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Abstract 

The process of drug discovery focuses on identifying novel compounds with specific chemical properties to treat various 
diseases. In recent years, the field has increasingly incorporated computational techniques, driven by the rapid rise of 
machine learning technologies and their widespread accessibility. With the goals outlined by the Precision Medicine 
initiative and the emerging challenges in drug discovery, there is a growing need for robust, standardized, and 
reproducible computational methodologies to meet these objectives. Machine learning-based predictive models have 
become particularly significant in the early stages of drug development, prior to preclinical studies, offering the 
potential to significantly reduce both costs and research timelines. This review article explores the application of these 
advanced methodologies in recent research, providing insights into the current state of the field. By examining recent 
advancements, it aims to shed light on the future direction of cheminformatics, its limitations, and the positive outcomes 
achieved so far.  
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1. Introduction

The Precision Medicine Initiative defines precision medicine as "an emerging approach for disease treatment and 
prevention that considers individual variability in genes, environment, and lifestyle" [1]. This innovative approach 
enables healthcare professionals and researchers to enhance the precision of predicting effective treatment and 
prevention strategies for specific groups of people. Unlike the traditional "one-size-fits-all" method, which develops 
strategies based on the average person without accounting for individual differences, precision medicine tailors its 
strategies to everyone’s unique characteristics. 

While precision medicine opens up exciting possibilities for developing new treatments, it also presents significant 
challenges in creating new methodologies. In recent years, an enormous amount of biomedical data has been generated 
from diverse sources, ranging from small research labs to large-scale international initiatives. These datasets, often 
referred to as omics data (genomics, proteomics, metabolomics, pharmacogenomics, etc.), provide a vast resource for 
the scientific community to stratify patients, achieve precise diagnoses, and develop novel treatments [2]. 

Diagnostic tests have become increasingly common in certain disease areas, as they enable rapid identification of the 
most effective treatment for individual patients through specific molecular analyses. This targeted approach reduces 
the reliance on trial-and-error medicine, which can be both costly and frustrating. Furthermore, drugs designed using 
molecular insights often enhance treatment outcomes while minimizing side effects. For example, in breast cancer 
treatment, a significant subset of patients with tumors characterized by overexpression of the human epidermal growth 

http://creativecommons.org/licenses/by/4.0/deed.en_US
https://gjeta.com/
https://doi.org/10.30574/gjeta.2024.21.1.0163
https://crossmark.crossref.org/dialog/?doi=10.30574/gjeta.2024.21.1.0163&domain=pdf


Global Journal of Engineering and Technology Advances, 2024, 21(01), 197-203 

198 

factor receptor 2 (HER2) benefit from treatment with trastuzumab (Herceptin) combined with chemotherapy, reducing 
the risk of recurrence by over 50% [3]. 

Machine Learning (ML) has gained significant traction in the pharmaceutical industry, offering tools to accelerate and 
automate the analysis of the vast quantities of biomedical data now available. ML, a branch of Artificial Intelligence (AI), 
focuses on developing algorithms capable of learning from raw, unprocessed data to perform specific tasks. These tasks 
include classification, regression, clustering, and pattern recognition within extensive datasets. Various ML methods, 
such as Naive Bayes, Support Vector Machines, Random Forest, and, more recently, Deep Neural Networks, have been 
applied in the pharmaceutical sector for predicting molecular properties, biological activities, drug interactions, and 
potential adverse effects [4–14]. 

2. Machine Learning in Drug Design 

2.1. Prediction of Target Protein Structures 

Proteins are essential to numerous biological processes, and their malfunctions can cause abnormal cellular behavior, 
leading to various diseases [15]. To selectively target these diseases, small-molecule compounds are often designed 
based on the three-dimensional (3D) chemical environment around the ligand-binding sites of target proteins [16]. 
Thus, predicting the 3D structure of target proteins is a critical aspect of structure-based drug discovery. Traditionally, 
homology modeling has been employed for this purpose, using known protein structures as templates [17]. However, 
machine learning (ML) approaches have shown considerable potential in predicting protein structures more accurately 
and efficiently. AlphaFold, developed by DeepMind, leverages deep neural networks (DNNs) to predict 3D protein 
structures by analyzing amino acid distances and peptide bond angles. It has achieved remarkable accuracy in several 
protein structure prediction competitions and has significantly advanced the field, revolutionizing structure-based drug 
discovery [14]. Nevertheless, the complexity of protein structures—such as their ability to form multiple coexisting 
configurations—poses challenges for accurate prediction [18]. 

2.2. Prediction of Protein-Protein Interactions (PPIs) 

Proteins typically function in collaboration with other proteins, forming intricate networks known as protein-protein 
interactions (PPIs). PPIs are vital for regulating protein activity, altering specificity, and creating novel binding sites for 
effector molecules [19]. Understanding and targeting PPIs can enable the design of innovative drugs that modulate 
complex biological processes. 

ML-based methods for predicting PPIs fall into two main categories: structure-based and sequence-based approaches. 
Structure-based methods utilize knowledge of protein structure similarities, as seen with tools like IntPred, a random 
forest-based predictor of protein-protein interface sites, and Struct2Graph, a graph attention network (GAT)-based 
classifier [20,21]. Sequence-based approaches, on the other hand, use protein sequence data to predict physical 
interactions. For example, DeepPPI employs deep neural networks to learn protein representations from descriptors, 
achieving high performance metrics on datasets such as S. cerevisiae [22]. Moreover, new sequence-based models, like 
DELPHI, use deep ensemble approaches to predict PPI-binding sites [23].  

2.3. Prediction of Drug-Target Interactions (DTIs) 

Drugs exert therapeutic effects by interacting with specific target molecules, such as enzymes, receptors, and ion 
channels. Predicting drug-target interactions (DTIs) is a crucial step in drug design. Traditional experimental methods 
for this task are time-intensive and costly, prompting the adoption of ML techniques to predict DTIs more efficiently. 

ML-based approaches focus on three key aspects: identifying binding sites, estimating binding affinity, and determining 
the binding pose of a drug within its target. For example, DeepC-SeqSite uses convolutional neural networks (CNNs) to 
predict binding residues, outperforming traditional methods like COACH [24]. AGAT-PPIS leverages augmented GAT to 
improve binding site prediction accuracy [25]. Tools like DEELIG and GraphDelta have been employed to assess binding 
affinities, while CNN and random forest-based models help identify optimal ligand-target binding configurations 
[26,27,28]. These methods demonstrate the potential of ML in improving the accuracy and efficiency of DTI prediction. 

2.4. De Novo Drug Design 

De novo drug design involves creating new molecules from scratch without relying on existing compounds or drug 
structures. This approach aims to design molecules with specific properties to target particular diseases or conditions 
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[29,30]. Traditional de novo methods, such as fragment-based approaches, often face challenges with poor drug 
metabolism, pharmacokinetics, and synthesis complexity [31,32]. 

ML has introduced transformative methods for de novo drug design, particularly through the use of generative models 
like variational autoencoders (VAEs) and adversarial autoencoders (AAEs). PaccMannRL integrates a hybrid VAE with 
reinforcement learning to design anti-cancer molecules using transcriptomic data [33]. DruGAN, another ML-based 
approach, employs AAEs to generate novel molecules with anti-cancer properties [34]. MedGAN, a model combining 
Wasserstein GAN and GCN, successfully generates quinoline-scaffold molecules with drug-like properties, 
demonstrating its ability to produce novel, unique, and effective compounds. To address synthesis challenges, tools like 
SCScore evaluate the synthetic complexity of generated molecules using neural networks trained on reaction precedents 
[35]. These advancements highlight the pivotal role of ML in revolutionizing de novo drug design. 

 

Figure 1 Machine learning can be applied in multiple stages of the drug discovery process [36], mainly including drug 
design, drug screening, drug repurposing and chemical synthesis [36] 

3. Machine Learning in Drug Screening 

3.1. Predicting Physicochemical Properties 

The physicochemical properties of drugs, such as solubility, ionization, partition coefficient, permeability, and stability, 
play a crucial role in determining their behavior within biological systems and the environment. These properties 
influence a drug’s bioavailability, absorption, transport, and permeability, as well as its potential risks to human health 
[37]. During drug screening, evaluating these properties is essential to identify promising candidates for further 
development. 

Francoeur et al. [38] introduced SolTranNet, a molecule attention transformer designed to predict aqueous solubility 
using the SMILES representation of drug molecules. This tool has demonstrated high sensitivity (0.948) in filtering 
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insoluble compounds in the SC2 dataset, performing competitively against other methods [38]. Zang et al. [37] used 
molecular fingerprints and four ML algorithms to create a quantitative structure–property relationship workflow 
capable of predicting six physicochemical properties of environmental chemicals, including water solubility, melting 
and boiling points, octanol–water partition coefficient, bioconcentration factor, and vapor pressure [37].  

3.2. Predicting ADME/T Properties 

After identifying hit or lead compounds in the drug discovery process, it is essential to evaluate their ADME/T 
properties—absorption, distribution, metabolism, excretion, and toxicity. These pharmacokinetic characteristics are 
critical for understanding how a compound behaves in the body and its potential to be safe and effective as a drug. Poor 
ADME/T profiles are a common reason for drug candidates failing in late-stage development or even for the withdrawal 
of approved drugs [39,40]. 

Tian et al. [41] created ADMETboost, a web server that employs the XGBoost algorithm to analyze molecular features 
from fingerprints and descriptors. It predicts key ADME/T properties like blood-brain barrier permeability, CYP2C9 
inhibition, and hERG inhibition, achieving top performance in the Therapeutics Data Commons ADMET benchmark for 
18 out of 22 tasks [41]. 

Li et al. [42] designed a multitask autoencoder deep neural network (DNN) model using data from over 13,000 
compounds in the PubChem BioAssay Database to predict inhibitors for five major cytochrome P450 (CYP450) isoforms. 
This multitask model achieved an average accuracy of 86.4% in 10-fold cross-validation and 88.7% on external test 
datasets.  

ML models analyze existing drugs for potential repurposing by screening molecular databases and predicting 
interactions with SARS-CoV-2 proteins [44-46, 52, 53]. Example: Deep learning models like DeepDrug target protein-
ligand binding and accelerate repurposing. ML identifies biomarkers for early detection and progression of chronic 
kidney disease (CKD). These biomarkers guide the development of targeted therapies [43, 48-50]. ML identifies 
druggable targets by analyzing lipid metabolism and pathways involved in NAFLD. Integrative ML approaches combine 
omics data to design therapies for nonalcoholic steatohepatitis (NASH) [54]. 

4. Conclusion 

Advancements in AI have significantly impacted various fields, including cheminformatics and drug discovery, 
benefiting the pharmaceutical industry. While traditional approaches relied on molecular descriptors derived from 
small molecules or peptides, modern graph-based models now directly represent molecules, achieving superior results 
in some cases.  

In precision medicine, ML has been instrumental in predicting strong molecular interactions, aiding the discovery of 
new therapeutic targets. However, translating academic advancements into clinical applications requires standardized 
frameworks and methodologies to ensure replicability and applicability. Without such standardization, extending 
results to real-world tasks remains challenging. Throughout this review, this problem has been detected in the different 
articles reviewed. Therefore, to draw definitive conclusions, this aspect must be deeply influenced. However, the 
possibilities and advantages offered by ML techniques are immense within the context of precision medicine and drug 
discovery.  
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