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Abstract 

Cognitive Radio (CR) technology offers dynamic spectrum access, allowing for more efficient use of the radio frequency 
spectrum. While this innovation addresses spectrum scarcity, it introduces significant security and privacy concerns. 
This paper examines key vulnerabilities in cognitive radio networks (CRNs), including spectrum sensing data 
falsification, primary user emulation attacks, and denial-of-service attacks, which exploit the adaptive and opportunistic 
nature of CR systems. In addition, privacy challenges arise from the frequent sharing of location, identity, and spectrum 
usage data. This paper explores existing security frameworks, mitigation strategies, and privacy-preserving techniques, 
emphasizing the need for robust cryptographic methods, trust management, and real-time intrusion detection systems. 
The paper concludes by identifying open research areas that need attention to develop secure, resilient CRNs while 
preserving user privacy. 

Keywords: Cognitive Radio Networks; Spectrum Sensing; Attacks; Security Vulnerabilities; Privacy Preservation; 

Intrusion Detection Systems. 

1. Introduction

The growing demand for wireless communication has led to an increasing scarcity of available radio frequency 
spectrum [1], which is traditionally regulated and statically allocated. Conventional spectrum allocation policies often 
result in underutilized frequency bands [2], contributing to inefficient spectrum usage. The CR technology has emerged 
as a promising solution to address this problem by enabling dynamic spectrum access [3]. According to [4], CRNs are 
intelligent systems capable of sensing their surrounding environment, detecting unused spectrum (also known as 
spectrum holes or white spaces), and dynamically adjusting their transmission parameters to utilize these gaps without 
interfering with licensed or primary users (PUs). Fig.1 shows a typical cognitive cycle. 
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Figure 1 Typical cognitive cycle 

CRNs operate based on the cognitive cycle [5], which involves three key functions: spectrum sensing, spectrum 
management, and spectrum sharing. Spectrum sensing [6] allows CR devices, also known as secondary users (SUs), to 
detect unused spectrum, while spectrum management facilitates efficient [7] allocation of these resources. Fig.2 shows 
a Block diagram of cognitive radio. 

 

Figure 2 Cognitive radio block diagram 

Spectrum sharing ensures that secondary users can coexist harmoniously with primary users without causing harmful 
interference [8], [9]. These capabilities allow CRNs to achieve a more efficient utilization of spectrum resources and 
contribute to the overall improvement of wireless communication systems. 

 

Figure 3 Spectrum sensing 
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Despite the many advantages of CR technology, its dynamic and opportunistic nature introduces a range of security and 
privacy challenges [10]-[13]. The openness and flexibility of CRNs make them susceptible to various types of attacks, 
which could severely impact the integrity, availability, and confidentiality of communications [14]. Adversaries can 
exploit the inherent characteristics of cognitive radio systems to launch attacks that compromise both the security and 
privacy of users. Fig.3 gives a depiction of a typical spectrum sensing in CRNs. 

One of the primary security concerns in CRNs is the spectrum sensing data falsification (SSDF) attack [15], where 
malicious users intentionally report false spectrum sensing results to mislead the network about the availability of 
spectrum. This can lead to suboptimal spectrum allocation, degrade the overall network performance, and even cause 
disruptions for legitimate primary users [16]. Additionally, primary user emulation (PUE) attacks [17] pose another 
critical threat, in which attackers mimic the behavior of primary users to monopolize spectrum resources [18] or disrupt 
communication between secondary users, as shown in Fig. 4. Denial-of-service (DoS) attacks are also prevalent in CRNs 
[19], where malicious users attempt to overwhelm the network by jamming or otherwise disrupting spectrum sensing 
or access processes. 

 

Figure 4 Primary user emulation attack 

Privacy issues in CRNs are equally significant. Due to the need for frequent and real-time sharing of information such as 
spectrum usage patterns, location, and identity data, cognitive radio systems are vulnerable to privacy breaches [20]-
[23]. The ability of attackers to infer sensitive information from spectrum sensing activities or communication patterns 
can expose users to privacy risks [24]. For example, an adversary could monitor spectrum usage to track the location of 
a CR device or identify a user's communication habits, leading to potential identity theft or targeted attacks. 

In this context, ensuring robust security and privacy protection mechanisms in CRNs is essential for their widespread 
adoption and effective operation [25], [26[. Addressing these concerns requires a multifaceted approach, combining 
cryptographic methods, trust management schemes, and intrusion detection systems (IDS) to mitigate potential risks 
[27]. Security mechanisms need to safeguard the integrity and authenticity of spectrum sensing data, protect primary 
and secondary users from emulation attacks, and ensure the availability of communication channels in the presence of 
adversarial behavior [28]-[30]. 

In terms of privacy, techniques such as privacy-preserving spectrum sensing, anonymization of user identity, and secure 
location-based services can help protect user data while maintaining the functional requirements of cognitive radio 
networks [31]-[35]. However, implementing these solutions comes with challenges, including balancing the trade-offs 
between security, privacy, and system performance [36]. Therefore, this paper aims to provide an in-depth exploration 
of the security and privacy issues in CRNs, highlighting key vulnerabilities, attack vectors, and potential mitigation 
strategies. The paper also discusses existing frameworks and propose future research directions that could enhance the 
security and privacy of cognitive radio systems. By addressing these challenges, this work paves the way for the 
development of resilient, secure, and privacy-preserving cognitive radio networks that can efficiently meet the growing 
demands of wireless communication.  
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1.1. Motivation 

The advent of CRNs represents a transformative shift in wireless communication, promising unprecedented levels of 
spectrum efficiency and adaptability. By allowing dynamic spectrum access and enabling radios to intelligently adapt 
to changing network conditions, CRNs have the potential to address the growing demand for wireless communication 
and alleviate spectrum scarcity. However, this technological advancement brings with it a host of security and privacy 
challenges that need to be thoroughly addressed. 

Growing demand for spectrum and communication flexibility: The exponential growth in wireless communication devices 
and services has led to an increased demand for spectrum resources [37], [38]. Traditional static spectrum allocation 
methods are becoming insufficient to meet this demand. CRNs offer a solution by enabling more efficient and flexible 
spectrum usage. This capability not only maximizes the utilization of available spectrum but also facilitates the 
deployment of new applications and services. However, the very flexibility that makes CRNs attractive also introduces 
significant security and privacy concerns [39] that must be addressed to ensure the reliable and safe operation of these 
networks. 

Complexity of dynamic spectrum access: CRNs operate in a highly dynamic environment where spectrum availability can 
change rapidly [40], [41]. Cognitive radios must make real-time decisions about spectrum access and usage based on 
constantly evolving conditions. This dynamic nature creates opportunities for sophisticated attacks, such as spectrum 
sensing data falsification (SSDF) and primary user emulation (PUE) [42]. These attacks can undermine the integrity of 
spectrum access and disrupt communication services. Understanding and mitigating these security threats is crucial to 
maintaining the functionality and trustworthiness of CRNs. 

Privacy concerns in cooperative spectrum sensing: Cooperative spectrum sensing, a key feature of CRNs, involves multiple 
radios sharing their sensing data [43] to improve spectrum detection accuracy. While this cooperation enhances 
network performance, it also raises significant privacy concerns [44]. Users must share sensitive information about 
their spectrum usage patterns and, potentially, their location and behavior [45]. Protecting this sensitive information 
from unauthorized access and ensuring user privacy is essential to fostering trust and encouraging participation in 
cooperative sensing activities. 

Evolving threat landscape: The security and privacy landscape in CRNs is continually evolving, with new threats and 
attack vectors emerging as technology advances [46]-[48]. For instance, the rise of machine learning and artificial 
intelligence [49] introduces new types of attacks that can exploit vulnerabilities in CRN protocols. Similarly, the 
potential future impact of quantum computing on cryptographic security presents an additional layer of concern [50]. 
Addressing these evolving threats requires ongoing research and adaptation of security and privacy measures to stay 
ahead of potential adversaries. 

Need for robust and scalable solutions: Current security and privacy solutions for CRNs often face challenges related to 
scalability and efficiency [51]. As CRNs grow in size and complexity, it becomes increasingly important to develop 
solutions that can handle large-scale networks without compromising performance. Lightweight cryptographic 
protocols, scalable trust management systems, and efficient privacy-preserving techniques are essential to ensuring 
that security and privacy measures are effective and practical for deployment in real-world CRNs [52]-[55]. 

Therefore, the motivation for this paper stems from the critical need to address the security and privacy challenges 
associated with the deployment and operation of Cognitive Radio Networks. As CRNs continue to evolve and become 
integral to modern wireless communication infrastructure, ensuring their security and privacy is paramount to their 
success and widespread adoption. This paper seeks to advance the understanding of these issues and provide actionable 
insights to help secure and protect CRNs in the face of emerging threats and evolving technological landscapes. 

1.2. Main Contributions 

This paper presents a comprehensive exploration of security and privacy issues in CRNs, offering valuable insights into 
the challenges and solutions associated with securing these dynamic and flexible communication systems. The primary 
contributions of this paper are as follows: 

Detailed analysis of security and privacy challenges: This paper provides an in-depth examination of the unique security 
and privacy challenges faced by CRNs. It identifies and elaborates on key issues, including spectrum access security, 
cooperative spectrum sensing vulnerabilities, and the protection of user identity and location data. The discussion 
highlights the complexities introduced by the decentralized and adaptive nature of CRNs, offering a nuanced 
understanding of the threats and risks involved. 
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Overview of existing security and privacy frameworks: The paper systematically reviews existing frameworks and 
solutions designed to address security and privacy concerns in CRNs. It covers various approaches, including 
cryptographic methods, trust management systems, and privacy-preserving techniques. By presenting the strengths 
and limitations of these frameworks, the paper provides a comprehensive overview of current practices and their 
applicability to CRNs. 

Identification of open research challenges: This work identifies several open research challenges in the realm of CRN 
security and privacy. It addresses issues such as dynamic spectrum management, privacy in cooperative spectrum 
sensing, and trust management in decentralized environments. Additionally, the paper highlights emerging threats, 
including machine learning-based attacks and quantum computing, and emphasizes the need for ongoing research to 
develop effective solutions. 

Proposed directions for future research: The paper outlines potential directions for future research to advance the state 
of security and privacy in CRNs. It suggests areas for further investigation, including the development of adaptive and 
scalable solutions, the enhancement of lightweight cryptographic protocols, and the exploration of novel privacy-
preserving techniques. These proposed research directions aim to address the current limitations and challenges 
identified in the paper. 

The remainder of this paper is organized as follows: section 2 describes the basic building blocks of CRNs while Section 
3 discusses the security challenges in CRNs, detailing the various attack types and their potential impact. Section 4 
explores privacy concerns and the associated risks in cognitive radio systems. Section 5 reviews existing security and 
privacy frameworks and countermeasures. Section 6 highlights open research challenges, and Section 7 concludes the 
paper with a discussion on the future of secure and privacy-preserving CRNs. 

2. Cognitive Radio building blocks 

The basic building blocks of Cognitive Radio (CR) enable the technology's ability to sense the radio environment, make 
decisions based on the sensed data, and adapt dynamically to changing conditions. The architecture of a conventional 
cognitive radio network is shown in Fig.5. 

 

Figure 5 Cognitive radio network architecture  

These building blocks work together to create a system capable of optimizing spectrum usage without interfering with 
licensed or primary users. The key building blocks of cognitive radio are: 

2.1. Radio Environment Sensing (Spectrum Sensing) 

Spectrum sensing is one of the most crucial components of cognitive radio, enabling it to monitor and assess the 
surrounding radio environment [56]. The goal of spectrum sensing is to detect unused portions of the spectrum (known 
as spectrum holes or white spaces) that can be exploited by secondary users without interfering with primary users 
[57]. The spectrum sensing techniques include: 

Energy detection: The most common method, where the CR measures the energy in a frequency band and compares it 
to a threshold to determine the presence of a signal [58]. 
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Matched filtering: A technique requiring prior knowledge of the primary user’s signal [59]. It correlates the received 
signal with a known signal to detect the presence of the primary user with high accuracy. 

Cyclostationary feature detection: This technique exploits the periodic features of modulated signals to detect the 
presence of a primary user [60], even in low signal-to-noise ratio conditions. 

Cooperative sensing: Involves multiple cognitive radios collaborating to improve detection accuracy by sharing their 
sensing information [61]. 

2.2. Spectrum decision-making and analysis 

Once spectrum holes are identified, the CR must decide whether and how to access them. Spectrum decision-making 
involves selecting the most appropriate frequency band, modulation scheme, and transmission power based on the 
characteristics of the available spectrum and the needs of the secondary user [62]-[64]. Fig. 6 gives an illustration of 
Spectrum Decision-Making in CRNs. 

 

Figure 6 Spectrum Decision-Making in Collaborative Cognitive Radio 

This block uses information from spectrum sensing to: 

 Evaluate the quality of available spectrum in terms of signal strength, noise levels, and interference. 

 Predict future spectrum availability based on historical patterns or real-time environmental changes. 

Choose the most appropriate spectrum band for communication to meet the secondary user’s quality-of-service (QoS) 
requirements, while avoiding interference with primary users. 

2.3. Spectrum sharing 

 

Figure 7 Cognitive radio Spectrum sharing 

Spectrum sharing ensures that cognitive radios can coexist with both primary users and other secondary users without 
causing harmful interference [65], [66]. Fig. 7 gives an illustration of spectrum sharing in CRNs.  It is essential to manage 
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the efficient allocation and sharing of spectrum resources among multiple users, especially when multiple secondary 
users attempt to access the same spectrum band. The main functions of spectrum sharing include: 

Dynamic Spectrum Access (DSA): Allows secondary users to opportunistically access spectrum holes as long as they do 
not interfere with primary users [67]. 

Interference management: Prevents harmful interference by coordinating access [68] among secondary users and 
ensuring that communication activities do not disrupt primary users [69]. 

Resource allocation: Distributes available spectrum among multiple secondary users based on demand, priority, or 
fairness criteria [70].  

The Two major spectrum sharing models are: 

Centralized spectrum sharing: Managed by a central authority or base station that allocates spectrum to secondary users 
based on sensing results and coordination rules [71]. 

Distributed spectrum sharing: Cognitive radios self-organize and negotiate access to spectrum without centralized 
control [72], using protocols like game theory or auction-based mechanisms. 

2.4. Spectrum Mobility (Handover) 

Spectrum mobility, or spectrum handover, is the process by which a cognitive radio moves from one frequency band to 
another [73]. This is necessary when a primary user becomes active on a previously unused band, requiring the 
secondary user to vacate the spectrum and switch to an available channel [74], as shown in Fig.8. 

 

Figure 8 Spectrum handoff in cognitive radio networks 

Spectrum mobility ensures that communication continues seamlessly despite the dynamic nature of spectrum usage. 
The challenges in spectrum mobility include: 

Fast detection of primary user activity: Cognitive radios must quickly detect when a primary user reclaims the spectrum 
to minimize interference [75]. 

Seamless handover: The handover process must be smooth to avoid disruptions or degradation in communication 
quality during spectrum transitions [76]. 

2.5. Cognitive Engine (Learning and Reasoning) 

The cognitive engine is the intelligence behind cognitive radio. It is responsible for learning, reasoning, and decision-
making, enabling the system to adapt dynamically to changes in the environment [77], [78]. Fig.9 shows an illustration 
of the cognitive engine architecture. The cognitive engine leverages machine learning and artificial intelligence (AI) 



Global Journal of Engineering and Technology Advances, 2024, 21(01), 001–037 

8 

techniques [79] to optimize its performance over time by learning from past experiences and making predictions about 
future spectrum conditions. The key functions of the cognitive engine include: 

Learning: The engine can learn from historical data, such as spectrum usage patterns, environmental changes, and 
primary user behavior, to make informed decisions [80]. Learning techniques include supervised, unsupervised, and 
reinforcement learning. 

Reasoning: The cognitive radio applies decision-making algorithms to determine how to act based on the current 
spectrum environment and its objectives [81], such as maximizing throughput or minimizing interference. 

 

Figure 9 Cognitive engine architecture 

Adaptation: The cognitive engine dynamically adjusts transmission parameters (frequency, power, modulation) based 
on the sensed environment and current system goals, ensuring optimal communication [82]. 

2.6. Radio Frequency (RF) front-end 

The RF front-end is the hardware component responsible for transmitting and receiving signals across multiple 
frequency bands [83], as shown in Fig.10. Since cognitive radios must operate over a wide range of frequencies, the RF 
front-end must be flexible and capable of tuning to various frequencies dynamically [84]. The RF front-end includes: 

Antenna: A wideband or tunable antenna that can operate across a broad spectrum range. 

 

Figure 10 GPS receiver radio frequency front-end 

Mixer: Converts incoming signals from RF to baseband and outgoing signals from baseband to RF for transmission. 

Amplifier: Enhances weak signals received from the antenna for further processing. 

Analog-to-Digital Converter (ADC): Converts analog RF signals into digital format for processing by the cognitive engine. 
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Digital-to-Analog Converter (DAC): Converts digital signals back into analog format for transmission over the airwaves. 

2.7. Policy engine 

The policy engine ensures that the cognitive radio adheres to regulatory constraints and operational policies [85]. 
Cognitive radios operate in environments regulated by spectrum authorities, which impose rules on how spectrum can 
be accessed and used. The policy engine ensures compliance with these rules, preventing unauthorized spectrum access 
[86] and ensuring legal operation. The functions of the policy engine include: 

Regulatory compliance: Ensures that cognitive radios follow spectrum usage policies set by regulatory bodies [87], such 
as avoiding interference with licensed users and complying with power limits. 

Operational policies: Defines how the cognitive radio should behave under various conditions [88], such as prioritizing 
emergency communication or adhering to organizational policies for spectrum access. 

2.8. Security and privacy modules 

Cognitive radios must have robust security mechanisms to prevent attacks that exploit the dynamic nature of spectrum 
access [89]-[92]. Security and privacy modules are responsible for protecting against malicious behavior such as: 

Primary User Emulation (PUE) attacks: Where a malicious user pretends to be a licensed user [93], preventing legitimate 
secondary users from accessing the spectrum. 

Spectrum Sensing Data Falsification (SSDF): Where attackers provide false sensing data to manipulate the network’s 
spectrum decisions [94]. 

Privacy breaches: Protection of sensitive information like user identity and location, which may be exposed through 
spectrum usage patterns [95]. 

These basic building blocks work together to provide a dynamic and intelligent system capable of optimizing spectrum 
usage. The integration of spectrum sensing, decision-making, sharing, mobility, and learning functions allows cognitive 
radios to make real-time adjustments and maximize communication performance. However, as CR technology advances, 
it is essential to address associated challenges, particularly in the areas of security, privacy, and regulatory compliance. 
These building blocks form the foundation for the development and deployment of efficient, resilient, and secure 
cognitive radio networks. 

3. Security challenges in CRNs 

The CRNs represent a transformative approach to wireless communication by dynamically accessing underutilized 
spectrum. However, the flexibility and adaptability that make CRNs so powerful also introduce significant security 
challenges [96], [97]. The openness of CRNs, their reliance on cooperative behavior, and the dynamic nature of spectrum 
access make them vulnerable to a variety of security threats [98]. The security challenges in CRNs span across different 
layers of the network, impacting spectrum sensing, data transmission, spectrum sharing, and user privacy. 

This section provides an extensive discussion of the security challenges in CRNs, focusing on key vulnerabilities, attack 
vectors, and the need for effective security mechanisms.  

3.1. Primary User Emulation (PUE) attacks 

One of the most significant threats in CRNs is the PUE attack, where a malicious secondary user mimics the behavior of 
a primary user to occupy or monopolize spectrum resources [99], [100]. A typical primary user emulation is illustrated 
in Fig.11. In CRNs, secondary users are required to vacate the spectrum whenever a primary user becomes active. 
Attackers can exploit this rule by pretending to be a primary user, thereby forcing legitimate secondary users off the 
spectrum [101]. 

By faking the presence of a primary user, the attacker forces secondary users to vacate the spectrum, allowing the 
attacker to monopolize the band for their own transmissions. This not only disrupts the efficient use of the spectrum 
but also undermines the core functionality of cognitive radio, which relies on accurate spectrum sensing to avoid 
interference with legitimate primary users. Detecting and mitigating PUE attacks is critical for maintaining secure and 
efficient spectrum usage in cognitive radio networks. 
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Figure 11 PUE attack model 

Attack mechanism: The attacker transmits signals that resemble the transmission characteristics of a primary user. 
Upon detecting these signals, legitimate secondary users vacate the spectrum, assuming the presence of a primary user 
[102], [103]. The attacker either monopolizes the spectrum for its own use or causes a denial-of-service (DoS) [104] for 
legitimate secondary users by blocking their access to available spectrum. The impacts of these attacks include the 
following: 

Denial-of-spectrum attack: Legitimate secondary users are prevented from accessing available spectrum [105], 
degrading the overall efficiency of the CRN. 

Interference: If the attacker mimics the primary user’s signal characteristics incorrectly, this may cause harmful 
interference to actual primary users [106], as shown in Fig.12. 

 

Figure 12 Interference in CRNs 

Cognitive radios are designed to intelligently detect and utilize underused frequency bands, adjusting their transmission 
parameters to avoid causing interference to primary users (licensed users of the spectrum). However, interference can 
still occur if the cognitive radio inaccurately senses the spectrum or if multiple cognitive radios compete for the same 
band, leading to a clash in signal transmission. Effective interference management, through techniques like dynamic 
spectrum access and cooperative spectrum sensing, is crucial to optimizing cognitive radio performance. 

3.2. Spectrum Sensing Data Falsification (SSDF) Attacks 

Spectrum Sensing Data Falsification (SSDF) or data manipulation attacks are a class of security threats where malicious 
users deliberately falsify their spectrum sensing reports [107]-[109]. A conventional spectrum sensing data falsification 
attack is depicted in Fig.13. CRNs often rely on cooperative spectrum sensing, where multiple secondary users 
collaborate to make more accurate spectrum access decisions.  
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Figure 13 Spectrum sensing data falsification attack 

In an SSDF attack, adversaries manipulate sensing data [110] to deceive the network, causing inefficiencies in spectrum 
allocation. 

Attack mechanism: Malicious users submit falsified sensing data to either report spectrum as occupied when it is not or 
report it as free when it is occupied [111], [112]. In cooperative sensing, the false data skews the aggregated sensing 
results, leading to poor spectrum decisions by the network. The effects of these attacks can include the following: 

False vacating: Legitimate secondary users vacate the spectrum unnecessarily [113], reducing the network’s efficiency. 

Interference: Secondary users may be encouraged to transmit on a frequency band already occupied by a primary user 
[114], causing interference. 

DoS attacks: Attackers can cause widespread denial of service by influencing the network to make incorrect spectrum 
allocation decisions [115], [116]. 

3.3. Denial-of-Service (DoS) attacks 

CRNs are vulnerable to various forms of DoS attacks, which can disrupt the normal operation of the network by 
overwhelming it with excessive traffic or by blocking access to the spectrum [117], [118]. DoS attacks are particularly 
concerning in CRNs because the dynamic nature of spectrum access makes it challenging to maintain continuous 
communication under attack conditions. 

Attack mechanism: Attackers can launch DoS attacks by jamming the spectrum sensing process [119], flooding the 
network with false requests, or monopolizing spectrum resources through PUE attacks or SSDF attacks. Jamming can 
be performed by injecting noise signals into the spectrum to prevent legitimate users from detecting the availability of 
free spectrum or by disrupting the communication between secondary users [120], [121]. The probable repercussions 
of these attacks include: 

Spectrum unavailability: Legitimate users are prevented from accessing available spectrum resources, leading to 
reduced network throughput and increased latency [122], [123]. 

Network congestion: The network’s resources, such as bandwidth and processing power, are consumed by the attack 
[124], reducing its ability to serve legitimate users. 

3.4. Eavesdropping and privacy breaches 

CRNs often require frequent and real-time sharing of information, such as spectrum usage patterns, location data, and 
communication details, between users and network controllers [125]-[127]. This creates opportunities for 
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eavesdropping and privacy breaches [128] as shown in Fig.14. Here, where attackers can intercept communication or 
infer sensitive information from the shared data. 

 

Figure 14 Eavesdropping in CRNs 

Attack mechanism: Attackers passively monitor the communication between CR devices to gather information about 
user identity, location, and behavior [129]. The attacker may also analyze spectrum usage data to infer patterns of 
communication or to track the movements of a user over time. The impacts of these security challenges may include the 
following: 

Privacy invasion: Attackers can gain access to personal or sensitive information about users [130], leading to potential 
identity theft, unauthorized surveillance, or location tracking. 

Traffic analysis: Even if the communication is encrypted, attackers can perform traffic analysis to infer details about the 
users’ communication patterns or the type of communication being carried out [131]. 

3.5 Jamming attacks 

Jamming attacks involve the deliberate interference with the radio signals in CRNs [132], disrupting communication by 
overwhelming the network with noise or unwanted signals. As shown in Fig.15, these attacks can target either the 
spectrum sensing process or the data transmission phase. 

 

Figure 15 Jamming attacks in CRNs 

Attack mechanism: Attackers transmit high-power noise signals or signals similar to the primary user’s signal to disrupt 
the ability of secondary users to sense the spectrum accurately or to communicate effectively [133]. Jamming can be 
done selectively (targeting specific frequencies) or randomly (across a wide range of frequencies). The possible effects 
may encompass: 

Spectrum sensing disruption: Jamming during the sensing phase can prevent secondary users from detecting spectrum 
availability, leading to inefficient spectrum usage [134] or missed communication opportunities. 
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Communication disruption: Jamming during data transmission can result in dropped packets, reduced throughput, and 
increased latency [135], [136]. 

3.5. Malicious selfish behavior 

CRNs rely on cooperative behavior, particularly during spectrum sensing and sharing processes [137], [138]. However, 
selfish users may act maliciously by misreporting spectrum sensing data or monopolizing spectrum resources to 
improve their own performance at the expense of others, as shown in Fig.16 below. 

 

Figure 16 Malicious selfish behavior in CRNs 

Attack mechanism: Selfish users may underreport or overreport their spectrum sensing results, making it more difficult 
for other users to access available spectrum [139]. They may also refuse to vacate the spectrum when a primary user 
becomes active or delay the vacating process to maximize their own spectrum usage. The impacts include the following: 

Reduced network efficiency: Selfish behavior disrupts the fairness of spectrum allocation, leading to inefficient use of 
resources [140]. 

QoS degradation: Legitimate users may experience reduced quality of service due to the selfish actions of malicious 
users [141]. Table 1 presents some of the mitigation strategies for each of these security challenges. 

Table 1 CRNs security mitigation strategies 

Security challenges Mitigation challenges 

PUE Attacks Cryptographic authentication: Involves verification of the identity of the primary user 
through cryptographic techniques can prevent unauthorized users from emulating primary 
users [142]. 

Signal characteristics analysis: concerned with differentiating between legitimate and fake 
primary users by analyzing the physical-layer properties of the signal (e.g., location, signal 
strength, or modulation features) [143]. 

Location verification: involves the verification of the location of the user transmitting the 
primary user’s signal and cross-referencing it with known primary user locations [144]. 

SSDF Attacks Trust-based Systems: Assigning trust values to users based on their past behavior allows the 
system to weigh sensing data from reliable users more heavily than from potentially 
malicious users [145]. 

Outlier detection: Statistical techniques can be used to detect and discard abnormal sensing 
data [146] that deviates significantly from the expected pattern. 

Secure cooperative sensing protocols: Implementing cryptographic mechanisms to ensure the 
authenticity and integrity of sensing data before it is shared or aggregated [147]. 

DoS Attacks Spread spectrum techniques: Spread spectrum and frequency hopping can reduce the 
effectiveness of jamming attacks [148] by making it harder for the attacker to predict the 
spectrum band being used by legitimate users. 
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Rate limiting: Limiting the rate at which users can send requests for spectrum access helps 
mitigate flooding-based DoS attacks [149]. 

Detection and reaction systems: Implementing real-time monitoring systems to detect 
unusual traffic patterns or jamming signals allows the network to react by reallocating 
resources or switching to more secure communication channels [150]. 

Eavesdropping and 
Privacy leaks 

Encryption: Using strong encryption techniques ensures that even if attackers intercept the 
communication, they cannot understand the content of the messages [151], [152]. 

Anonymous spectrum sensing: Techniques that allow users to participate in spectrum sensing 
without revealing their identity can help protect user privacy [153]. 

Obfuscation techniques: Introducing randomness or noise into the data being shared (e.g., 
through dummy traffic or location obfuscation) [154] can make it harder for attackers to infer 
useful information from eavesdropped data. 

Jamming Attacks Adaptive frequency hopping: CR devices can hop between different frequency bands when 
jamming is detected [155], reducing the impact of the attack. 

Spread spectrum techniques: Techniques like frequency hopping spread spectrum (FHSS) or 
direct sequence spread spectrum (DSSS) can make it difficult for attackers to jam the entire 
communication range effectively [156]. 

Jamming detection systems: Real-time monitoring of the spectrum for unusual interference 
patterns can help detect jamming attacks early [157], allowing the network to respond by 
switching channels or adjusting transmission parameters. 

Malicious Selfish 
Behavior 

Reputation and trust systems: Building a reputation system that tracks user behavior over 
time can help penalize selfish users by reducing their spectrum access priority or trust levels 
[158]. 

Incentive-based mechanisms: Designing incentive mechanisms to reward cooperative 
behavior and penalize selfish actions encourages users to act in the network’s best interest 
[159]. 

It is important to note that security challenges in CRNs arise due to the network’s open and dynamic nature [160], the 
reliance on cooperative sensing, and the complexity of managing spectrum access in real-time.  

4. Privacy concerns in CRNs 

CRNs bring transformative advancements in wireless communication through their ability to dynamically access 
underutilized spectrum. However, while CRNs offer numerous benefits like enhanced spectrum efficiency and adaptive 
network management [161], they also introduce significant privacy concerns. These challenges primarily stem from the 
frequent exchange of sensitive information (such as spectrum usage patterns, user location, and network behavior) that 
is necessary for the functioning of the CRN [162]. The dynamic, distributed nature of these networks opens multiple 
avenues for privacy breaches, making it essential to address privacy issues comprehensively. 

This section provides an extensive discussion of the privacy challenges in CRNs, examining how various elements of the 
network can expose users to privacy risks and what countermeasures can be implemented to protect user data. 

4.1. User location privacy 

One of the most significant privacy concerns in CRNs is the protection of user location information. CRNs often rely on 
location-aware services and spectrum sensing [163], where the geographical location of users plays a critical role in 
determining spectrum availability and access priority. Attackers can exploit this feature to track the physical movement 
of users, leading to serious privacy violations. The attack mechanisms include: 

Traffic analysis: By observing spectrum access patterns and signal propagation characteristics, an attacker can infer the 
location of CR devices [164], [165]. This can be done even if the actual communication is encrypted, as the radio signal’s 
physical properties can give away location-related information. 

Location disclosure: In cooperative spectrum sensing, users may be required to share their location information with 
nearby users or base stations. Malicious users or adversaries can intercept this data [166], either directly from the 
communication or by analyzing the metadata associated with the sensing reports. 
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The impacts of user location privacy can be: 

Tracking: Continuous tracking of a user's location can enable adversaries to create detailed movement profiles [167], 
which can be used for surveillance, stalking, or other malicious purposes. 

Geographical targeting: Attackers can target users in specific geographic locations for location-based attacks, such as 
injecting malicious information or launching denial-of-service (DoS) attacks [168] aimed at users in a particular area. 

Personal security risks: Location privacy breaches can also pose physical security risks, as users’ movements and 
patterns become exposed to malicious actors [169]. 

4.2. Identity privacy 

Identity privacy in CRNs refers to the protection of users’ identities during spectrum sensing, sharing, and 
communication processes [170]. Given the cooperative and often decentralized nature of CRNs, users frequently 
exchange information with other users, base stations, or access points. If proper privacy measures are not in place, this 
can lead to the exposure of users’ identities, making them susceptible to targeted attacks or tracking [171]. The attack 
techniques include the following: 

User profiling: By continuously monitoring the network activities of a particular user, attackers can link various 
communication sessions to a specific user [172], revealing their identity. Even if the communication content is 
encrypted, side-channel information such as transmission timing, frequency, and power can be used for profiling [173]. 

Packet sniffing: Adversaries can intercept data packets in the network and attempt to link them to a particular user 
[174] by analyzing metadata (e.g., IP addresses or unique device identifiers). 

Cooperative sensing exploitation: In cooperative spectrum sensing, where multiple users collaborate to detect available 
spectrum, attackers can analyze the sensing reports to identify specific users based on the unique characteristics of 
their transmissions or by correlating reports over time [175]. 

The repercussions of Identity privacy include: 

Targeted attacks: Once a user’s identity is known, adversaries can launch targeted attacks, such as DoS or jamming 
attacks [176], aimed specifically at disrupting that user's communication. 

Data correlation: By linking different communication sessions to the same user, attackers can build comprehensive 
profiles that include not only the user’s identity but also their communication habits, location, and preferences [177], 
[178]. 

Impersonation attacks: If attackers can uncover a user's identity, they may attempt to impersonate the user in future 
communication sessions [179], leading to spoofing attacks or unauthorized access to network resources. 

4.3. Spectrum usage pattern privacy 

In CRNs, users’ spectrum usage patterns—such as the frequency bands they use, the times they access the spectrum, 
and the duration of their transmissions—can reveal sensitive information about their behavior, preferences, and even 
the content of their communication [180], [181]. Attackers can exploit this information to infer details about a user’s 
activities or to predict future communication patterns, leading to potential privacy breaches [182]. The various attack 
mechanisms include: 

Behavioral profiling: By analyzing spectrum usage over time, attackers can create a profile of a user’s communication 
behavior, identifying regular access patterns (e.g., specific times of day when the user is most active, preferred frequency 
bands, or transmission power levels) [183], [184]. 

Traffic inference: Even without accessing the content of communication, an attacker can infer the type of communication 
(e.g., voice calls, video streaming, or file transfers) based on the spectrum usage patterns [185], such as bandwidth 
consumption and transmission duration. 



Global Journal of Engineering and Technology Advances, 2024, 21(01), 001–037 

16 

Usage prediction: Attackers can predict future spectrum usage by analyzing historical data [186]. This enables 
preemptive attacks, such as occupying spectrum bands before the user can access them or launching targeted 
interference during known active periods. 

The probable effects of spectrum usage pattern privacy can be: 

Privacy invasion: Detailed behavioral profiles built from spectrum usage patterns can reveal private information about 
users [187], such as their daily routines, work habits, or even the type of communication they engage in (e.g., business 
vs. personal). 

Denial-of-Service (DoS) and jamming attacks: Predicting future spectrum usage allows attackers to launch targeted DoS 
or jamming attacks at critical times [188], causing disruptions in communication when the user is most reliant on the 
network. 

Security breaches: In critical applications, such as military or governmental communication, revealing spectrum usage 
patterns could compromise the security of the communication [189], leading to espionage or sabotage. 

4.4. Privacy in cooperative sensing and sharing 

Cooperative spectrum sensing is a key feature of CRNs, allowing multiple users to collaborate to improve the accuracy 
of spectrum sensing. However, cooperative sensing introduces significant privacy risks [190], as users are often 
required to share potentially sensitive information (such as their location, spectrum usage, and sensing results) with 
other users and the network infrastructure. The various attack techniques: 

Sensing data exploitation: In cooperative sensing, attackers can collect and analyze the sensing data shared by users to 
extract private information [191], such as user location, identity, and communication behavior. Even if the shared data 
does not contain explicit personal information, it can still be exploited through traffic analysis or correlation attacks. 

Collusion attacks: Malicious users may collude to share their sensing data and coordinate their actions to extract more 
detailed information about other users, potentially violating their privacy [192]. 

Untrusted third parties: In scenarios where the cooperative sensing data is aggregated and processed by third-party 
entities (e.g., spectrum brokers or network operators), there is a risk that these entities could misuse the data or fail to 
adequately protect it from privacy breaches [193]. 

The possible impacts of privacy in cooperative sensing and sharing include the following: 

Privacy leakage: Sensitive information about users’ spectrum usage, location, and communication behavior can be 
exposed to malicious users [194], untrusted third parties, or even legitimate users who exploit their access to the 
cooperative sensing data. 

Loss of trust: Users may lose trust in the network if they believe that their private information is being improperly 
accessed or shared [195], leading to reduced participation in cooperative sensing, which in turn affects the overall 
performance of the CRN. 

Vulnerabilities to insider attacks: In cooperative sensing, trusted users can act as insiders who misuse their privileged 
access to exploit private information for malicious purposes [196], including blackmail, espionage, or unauthorized 
surveillance. Table 2 gives a summary of some of the mitigation strategies for these privacy challenges. 

It is clear that privacy challenges in CRNs are multifaceted and arise from the dynamic, decentralized, and cooperative 
nature of these networks. User location privacy, identity privacy, spectrum usage pattern privacy, and privacy in 
cooperative sensing all present significant risks that must be addressed to protect users' sensitive information [212], 
[213]. As CRNs continue to evolve and become more widely adopted, it is essential to develop robust privacy-preserving 
mechanisms [214] that can mitigate these challenges without compromising the performance and flexibility of the 
network. Effective solutions will involve a combination of encryption, anonymization, obfuscation, and trust 
management techniques to safeguard user privacy in the face of increasingly sophisticated threats. 
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Table 2 CRNs privacy mitigation strategies 

Privacy 
challenges 

Mitigation challenges 

User location 
privacy 

Location obfuscation: Techniques that add noise or modify the accuracy of location information 
shared with other users or the network [197]. For example, a user could report an approximate 
or anonymized location, instead of their precise geographical coordinates. 

Encryption of location data: Encrypting location data during transmission to prevent 
unauthorized access or interception [198]. Only trusted entities should be able to decrypt the 
actual location. 

Dummy location generation: The introduction of fake or “dummy” location reports can be used 
to confuse attackers and make it difficult to pinpoint the real location of the user [199]. 

Identity privacy Anonymous spectrum sensing: Implementing anonymous spectrum sensing protocols that 
allow users to participate in cooperative sensing without revealing their identities [200]. This 
can be achieved using cryptographic techniques such as zero-knowledge proofs or anonymous 
credentials. 

Identity obfuscation: Temporarily changing user identifiers (such as MAC addresses or 
pseudonyms) during communication can help prevent long-term tracking or profiling by 
adversaries [201]. 

Group-based communication: Group-based or collaborative spectrum access protocols can help 
obfuscate individual identities [202] by allowing users to participate in the network as part of 
an anonymous group, rather than as identifiable individuals. 

Spectrum usage 
pattern privacy 

Randomized spectrum access: By randomizing the times and frequencies at which users access 
the spectrum, CRNs can make it more difficult for attackers to analyze and predict usage 
patterns [203]. Users can periodically switch between different frequency bands and vary their 
transmission parameters to obfuscate their behavior. 

Privacy-preserving traffic analysis: Implementing privacy-preserving algorithms that add noise 
or randomness to the reported spectrum usage patterns can reduce the likelihood of successful 
traffic analysis by adversaries [204]. 

Encrypted spectrum sensing reports: Encrypting spectrum sensing reports and other network 
metadata can help protect spectrum usage information from being intercepted and analyzed 
by malicious users [205]. 

Privacy in 
cooperative 
sensing and 
sharing 

Privacy-preserving sensing protocols: Implementing privacy-preserving cooperative sensing 
protocols that allow users to participate in spectrum sensing without revealing sensitive 
information [206]-[208]. This can be achieved using techniques like homomorphic encryption, 
differential privacy, or secure multi-party computation. 

Data minimization: Limiting the amount of sensitive information that users are required to 
share during cooperative sensing [209]. For example, users may share only aggregate or 
anonymized data [210] rather than detailed sensing reports. 

Trust management systems: Developing trust management frameworks that evaluate the 
behavior and reputation of users participating in cooperative sensing [211]. These systems can 
reduce the risk of privacy breaches by ensuring that only trusted users have access to sensitive 
data. 

5. Existing security and privacy frameworks  

CRNs introduce complex security and privacy challenges due to their dynamic, decentralized, and flexible nature. To 
address these concerns, researchers and practitioners have developed various frameworks aimed at safeguarding CRNs 
against security threats and protecting user privacy. These frameworks provide mechanisms for spectrum 
management, user authentication, secure communication, and privacy-preserving spectrum sensing. This section 
presents an extensive discussion of existing security and privacy frameworks for CRNs, focusing on key approaches, 
techniques, and solutions that have been proposed or implemented in the literature. 
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5.1. Cryptographic frameworks for secure communication 

Cryptography plays a critical role in securing communication in CRNs, providing protection against unauthorized 
access, data tampering, and identity theft [215], [216]. Given the openness and dynamic nature of spectrum access in 
CRNs, cryptographic frameworks have been adapted to ensure secure communication, particularly in cooperative 
spectrum sensing and dynamic spectrum sharing. 

5.1.1. Public Key Infrastructure (PKI) 

A Public Key Infrastructure (PKI) is a widely adopted framework in CRNs to secure communication between cognitive 
radio (CR) devices [217]. PKI provides secure key management, digital signatures, and encryption through the use of 
asymmetric keys [218], [219]. In CRNs, PKI can be used for secure spectrum sensing data exchange, authentication of 
primary and secondary users and protection of control messages transmitted between CR nodes. 

5.1.2. Lightweight cryptographic solutions 

Given the limited computational resources of CR devices, lightweight cryptographic frameworks have been developed 
for CRNs [220]-[222]. These frameworks aim to provide the necessary security while reducing the computational 
burden on CR devices. The examples include elliptic curve cryptography (ECC) and lightweight symmetric key 
algorithms (e.g., AES in lightweight mode) [223]. These are designed to be less resource-intensive while maintaining a 
high level of security. 

5.2. Trust-based frameworks 

CRNs rely heavily on cooperation among users, especially for spectrum sensing and sharing. However, this opens the 
door to malicious behavior, such as spectrum sensing data falsification (SSDF) attacks [224], where malicious users 
provide false information to mislead the network. To address this, trust-based frameworks have been introduced to 
evaluate and manage user behavior, ensuring that only trusted users influence network decisions [225], [226]. 

5.2.1. Reputation-based trust models 

Reputation-based trust frameworks rely on past behavior to evaluate the trustworthiness of a user [227], [228]. In these 
models, users are assigned trust scores based on their actions, such as accurate spectrum sensing or adherence to 
spectrum-sharing rules. In CRNs, users who consistently provide accurate sensing data or follow spectrum-sharing 
policies receive higher trust scores. Users with low trust scores are either excluded from cooperative sensing or their 
input is given less weight in decision-making processes. The examples of these models include the following: 

Bayesian trust models: These models use probabilistic reasoning to update trust values based on user behavior [229]. 

Game-theoretic approaches: In game theory-based models, trust is dynamically adjusted based on users' actions over 
time, rewarding cooperative behavior and penalizing malicious or selfish actions [230]. 

5.2.2. Subjective logic-based trust models 

Subjective logic-based frameworks extend reputation models by incorporating subjective opinions in trust evaluation 
[231]. These models are useful in scenarios where trust cannot be quantified precisely, and they allow CR devices to 
form trust relationships based on subjective beliefs about other users' behavior. 

5.3. Privacy-preserving frameworks 

Privacy is a major concern in CRNs, especially in cooperative spectrum sensing where users share information about 
their location, behavior, and spectrum usage. To address this, privacy-preserving frameworks [232] have been 
developed, focusing on protecting user data while enabling the cooperative nature of the network. 

5.3.1. Differential privacy 

Differential privacy is a statistical technique that provides strong privacy guarantees by introducing noise into the data 
being shared [233]. In the context of CRNs, differential privacy is applied to protect spectrum sensing reports and usage 
patterns from revealing sensitive user information [234]. When users participate in cooperative spectrum sensing, they 
can apply differential privacy to ensure that their individual contributions to the sensing result cannot be inferred, even 
by an adversary with access to the aggregated data. 
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5.3.2. Homomorphic encryption 

Homomorphic encryption allows computations to be performed on encrypted data without needing to decrypt it first 
[235]. This property is useful in CRNs for protecting user privacy during spectrum sensing and sharing [236]. In CRNs, 
users can encrypt their spectrum sensing data and share it with a central entity (e.g., a spectrum broker) that performs 
computations (such as aggregating the data) on the encrypted values. The results of these computations can then be 
decrypted by authorized users, without exposing the individual sensing data. 

5.3.3. Privacy-Preserving Cooperative Spectrum Sensing (PPCSS) 

Privacy-Preserving Cooperative Spectrum Sensing (PPCSS) frameworks are specifically designed to protect user privacy 
in cooperative spectrum sensing [237]. These frameworks ensure that users can contribute to the sensing process 
without revealing sensitive information [238], such as their location or spectrum usage patterns. The various techniques 
in PPCSS include: 

Obfuscation: Users can obfuscate their sensing reports by adding noise or masking certain details [239], making it harder 
for attackers to infer private information. 

Secure Multi-Party Computation (SMPC): SMPC allows multiple users to contribute to a joint computation (such as 
spectrum sensing) without revealing their individual inputs [240]. This ensures that the sensing results are accurate 
while preserving the privacy of each user's data. 

5.4. Game-theoretic security frameworks 

Game theory has been extensively applied to CRNs to model and address security and privacy challenges [241]. Game-
theoretic frameworks treat security and privacy as strategic interactions between rational users (or attackers) who aim 
to maximize their utility while adhering to network rules. 

5.4.1. Non-cooperative game theory 

In non-cooperative game theory, users are treated as independent entities who act selfishly to maximize their own 
spectrum usage or network utility [242]. Game-theoretic models can be used to detect and mitigate malicious behavior, 
such as SSDF attacks or PUE attacks [234]. Non-cooperative games are used to model interactions between legitimate 
users and attackers. By analyzing the payoffs associated with different strategies, the network can identify optimal 
responses to mitigate the impact of attacks [235]. The examples of these applications include the following: 

Jamming games: Non-cooperative games have been used to model jamming attacks, where attackers and legitimate 
users compete for control of the spectrum [244]. The game identifies optimal strategies for users to avoid jamming and 
continue communication. 

Sensing data manipulation games: Game theory can model how malicious users falsify sensing data [245], allowing the 
network to develop counter-strategies that minimize the impact of such attacks. 

5.4.2. Cooperative game theory 

In cooperative game theory, users work together to maximize the overall performance of the CRN, rather than acting 
selfishly. Cooperative games are useful for modeling trust relationships and encouraging collaborative spectrum 
sensing [246], [247]. Cooperative game theory can be used to encourage users to share their spectrum resources and 
participate in cooperative spectrum sensing by offering incentives or rewards for good behavior. Table 3 presents some 
of strengths and weaknesses of these existing security and privacy frameworks. 

Evidently, the existing security and privacy frameworks for CRNs address a wide range of challenges, including secure 
communication, trust management, privacy preservation, and protection against malicious behavior. Cryptographic 
techniques, trust-based frameworks, privacy-preserving mechanisms, and game-theoretic models all contribute to 
securing CRNs in various ways. However, the dynamic and decentralized nature of CRNs requires ongoing research and 
innovation to develop more efficient and effective solutions. Future frameworks will need to balance security and 
privacy requirements with the performance constraints of CRNs, particularly in resource-limited environments like 
mobile or IoT networks. 
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Table 3 Existing security and privacy frameworks 

Framework Strengths Weaknesses 

Public key 
infrastructure 

PKI provides strong security guarantees, 
including non-repudiation, confidentiality, 
and integrity [248]. It is particularly useful in 
large-scale CRNs where users dynamically 
join or leave the network. 

The main challenge with PKI in CRNs is the 
computational overhead associated with key 
generation, distribution, and validation, 
especially in resource-constrained environments 
like mobile devices. 

Lightweight 
cryptographic 
solutions 

Lightweight cryptography improves the 
performance of CRNs by minimizing latency 
and power consumption, making them 
suitable for mobile and battery-powered CR 
devices [249]. 

While lightweight cryptography is efficient, it 
may not always provide the same level of security 
as traditional algorithms [250], especially in 
highly adversarial environments. 

Reputation-
based trust 
models 

Reputation-based systems reduce the 
impact of malicious users in cooperative 
spectrum sensing [251], thus improving the 
overall security and performance of the CRN. 

The accuracy of these models can be affected by 
collusion among malicious users who work 
together to manipulate trust scores. 
Furthermore, trust systems may require 
extensive monitoring, which can introduce 
communication overhead. 

Subjective logic-
based trust 
models 

Subjective logic allows for flexibility in trust 
management [252], as it can handle 
uncertain or incomplete information. It also 
enables CR devices to adapt trust levels 
dynamically based on new evidence. 

These models require complex algorithms to 
process subjective opinions and update trust 
values, which can increase computational 
complexity. 

Differential 
privacy 

Differential privacy provides a robust 
mathematical framework for protecting user 
data while allowing for accurate sensing 
results [253]. It is particularly effective in 
large-scale networks with many users. 

The trade-off between privacy and accuracy is a 
key challenge. Adding too much noise can reduce 
the accuracy of spectrum sensing, while too little 
noise can compromise privacy. Balancing these 
factors requires careful tuning of privacy 
parameters. 

Homomorphic 
encryption 

Homomorphic encryption provides strong 
privacy guarantees because the data 
remains encrypted throughout the entire 
process [254]. This eliminates the risk of 
data exposure during transmission or 
computation. 

Homomorphic encryption is computationally 
intensive, which can make it impractical for 
resource-constrained devices in CRNs. Recent 
advancements have focused on developing more 
efficient algorithms, but this remains an area of 
ongoing research. 

PPCSS PPCSS frameworks enable secure and 
private participation in cooperative 
spectrum sensing [255], improving the 
overall performance and fairness of the 
network. 

These frameworks often require complex 
cryptographic operations or additional 
communication overhead [256], which can 
increase the latency and energy consumption in 
the network. 

Non-cooperative 
game theory 

Game-theoretic frameworks provide a 
mathematical approach to analyzing 
complex security interactions in CRNs [257]. 
They can be used to design adaptive defense 
mechanisms that adjust based on the 
behavior of attackers. 

The challenge with non-cooperative games is 
ensuring that all users follow the network rules. 
Malicious users may not act rationally or may 
collude to exploit the system. Additionally, game-
theoretic models can be computationally 
intensive. 

Cooperative 
game theory 

Cooperative game theory fosters 
collaboration among users, improving 
spectrum utilization and security [258]. It 
can also be used to design fair and efficient 
resource allocation mechanisms. 

Encouraging cooperation among users can be 
difficult in adversarial environments, where 
some users may attempt to cheat the system for 
personal gain. Trust management systems must 
be in place to prevent such behavior. 
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6. Open research challenges 

As CRNs continue to evolve and expand, ensuring robust security and privacy remains a critical concern [259]. The 
dynamic, decentralized, and adaptive nature of CRNs introduces unique challenges that current solutions struggle to 
fully address. This section explores several open research challenges in the security and privacy domain for CRNs, 
highlighting areas where further investigation is needed to improve the resilience and trustworthiness of these 
networks. 

6.1. Dynamic Spectrum Management and Security 

Dynamic Spectrum Management (DSM) is a key feature of CRNs, allowing users to adaptively access available spectrum 
bands based on real-time conditions [260]. However, the dynamic nature of spectrum access introduces several security 
challenges: 

Adaptive attack strategies: As CRNs continuously adapt their spectrum usage, attackers can exploit this flexibility to 
launch sophisticated attacks, such as SSDF or PUE attacks. Attackers may also use adaptive jamming techniques [261] 
that vary based on the spectrum management policies. 

Future research directions encompasses the development of robust mechanisms to detect and mitigate adaptive attacks 
in real-time. Research is needed to create models and algorithms that can anticipate and counteract evolving attack 
strategies while maintaining efficient [262] spectrum management. 

Spectrum handoff security: Spectrum handoff, where a cognitive radio switches from one frequency band to another, can 
be exploited by attackers to disrupt communication or eavesdrop on sensitive data [263]. 

Future research works involves the investigation of secure spectrum handoff protocols that ensure the integrity and 
confidentiality of data during the transition between spectrum bands. Solutions should address potential vulnerabilities 
introduced during handoff processes. 

6.2. Privacy in cooperative spectrum sensing 

Cooperative Spectrum Sensing (CSS) relies on multiple users sharing their spectrum sensing data to improve accuracy. 
However, this sharing introduces privacy risks: 

Privacy-preserving sensing data aggregation: Ensuring that users can participate in cooperative sensing without 
disclosing sensitive information about their location, behavior, or communication patterns [264]. 

Probable research directions involves the development of advanced privacy-preserving techniques, such as secure 
multi-party computation (SMPC) and differential privacy, to aggregate sensing data while protecting individual user 
privacy. Research should focus on optimizing these techniques for real-time applications. 

Trade-offs between privacy and accuracy: Balancing the need for privacy with the accuracy of spectrum sensing results 
[265]. Excessive privacy measures can degrade sensing performance, while insufficient measures can expose sensitive 
information. 

Future research directions encompass the investigation of  methods that dynamically adjust the level of privacy based 
on the specific requirements of the sensing task and the sensitivity of the data. Developing adaptive privacy models that 
can maintain high sensing accuracy while protecting user privacy. 

6.3. Trust management in decentralized networks 

Trust Management is crucial for ensuring reliable operation in decentralized CRNs where users interact without a 
central authority: 

Robust trust evaluation mechanisms: Designing trust models that accurately evaluate user behavior and detect malicious 
actions in a decentralized environment [266]. Current models may be susceptible to collusion attacks or manipulation 
by malicious users. 
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Probable research directions will involve exploring advanced trust evaluation techniques, such as blockchain-based 
systems for immutable trust records and decentralized trust management frameworks. Research should also focus on 
enhancing trust models to handle diverse and dynamic network conditions. 

Scalability and adaptability of trust systems: Ensuring that trust management systems can scale to large numbers of users 
and adapt to changes in the network topology and user behavior [267]. 

Feasible research directions have to do with the development of scalable trust management solutions that can efficiently 
handle large-scale CRNs and adapt to changes in network conditions. Investigating algorithms that balance 
computational efficiency with the accuracy of trust assessments. 

6.4. Security of lightweight and resource-constrained devices 

CRNs often involve lightweight and resource-constrained devices that may not support traditional security measures: 

Lightweight cryptographic solutions: Implementing cryptographic solutions that provide sufficient security while being 
efficient enough for devices with limited computational and energy resources [268]. 

Feasible research directions entails the advancement of lightweight cryptographic algorithms and protocols that can 
offer strong security guarantees without imposing significant computational overhead. Research should focus on 
optimizing encryption and authentication mechanisms for resource-constrained CR devices. 

Energy-efficient security protocols: Balancing security requirements with the energy constraints of CR devices [269], 
especially in battery-powered scenarios. 

Research directions in this domain entails designing energy-efficient security protocols that minimize the impact on 
device battery life while maintaining robust protection against attacks [270]. Investigating novel approaches to reduce 
energy consumption in security operations, such as low-power encryption techniques. 

6.5. Security and privacy in multi-tenant CRNs 

Multi-Tenant CRNs involve multiple operators or users sharing the same network infrastructure, each with different 
security and privacy requirements: 

Isolation and segregation of resources: Ensuring that the activities of one tenant do not interfere with or compromise 
the security and privacy of other tenants [271]. Proper isolation mechanisms are needed to prevent cross-tenant data 
leakage or interference. 

Possible research directions have to do with the development of mechanisms for secure resource isolation and 
segregation in multi-tenant CRNs. This includes designing virtualized network environments that maintain security 
boundaries between tenants and prevent unauthorized access to shared resources. 

Tenant-specific security policies: Implementing and enforcing security policies that cater to the specific needs of different 
tenants, while maintaining overall network integrity [272]. 

Future research work may investigate policy management frameworks that can handle diverse security and privacy 
requirements in multi-tenant environments. Research should focus on dynamic policy enforcement and conflict 
resolution between tenant-specific policies. 

6.6. Vulnerability to emerging threats 

Emerging Threats such as advanced persistent threats (APTs), machine learning-based attacks, and quantum computing 
pose new challenges for CRNs: 

Machine learning-based attacks: Machine learning techniques can be used by attackers to develop sophisticated attacks, 
such as predicting spectrum usage patterns or evading detection by adaptive security mechanisms [273], [274]. 

Future research efforts should be devoted towards exploring methods to defend against machine learning-based attacks 
[275], including the development of machine learning algorithms for intrusion detection and anomaly detection in 
CRNs. 
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Quantum computing threats: Quantum computing has the potential to break many traditional cryptographic algorithms 
[276], posing a significant threat to CRNs. 

Research directions in this domain will encompass the investigation of post-quantum cryptographic algorithms and 
protocols that can withstand attacks from quantum computers [277]-[279]. Research should focus on transitioning to 
quantum-resistant security measures while maintaining compatibility with existing CRN infrastructure. 

In a nutshell, there are a number of open research challenges in CRNs security and privacy which requires a 
multidisciplinary approach. This may encompass a combination of advances in cryptography, trust management, 
privacy-preserving techniques, and emerging technologies [280]. As CRNs continue to evolve and integrate into various 
applications, ongoing research is crucial to developing effective solutions that balance security, privacy, and 
performance. Collaborative efforts among researchers, practitioners, and industry stakeholders will be essential to 
tackling these challenges and ensuring the resilience and trustworthiness of future CRNs. 

7. Conclusion 

The rapid evolution and deployment of Cognitive Radio Networks (CRNs) introduce significant opportunities for 
optimizing spectrum utilization and enhancing communication flexibility. However, this dynamic and decentralized 
nature also presents complex security and privacy challenges that must be addressed to ensure the robustness and 
trustworthiness of these networks. Throughout this paper, various dimensions of security and privacy issues in CRNs 
have been explored, including the fundamental architectural elements of cognitive radios, the inherent security and 
privacy challenges, and existing frameworks designed to mitigate these issues. Key security concerns encompass the 
protection of spectrum access, secure communication, and the integrity of cooperative spectrum sensing. On the privacy 
front, challenges include safeguarding users' location data, identity, and spectrum usage patterns while participating in 
cooperative sensing and sharing activities. Existing frameworks, such as cryptographic solutions, trust management 
systems, and privacy-preserving techniques, offer valuable tools for addressing these challenges. Cryptographic 
methods, including public key infrastructure (PKI) and lightweight cryptographic algorithms, provide essential security 
functions but must be tailored to the resource constraints of CR devices. Trust management frameworks, such as 
reputation-based and subjective logic models, play a crucial role in ensuring cooperation and mitigating malicious 
behavior. Privacy-preserving techniques, such as differential privacy and homomorphic encryption, are vital for 
protecting sensitive user data during spectrum sensing and sharing. Despite the progress made, several open research 
challenges remain. Dynamic spectrum management, privacy in cooperative spectrum sensing, trust management in 
decentralized networks, and the security of lightweight devices are areas that require ongoing investigation. 
Additionally, emerging threats such as machine learning-based attacks and quantum computing pose new risks that 
demand innovative solutions. To address these challenges effectively, future research should focus on developing 
adaptable and scalable solutions that can operate within the constraints of CRNs while maintaining high levels of 
security and privacy. Collaborative efforts among researchers, industry stakeholders, and policymakers are essential to 
advance the state of the art and ensure the secure and private operation of CRNs in diverse applications. Therefore, the 
journey towards securing and preserving privacy in CRNs is ongoing. Continued innovation and rigorous research are 
imperative to overcome the current limitations and to address the evolving threats in this dynamic field. By leveraging 
the insights and advancements discussed in this paper, the players can work towards building more resilient and 
privacy-conscious CRNs that meet the demands of tomorrow's wireless communication landscape. 
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