as MSE or RMSE which could be a disadvantage in situations where large errors are 
unwanted. MAE is commonly used in regression analysis and model evaluation to measure predictive precision in real-
world applications. A model is considered more accurate when it has a lower MAE, as this indicates less average errors 
in the predictions. MAE is a useful tool for professionals in different fields who want to assess and enhance their 
predictive models' performance due to its straightforwardness and interpretability. 

2.5. Mean squared error (MSE) 

Mean Squared Error is a basic measurement utilized in statistical analysis and machine learning to evaluate the mean 
of the errors' squares, precisely the mean squared discrepancy between the predicted values and the genuine values. It 
acts as an essential signal of the precision of a forecasting model. The MSE formula is as follows: 

MSE = 
1

𝑛 
  ∑  (𝑦𝑖 − 𝑦)2𝑛 

𝑖=1  ……….. (2) 

A smaller MSE implies a stronger match of the model to the data, showing that the estimated values are similar to the 
real values, whereas a larger MSE indicates weak model performance, with notable differences between the estimated 
and real values. MSE is commonly utilized in regression analysis to assess the effectiveness of regression models, aiding 
in understanding the extent to which the model accounts for variability in the data. In the field of machine learning, MSE 
is frequently utilized as a loss function for optimizing model parameters to minimize MSE in order to enhance prediction 
accuracy. MSE's sensitivity to large errors is a key benefit because it reproves larger errors more than smaller ones, 
making it useful in scenarios where significant deviations are unwanted. Yet, this high sensitivity to significant errors 
could also pose a drawback since squaring the errors may overly reprove extreme values, possibly resulting in an 
inflated estimation of the model's error when outliers are included in the dataset. However, despite this, MSE remains 
a versatile and widely used tool that offers a precise measurement of predictive model accuracy, crucial for model 
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assessment comparison and enhancement, allowing practitioners to effectively evaluate and enhance the performance 
of their models. 

2.6. Root mean squared error (RMSE) 

Root mean squared error is a frequently utilized metric in statistical analysis and machine learning to assess the 
precision of a predictive model. Insufficient understanding of the theoretical characteristics of the RMSE and MAE 
estimators has restricted their optimal utilization and sparked discussions on determining the superior error metric 
[19]. In model evaluation research, both the RMSE and MAE are frequently employed [20]. By computing the square 
root of the average squared discrepancies between the predicted and actual values, the RMSE metric quantifies 
prediction errors. RMSE is a metric that quantifies the prediction errors by calculating the square root of the average 
squared discrepancies between predicted and actual values. The equation for RMSE is: 

RMSE   =  √  
1

𝑛 
 ∑  (𝑦𝑖 − 𝑦)𝑛 

𝑖=1

2 
 ………. (3) 

This metric is beneficial as it is measured in the same units as the target variable, which simplifies its interpretation and 
comparison with the actual data. A smaller RMSE suggests increased precision and improved model effectiveness since 
the projected values are nearer to the real values. The metric is very helpful in situations where significant errors can 
cause serious issues, as it reproves bigger errors more severely than smaller ones. Just like MSE, RMSE can be impacted 
by outliers, potentially magnifying the model's error in the presence of outliers in the data. In general, RMSE offers a 
reliable and easy-to-understand way to evaluate prediction accuracy, helping with the analysis, comparison, and 
enhancement of predictive models. It is a crucial instrument for professionals looking to comprehend and improve the 
effectiveness of their models. 

2.7. Absolute error (AE) 

Absolute error is a basic principle in statistics and data analysis that is utilized to assess how close a predicted value is 
to the true value. It is described as the total discrepancy between the value that was observed and the value that was 
predicted. AE is equal to the difference between yi and y. The equation used to determine absolute error is: 

AE = yi – y …….. (4) 

Absolute error is a simple way to quantify the size of errors in a dataset regardless of their direction, assuming it is 
always a positive value. This simplicity makes it a straightforward measure to understand the average difference 
between predictions and actual observations. The key benefit of AE is its resistance to outliers since it does not magnify 
larger errors as MSE does. This quality of absolute error is especially valuable in cases where outliers could distort the 
outcomes. Nevertheless, as it does not harshly reprove significant mistakes. AE is a useful method to assess how well 
predictive models perform, offering a straightforward and understandable way to determine prediction precision. By 
emphasizing the size of mistakes, analysts and practitioners can gain insight into how accurate and precise their models 
are by understanding the average difference between predicted and actual values. 

2.8. Case study equipment: electric motor overview 

Electric motors are crucial in contemporary technology, converting electrical energy into mechanical energy and being 
utilized in a variety of applications for their effectiveness, reliability, and flexibility. The classification consists of three 
main types: AC motors, DC motors, and special-purpose motors. AC motors, such as induction and synchronous motors 
run on alternating current and are utilized in industrial machinery and applications that need accurate speed regulation. 
DC motors operated by direct current consist of brushed and brushless varieties, recognized for their precise speed 
regulation and effectiveness, utilized in electric cars, household gadgets, and technology. Types of motors specifically 
designed for certain functions such as stepper and servo motors are utilized in precise tasks like operating 3D printers, 
robots, and CNC machines. Electric motors operate by the combination of magnetic fields and electricity, generating 
torque to rotate the rotor. They play a critical role in different industries, providing energy to industrial machines, HVAC 
systems, for businesses, home appliances, electric cars, and automation systems used in robotics and manufacturing. 
Advantages they provide include high efficiency, minimal maintenance, precise control, and environmental friendliness 
because of zero emissions while operating. Nevertheless, it I challenged by reliable power supplies, upfront expenses, 
advanced control systems, and environmental issues related to disposing and recycling motor parts. The electric 
motor's frequency is determined by how many cycles that occurs in one second of the alternating current (AC) power 
that powers it. Frequency is quantified in units of hertz (Hz). According to [21], the speed at which a motor operates can 
be influenced by the frequency of the AC power supply. Variable frequency drives for electric motors have the ability to 
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adapt pump performance to different operating conditions by decreasing motor and pump RPM. Typically, the standard 
frequencies in many countries are 50 Hz and 60 Hz. The frequency of 50 Hz is widespread in various regions across the 
globe, such as Europe, Asia, and Africa. On the other hand, the 60 Hz frequency is commonly found in North America 
and other areas. The AC motor's synchronous speed, the rate at which the magnetic field spins, can be determined using 
the motor's frequency and pole count. The equation used to calculate this velocity is: 

RPM = 
120×𝑓

𝑁
………  (5) 

Where N is the number of poles, f is the frequency, and RPM is the synchronization speed. It's essential to remember 
that slip causes the motor's real speed to be somewhat lower than the synchronous speed. Slip is the difference between 
the rotor's real speed and the synchronous speed, and it requires torque from the motor. The number of full rotations 
or cycles that a rotating equipment completes in a minute is measured in RPM. This metric is crucial for evaluating the 
rotational speed of engines, motors, turbines, and other machinery in a variety of mechanical and engineering contexts. 
Comprehending RPM is crucial to guaranteeing the appropriate functioning, effectiveness, and security of these systems. 
The basic formula to calculate RPM is: 

RPM = 
Number of revolutions

Time taken
 …..… (6)  

 

Revolutions per minute is an important metric for monitoring the speed at which engines and equipment rotate in 
different sectors. Tachometers detect and count rotations to measure RPM by tracking movement over a period. In the 
automotive field, RPM is used to track engine performance, improve fuel efficiency, power output, and maintain safe 
engine operations by providing drivers with real-time data. In industrial environments, RPM monitoring helps ensure 
machines function properly, boosting efficiency and avoiding malfunctions. The aerospace sector depends on RPM 
readings for jet engines and propellers to uphold ideal thrust and fuel efficiency. Household appliances, like washing 
machines and blenders indicate RPM to let users know their operating speeds. Various factors impact RPM, such as load 
- usually lowering RPM - and the frequency of the electrical power source in AC motors. RPM is also influenced by 
mechanical efficiency, wear, lubrication, and maintenance. Keeping an eye on RPM is essential to avoid overheating, 
mechanical issues, and accidents, guaranteeing engines and motors operate effectively and have a longer lifespan. 
Accurate RPM maintenance is crucial in performance-driven activities such as racing and high-precision manufacturing. 
To sum up, RPM is vital for evaluating how well rotating machinery performs, its efficiency, and safety in different 
sectors. Precise RPM tracking aids in the consistency of ideal operational levels, enhancing both equipment lifespan and 
efficiency. 

The number of poles in an electric motor plays a crucial role in determining its speed and functionality. The arrangement 
of the poles, which are the magnetic poles produced by the motor's windings affects the torque and synchronous speed 
of the machine. Because of their inverse relationship, more poles result in a lower synchronous speed. A 6-pole motor 
operates at 1200 RPM at 60 Hz, whereas a 2-pole motor operates at 3600 RPM. Reduced pole count motors generate 
less torque but run faster, which makes them suitable for high-velocity applications like fans and compressors. 
Conversely, motors with more poles run more slowly but produce more torque, which makes them ideal for applications 
like controlling cranes and hoists. In addition, motors with more poles tend to operate more smoothly and quietly, 
making them perfect for environments where noise pollution is a concern. Conversely, motors with fewer poles are 
often more efficient at higher speeds but may also make more noise. It is necessary to take into account the application's 
particular needs as well as speed, torque, and efficiency while selecting the right motor. To maximize motor 
performance and make sure it satisfies operating criteria efficiently and reliably, engineers must carefully evaluate the 
number of poles in the motor. 

Table 1 Case study electric motor parameters and variables. 

Motor type Frequency, 
f  

(Hz) 

Number of poles 
(N) 

RPM 

[
𝟏𝟐𝟎×𝒇

𝑵
] 

Data transmission 
method 

Data collection interval 
(seconds) 

Induction 
type 

50 4 1500 Sensors 1 

     10 
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3. Results and Discussion   

3.1. One-second interval RPM recorded values versus equational RPM 

Table 2 One-second interval RPM recorded values 

Time(s) i Sensor-generated RPM (yi) Equational RPM (y) Absolute Error [yi – y] 

1 1498 1500 2 

2 1502 1500 2 

3 1505 1500 5 

4 1500 1500 0 

5 1497 1500 3 

6 1501 1500 1 

7 1499 1500 1 

8 1500 1500 0 

9 1499 1500 1 

10 1500 1500 0 

11 1486 1500 14 

12 1498 1500 2 

13 1497 1500 3 

14 1525 1500 25 

15 1520 1500 20 

16 1520 1500 20 

17 1497 1500 3 

18 1502 1500 2 

19 1499 1500 1 

20 1505 1500 1 

21 1499 1500 1 

22 1502 1500 2 

23 1498 1500 2 

24 1497 1500 3 

25 1500 1500 0 

26 1499 1500 1 

27 1500 1500 0 

28 1499 1500 1 

29 1505 1500 5 

30 1497 1500 3 

31 1502 1500 2 

32 1504 1500 4 

33 1470 1500 30 
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34 1480 1500 20 

35 1481 1500 19 

36 1499 1500 1 

37 1504 1500 4 

38 1497 1500 3 

39 1504 1500 4 

40 1499 1500 1 

41 1505 1500 5 

42 1498 1500 2 

43 1496 1500 4 

44 1504 1500 4 

45 1497 1500 3 

46 1502 1500 2 

47 1496 1500 4 

48 1498 1500 2 

49 1505 1500 5 

50 1504 1500 4 

51 1505 1500 5 

52 1496 1500 4 

53 1498 1500 2 

54 1500 1500 0 

55 1496 1500 4 

56 1504 1500 4 

57 1505 1500 5 

58 1499 1500 1 

59 1500 1500 0 

60 1498 1500 2 

  

Table 3 MAE, MSE, and RMSE of one-second interval RPM recorded values 

Metric Value 

MAE [ 
1

𝑛 
  ∑  (𝑦𝑖 − 𝑦)𝑛 

𝑖=1 ] 4.57 

MSE [
1

𝑛 
  ∑  (𝑦𝑖 − 𝑦)2𝑛 

𝑖=1 ] 91,40 

RMSE [√  
1

𝑛 
 ∑  (𝑦𝑖 − 𝑦)𝑛 

𝑖=1

2 
] 

9.56 

In Table 2, the sensor-generated RPM values largely cluster around the equational value of 1500 RPM, though notable 
fluctuations occur. Absolute errors range from 0 to 30 RPM with the most significant deviations observed at specific 
times such as 14, 15, 16, 33, and 34 seconds, where errors surpass 10 RPM. These deviations are both positive and 
negative, indicating variability in the direction of deviation from the equational value. The sensor-generated RPM 
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readings are reliable in offering detailed insights into transient behaviors and short-term trends because of their high 
sampling frequency. 

Three metrics, MAE, MSE, and Root RMSE, are computed in Table 3 to evaluate the accuracy and reliability of the sensor-
generated RPM values. The MAE is 4.57 RPM, showing that the average deviation of the sensor-generated RPM values 
from the equational value is about 4.57 RPM, indicating that, on average, the sensor-generated RPM values deviate from 
the equational value by approximately 4.57 RPM. The MSE, calculated at 91.40, reflects the average squared magnitude 
of errors, indicating that while some errors are small, others are significantly larger. The RMSE, a more interpretable 
measure, stands at 9.56 RPM, suggesting that the typical deviation of sensor-generated RPM from the equational value 
is around 9.56 RPM. These metrics collectively reveal the accuracy and reliability of the RPM readings from the sensor 
in comparison to equational expectations. While the average deviation (MAE) is relatively modest, the larger errors 
contribute to higher MSE and RMSE values, highlighting variability in the machine's performance. Further analysis could 
focus on identifying the causes of these larger deviations and exploring ways to minimize them to achieve more precise 
RPM monitoring and control. 

3.2. Ten-second interval RPM recorded values versus equational RPM 

Table 4 Ten-second interval RPM recorded values 

Time(s)  (i) Sensor-generated RPM (yi) Equational RPM (y) Absolute Error [yi – y] 

10 1500 1500 0 

20 1505 1500 5 

30 1497 1500 3 

40 1499 1500 1 

50 1504 1500 4 

60 1498 1500 2 

 

Table 5 MAE, MSE, and RMSE of ten-second interval RPM recorded values 

Metric Value 

MAE [ 
1

𝑛 
  ∑  (𝑦𝑖 − 𝑦)𝑛 

𝑖=1 ] 2.50 

MSE [
1

𝑛 
  ∑  (𝑦𝑖 − 𝑦)2𝑛 

𝑖=1 ] 9.17 

RMSE [√  
1

𝑛 
 ∑  (𝑦𝑖 − 𝑦)𝑛 

𝑖=1

2 
] 

3.03 

 

Table 4 displays recorded RPM values at 10-second intervals, including values at 10, 20, 30, 40, 50, and 60 seconds. The 
sensor-generated RPM values exhibit slight variations from the calculated 1500 RPM. The range of absolute errors is 
from 0 to 5 RPM, showing fairly minor differences. Table 5 presents the MAE, MSE, and RMSE for ten-second interval 
RPM data, providing essential metrics for evaluating the accuracy and reliability of the recorded values. The sensors's 
RPM values have an average deviation of 2.50 RPM from the equational value, as indicated by the MAE of 2.50 RPM. The 
MSE is 9.17, showing the average squared size of the errors, suggesting that the differences are usually minor. The RMSE 
is 3.03 RPM, offering a clear measure of average deviation in the original units. These metrics seemingly show that the 
RPM values generated by the sensor are fairly accurate over ten-second intervals, with minimal deviations from the 
expected value. The MAE, MSE, and RMSE values seems relatively small, indicating consistent performance with minimal 
errors. 
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3.3. Comparative analysis 

3.3.1. Sensor-generated data versus equational calculations comparison 

 

Figure 1 Comparison of machine-generated RPM and equational RPM 

Figure 1 illustrates sensor-generated RPM data recorded at one-second intervals, it shows a range of absolute errors 
from 0 to 30 RPM. While the equational RPM value remains consistently at 1500. The sensor-generated values fluctuate, 
indicating variability and deviations. Despite this variability, the data provides detailed insights into the motor's 
performance, capturing transient behaviors and short-term trends that equational calculations is not able to capture. 
Significant deviations at specific points (e.g., 14, 15, 16, 33, and 34 seconds) suggest that sensor-generated data exhibits 
greater level of accuracy and reliability compared to equational value. The equational calculations, being consistent and 
devoid of fluctuations seems to offer more stability. Nonetheless, the sensor-generated data's higher granularity and 
ability to reflect real-time operational dynamics provide a comprehensive understanding that equational calculations 
alone cannot achieve. Therefore, while equational calculations seems to guarantee immediate data stability, sensor-
generated data offers valuable detailed insights crucial for thorough performance analysis and real-time monitoring. 

3.3.2. Data points and volume of generated data 

 

Figure 2 Comparison of data points and data volume of one-second and ten-second interval RPM recorded values. 
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From a data storage perspective, choosing between one-second and ten-second intervals for RPM data collection has 
significant implications. In Figure 2, the one-second interval generates a larger dataset with 60 data points, demanding 
more storage space and increased management overhead. This high volume necessitates robust storage solutions and 
greater processing power, potentially straining infrastructure and impacting performance if not managed efficiently. In 
contrast, the ten-second interval produces a smaller dataset of only 6 data points, reducing storage costs and simplifying 
data handling and analysis. While the one-second interval provides detailed insights into RPM variations, crucial for 
precise performance analysis but with higher data noise, the ten-second interval offers a seemingly cleaner overview 
suitable for broader trend analysis with lower data variability. 

Comparatively, the one-second interval captures transient behaviors and short-term trends with a significant level of 
granularity despite larger errors and variability ranging from 0 to 30 RPM. This detailed data is advantageous for 
applications requiring precise operational insights but requires careful consideration of storage and processing 
resources. On the other hand, the ten-second interval, with its lower variability (errors ranging from 0 to 5 RPM), 
provides a seemingly more stable dataset, suitable for general performance assessments and trend analysis. The choice 
between these intervals hinges on balancing the need for detailed data against practical considerations of storage, 
processing capacity, and the specific analytical requirements of the application. 

3.3.2. Mean absolute error, mean squared error and root mean squared error  

 

Figure 3 Comparison of MAE, MSE, and RMSE of one-second and ten-second interval RPM recorded values. 

The comparative analysis of RPM recorded values between one-second and ten-second intervals reveals significant 
differences in the accuracy of metrics. In Figure 4, for the one-second interval data, the MAE is higher at 4.57 compared 
to 2.50 for the ten-second interval, indicating that shorter sampling intervals result in greater deviations from the true 
RPM values. Similarly, the MSE for the one-second interval is substantially larger at 91.40 compared to 9.17 for the ten-
second interval, suggesting increased variability and error accumulation over shorter timeframes. This trend is further 
emphasized by the RMSE, which is 9.56 for the one-second interval and notably lower at 3.03 for the ten-second interval. 
The lower RMSE for the ten-second interval indicates better overall stability over longer sampling periods, albeit with 
potentially less detailed resolution of transient RPM changes compared to the one-second interval data. 

The one-second interval data with an MAE of 4.57, MSE of 91.40, and RMSE of 9.56, exhibits higher variability and error. 
However, this shorter interval captures detailed trends and transient behaviors in the RPM values that might be crucial 
for identifying quick deviations and patterns necessary for real-time monitoring and responsive decision-making. This 
granularity allows for the detection of short-lived anomalies or rapid changes that could indicate emerging issues or 
performance shifts, making it valuable for applications that require high-resolution data for dynamic analysis. 
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Conversely, the ten-second interval data with significantly lower error metrics (MAE of 2.50, MSE of 9.17, and RMSE of 
3.03), seems to offers better overall stability. However, it might smooth out or miss short-term fluctuations and critical 
deviations that occur within the shorter intervals. This can be a limitation in scenarios where immediate detection of 
rapid changes is essential for maintaining operational efficiency and responding promptly to potential problems. 
Therefore, while the ten-second interval provides higher data stability, it may fall short in capturing critical deviations 
necessary for efficient data analytics in dynamic environments. The choice between these methods depends on the 
specific requirements of the analysis: whether it prioritizes immediate accuracy and stability or a detailed and 
comprehensive understanding of behavioral trends. 

3.4. Variability in electric motor RPM 

 

Figure 4 Comparison of machine-generated data of one-second and ten-second interval recorded values. 

The operational performance of electric motors as highlighted in Table 2 reveals significant variations in RPM, Figure 3 
also illustrates these trends with the aid of a graph. The figure shows a deviation in the one-second interval data 
acquisition and the ten-second data acquisition from the equational calculated value of 1500 RPM. These trends are 
influenced by diverse mechanical, electrical, and environmental factors.  

Motors running below their rated RPM can stem from load-related issues such as overloading or variable load demands 
which strain the motor beyond its capacity and cause it to slow down. Voltage drops, phase imbalances in three-phase 
systems, and fluctuations in supply frequency also contribute to decreased motor speed. Mechanical problems such as 
bearing wear, shaft misalignment, and physical obstructions within the motor further hinder RPM performance. 
Electrical faults like winding issues and rotor defects can similarly impair motor efficiency, exacerbated by 
environmental factors such as high temperatures and humidity which degrade insulation and increase resistance. 

Conversely, motors running above their rated RPM often result from power supply anomalies like overvoltage or 
frequency deviations where the motor receives excess energy beyond its designed limits. Malfunctions in control 
systems, including faulty VFDs or misconfigured speed controllers can also lead to unintended speed increases. 
Mechanical issues such as sudden load reductions or coupling problems between the motor and driven equipment can 
cause RPM spikes. Feedback loop errors, arising from faulty sensors or calibration issues in the control mechanisms 
further contribute to erratic motor speeds. To maintain consistent operation at rated RPM, regular maintenance 
practices, effective load management, and ensuring the integrity of power supply and control systems are essential, 
alongside monitoring and prompt resolution of mechanical wear and environmental conditions impacting motor 
performance.  

4. Conclusion   

Predictive maintenance, which integrates real-time sensor data monitoring, machine learning, and advanced data 
analytics, significantly enhances equipment health monitoring by predicting failures before they occur, thereby enabling 
targeted and prompt interventions. This study compared equational calculations and sensor-generated data, focusing 
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on the stability, accuracy, and reliability of RPM data from an electric motor, recorded at varying time intervals to 
determine the optimal data collection methods for predictive maintenance. 

Key findings indicate that sensor-generated data, when compared to equationally calculated values, provides detailed 
insights into transient behaviors, making it a highly reliable option for predictive maintenance. This scenario highlights 
the robustness of sensor-generated data in predictive maintenance applications. Furthermore, data collected at shorter 
intervals, such as one-second intervals, captures comprehensive trends and transient behaviors, offering a more 
nuanced and accurate understanding of electric motor performance. Despite the associated greater variability and 
larger errors with high-frequency data, it proves highly suitable for analyses requiring detailed operational insights. 

This study underscores the benefits of short-interval data acquisition in capturing detailed operational insights, it also 
highlights that sensor-generated data can provide more detailed and timely insights into transient behaviors compared 
to equationally calculated value, making it a valuable tool for predictive maintenance. While both methods have their 
merits, sensor data offers the advantage of real-time monitoring and detailed trend analysis, enhancing the ability to 
predict and prevent equipment failures, aiding industrial stakeholders in making informed decisions regarding 
predictive maintenance and overall station performance optimization, Although statistical assessment metrics such as 
MAE, MSE, RMSE, and AE are traditionally used to evaluate model accuracy, they have been employed here to illustrate 
the extent of deviation and accuracy between sensor-generated data and theoretically computed values.  
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