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Abstract 

Cardiovascular diseases (CVDs) remain a leading cause of mortality globally, accounting for approximately 17.9 million 
deaths annually. Traditional diagnostic methods, though useful, have limitations such as invasiveness, high cost, and 
delays in detecting early-stage heart conditions. This study presents a novel machine learning-based system for early 
heart disease detection using audio signal processing, specifically leveraging phonocardiogram (PCG) data. Features 
were extracted using Mel-Frequency Cepstral Coefficients (MFCCs), Delta MFCCs, and Delta-Delta MFCCs, followed by 
dimensionality reduction via Principal Component Analysis (PCA). Support Vector Machine (SVM) and XGBoost 
classifiers were used to analyze the extracted features, and their performance was optimized through an ensemble 
model using the Moth Flame Optimization (MFO) algorithm. The model was rigorously evaluated using accuracy, 
precision, recall, and F1-score metrics. The ensemble model achieved an accuracy of 99.13%, precision of 98.94%, recall 
of 95.05%, and an F1-score of 97.46%. The application of SMOTE for data augmentation significantly improved 
classification performance, highlighting its effectiveness in addressing class imbalance. The proposed system provides 
a non-invasive, cost-effective solution for heart disease detection and holds potential for improving diagnostic access, 
particularly in resource-limited settings.  

Keywords: Phonocardiogram; Support Vector Machine; XGBoost; Moth Flame Optimization; SMOTE; Audio signal 
processing 

1. Introduction

Cardiovascular diseases (CVDs) represent a formidable global health challenge, accounting for approximately 17.9 
million deaths annually and placing a significant burden on healthcare systems worldwide [20]. The prevalence of heart 
disease has witnessed an alarming surge in recent decades, reflecting a complex interplay of lifestyle factors, genetic 
predispositions, and an aging population [16]. This escalating trend underscores the critical need for innovative 
approaches to early detection and management of cardiovascular conditions. Current methods employed for heart 
disease detection encompass a multifaceted approach, integrating clinical assessments, advanced imaging techniques, 
and traditional diagnostic tools. However, these methods are not without limitations, including their reliance on 
invasive procedures, cost constraints, and occasional lack of sensitivity in early disease stages. The confluence of these 
challenges has catalysed a transformative shift in healthcare, propelled by the burgeoning applications of artificial 
intelligence (AI) and machine learning (ML), particularly in cardiovascular health. Machine learning models applied in 
this field utilize a variety of data sources, including electrocardiograms (ECGs), medical imaging, and, increasingly, audio 
signals derived from heart sounds. These technologies demonstrate a remarkable ability to detect subtle patterns within 
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signals, offering a non-invasive and potentially more accessible method of diagnosing and monitoring heart diseases 
[3,7, 21] 

Recent research has shown promising results in this area, with a focus on leveraging various signal processing 
techniques and machine learning algorithms. Srivastava et al. [18] achieved a classification accuracy of 95% using Mel-
frequency cepstral coefficients (MFCCs) and Support Vector Machines (SVM). Their approach involved the application 
of a Butterworth filter for noise removal, contributing to signal refinement. Rath et al. [14] developed ensemble models 
combining discrete wavelet transform (DWT) and MFCC features, achieving accuracy, F1 score, and AUC values of 
89.53%, 0.9, and 0.95, respectively. Their study addressed the important issue of imbalanced datasets in heart sound 
analysis, proposing novel ensemble models that outperformed existing systems. 

Zeinali and Niaki [21] made significant strides in the diagnosis of heart diseases through the analysis of heart sounds 
obtained via a stethoscope. They focused on categorizing heart sounds into four groups (S1 to S4), with S1 and S2 
representing normal heart sounds and S3 and S4 indicating abnormal sounds associated with specific heart diseases. 
Their methodology achieved a notable accuracy rate of 87.5% and 95% for multiclass data (3 classes) and 98% for 
binary classification (normal vs. abnormal) scenarios. Other notable contributions have further advanced the field. 
Muhammad et al. [10] conducted a comprehensive study focused on early and accurate detection of heart disease using 
intelligent computational models. Their work showcased the limitations of invasive techniques like angiography and 
highlighted the effectiveness of non-invasive, intelligent computational approaches. Nabih-Ali et al. [11] proposed an 
intelligent system using phonocardiogram (PCG) data, achieving an impressive overall accuracy of 97% using an 
artificial neural network (ANN) classifier. Their study emphasized the potential of combining PCG data with intelligent 
algorithms for improved healthcare outcomes. 

Arora et al. [1] made important contributions to heart sound classification by utilizing digital phonocardiogram (PCG) 
signals for screening heart conditions. Their study employed the XGBoost method on unsegmented heart sounds, 
outperforming 18 existing methodologies with a mean score of 92.9 and sensitivity and specificity ratings of 94.5 and 
91.3, respectively. This work underscored the importance of developing timely projections for heart health to aid 
specialists in risk stratification and decision-making. Advancing the field further, presented a comprehensive 
investigation into the diagnosis of congenital heart disease (CHD), focusing on Ventricular Septal Defects (VSDs) and 
Arterial Septal Defects (ASDs) as presented in [4]. Their three-stage processing model, incorporating empirical mode 
decomposition (EMD) for denoising raw PCG signals and feature extraction using one-dimensional local ternary 
patterns (1D-LTPs) and MFCCs, achieved a remarkable mean accuracy of 95.24% in classifying ASD, VSD, and normal 
subjects. Building upon these advancements, our research aims to design and implement a machine learning-based 
system for early heart disease detection and classification using audio signal processing. We seek to address the 
limitations of current diagnostic methods by leveraging the power of artificial intelligence and the rich information 
contained in heart sounds. To achieve this, we have formulated the following specific objectives: 

To design and implement a detailed system framework using a combination of Mel-frequency cepstral coefficients 
(MFCC), Delta MFCC, and Delta-delta MFCC features, with principal component analysis (PCA) for dimensionality 
reduction. 

 To utilize and compare the performance of two machine learning classifiers, Support Vector Machine (SVM) and 
XGBoost, ensembled by Moth Flame Optimization (MFO). 

 To evaluate the system's performance using metrics such as accuracy, precision, ROC-AUC, and confusion matrix. 

These objectives guide our novel approach, which combines advanced feature extraction techniques with state-of-the-
art machine learning classifiers. Our feature extraction approach incorporates Mel-frequency cepstral coefficients 
(MFCC), Delta MFCC, and Delta-delta MFCC features, with principal component analysis (PCA) for dimensionality 
reduction. This approach builds upon and extends the work of [18], who successfully used MFCC as their primary feature 
for heart sound analysis. While [18] demonstrated the effectiveness of MFCC in this context, our study expands on this 
by incorporating Delta and Delta-delta MFCC features to capture additional temporal dynamics of the heart sounds. The 
inclusion of Delta and Delta-delta MFCC features is inspired by their success in speech and audio processing tasks, where 
they have been shown to provide valuable information about the rate of change of spectral characteristics. By 
incorporating these additional features, we aim to capture more nuanced aspects of heart sounds that may be indicative 
of cardiac abnormalities. The use of PCA for dimensionality reduction is motivated by the work of [17], who successfully 
applied this technique in heart disease diagnosis to enhance model efficiency and performance. 
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Our approach also innovates in the classification stage, where we utilize and compare the performance of two machine 
learning classifiers: Support Vector Machine (SVM) and XGBoost. The choice of SVM is informed by its effective use in 
heart sound classification, as demonstrated by [18] and [4]. The inclusion of XGBoost is motivated by its strong 
performance in related studies, such as the work of [1]. To potentially enhance the overall performance of the system, 
we introduce a novel element of ensembling these classifiers using Moth Flame Optimization (MFO), inspired by the 
success of ensemble methods in addressing complex classification tasks, as demonstrated by [14] and [6]. This study 
aims to contribute to the early identification of cardiac abnormalities, potentially leading to more timely interventions 
and improved patient outcomes. The cost-effectiveness and non-invasive nature of the proposed system could 
democratize access to advanced cardiac diagnostics, particularly in resource-limited settings where traditional methods 
may be prohibitively expensive or unavailable [4]. 

The rest of this paper is organized as follows. Section 2 details of the proposed method, including the PhysioNet/CinC 
Challenge 2022 heart sound database, MFCC, Delta MFCC and Detla-Delta MFCC feature extraction and selection with 
PCA, SVM and Xgboost Classifier which then ensemble with Moth Flame Optimization. Section 3 presents experimental 
results. Sections 3 and 4 give some discussions and conclusions, respectively and conclusions, respectively. 

2. Proposed method 

The study describes a novel approach for distinguishing between normal and abnormal heart sound signals using 
nonlinear dynamics of phonocardiogram (PCG) systems. The method involves multiple stages: data acquisition, 
preprocessing (noise reduction and normalization), feature extraction (using MFCC, Delta MFCC, and Delta-Delta 
MFCC), data augmentation (using SMOTE), feature selection (using PCA), and classification. Two classifiers, Support 
Vector Machines (SVM) and XGBoost, are employed, with their outputs combined through an ensemble approach 
optimized by Moth Flame Optimization (MFO). The process is visually represented in Fig. 1, showcasing the 
interconnections between each stage. This comprehensive approach aims to capture subtle differences in PCG system 
dynamics, advancing automated cardiac auscultation and anomaly detection. The system is implemented to integrate 
efficiently with telemedicine systems such as the work of [12]. 

2.1. Data Collection 

The CirCor DigiScope Phonocardiogram Dataset represents a significant contribution to the fields of pediatric 
cardiology and digital auscultation. This comprehensive resource comprises 5,272 heart sound recordings obtained 
from 1,568 subjects aged 0-21 years, collected from four primary cardiac auscultation sites. The recordings exhibit a 
duration range of 4.8 to 80.4 seconds, amassing over 33.5 hours of high-fidelity phonocardiogram data. Each recording 
is accompanied by meticulous annotations detailing cardiac murmurs and is supplemented with pertinent subject 
metadata. This extensive dataset, derived from two large-scale screening campaigns conducted in Brazil between 2014 
and 2015, serves as the cornerstone for the George B. Moody PhysioNet Challenge 2022, which focuses on heart murmur 
detection [13]. The study under consideration utilized a subset of 3,163 records from the aforementioned dataset, 
demonstrating a near-equal distribution between normal (n=1,632) and abnormal (n=1,531) recordings. To mitigate 
potential class imbalance and enhance the robustness of subsequent analyses, the Synthetic Minority Over-sampling 
Technique (SMOTE) was employed. 

 

Figure 1 System architecture of the proposed system 
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Figure 2 The waveforms of heart sound signals 

The composition of the dataset is detailed in Table 1, which presents the distribution of heart sound recordings across 
various auscultation locations and their variants. This data augmentation strategy resulted in an expanded dataset of 
50,000 recordings, ensuring an equitable distribution. The recordings were acquired from various auscultation sites, 
including the Aortic, Mitral, Pulmonary, and Tricuspid valves, as well as additional locations, with multiple variants for 
numerous sites. This diverse sampling approach facilitates a comprehensive representation of heart sounds across 
different anatomical locations, potentially encompassing a wide spectrum of normal and pathological cardiac acoustic 
phenomena, as illustrated in Fig. 2, which depicts examples of normal and abnormal heart sound waveform signals. 

Table 1 Presents a comprehensive overview of the heart sound recording distribution in the CirCor DigiScope 
Phonocardiogram Dataset 

Valve Types Original Dataset Dataset After SMOTE 

Normal Abnormal Normal Abnormal 

AV 394 393 6287 6151 

AV_1 2 4 57 40 

AV_2 2 4 51 46 

AV_3 1 0 3 13 

MV 423 426 6637 6811 

MV_1 3 3 49 48 

MV_2 3 3 50 47 

PV 411 351 6078 5944 

PV_1 0 2 20 13 

PV_2 0 2 19 14 

Phc 0 2 17 15 

Phc_1 0 1 8 8 

Phc_2 0 1 10 6 

TV 383 337 5666 5700 

TV_1 5 1 56 40 

TV_2 5 1 62 34 

Total 3163 50,000 
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Ratio of abnormal to normal 1.066 0.994 

2.2. Data Preprocessing 

The data preprocessing phase is an important phase in the research for the model's validity and performance [2]. The 
data preprocessing for phonocardiogram (PCG) signals encompasses two crucial steps: noise reduction and 
normalization.  

Noise reduction: is implemented through a Butterworth bandpass filter, which is configured to transmit frequencies 
between 15 Hz and 130 Hz, effectively isolating the relevant cardiac acoustic information. The lower bound of 15 Hz 
helps eliminate unwanted low-frequency components, while the upper limit of 130 Hz ensures the retention of primary 
spectral components of heart sounds. This meticulous preprocessing approach enhances the quality and 
standardization of the audio data, making it more suitable for subsequent analysis and interpretation in cardiac 
diagnostics [9].  

2.2.1. Butterworth Bandpass Filter 

The design of a Butterworth bandpass filter is based on the transfer function in the s-domain. For an nth-order 
Butterworth filter, the transfer function 𝐻(𝑠) is expressed as: 

𝐻(𝑠) = 𝐾 ⋅
𝑠𝑛

[(𝑠2 + ω1
2)(𝑠2 + ω2

2)]𝑛/2
 

Where: 

𝐾 represents the filter gain. 
𝑛 is the order of the filter (in this study, 𝑛 = 5) 
ω1 = 2π𝑓1 where 𝑓1 is the lower cutoff frequency (15 Hz). 
ω2 = 2π𝑓2 where 𝑓2 is the is the upper cutoff frequency (130 Hz). 

2.2.2. Digital Filter  

To implement the filter in digital signal processing, the analogy transfer function is transformed to the digital domain 
using the bilinear transform: 

𝑠 =
2

𝑇
⋅

𝑧 − 1

𝑧 + 1
 

where 𝑇 is the sampling period, given by 𝑇 =
1

𝑓𝑠
 and 𝑓𝑠 being the sampling frequency. 

2.2.3. Normalized Frequencies 

The cutoff frequencies are normalized with respect to the Nyquist frequency 
𝑓𝑠

2
 as follows: 

ωlow =
2π ⋅ 𝑓𝑠

2𝑓1

=
2π ⋅ 𝑓𝑠

2 ⋅ 15
 

ωhigh =
2π ⋅ 𝑓𝑠

2𝑓2

=
2π ⋅ 𝑓𝑠

2 ⋅ 130
 

These normalized frequencies are utilized in the design of the digital filter. 

2.2.4. Filter Application 

The bandpass filter is applied to the input signal 𝑥[𝑛] through a difference equation. The output signal 𝑦[𝑛] is computed 
as: 

𝑦[𝑛] = 𝑏0 ⋅ 𝑥[𝑛] + 𝑏1 ⋅ 𝑥[𝑛 − 1] + ⋯ + 𝑏5 ⋅ 𝑥[𝑛 − 5] − 𝑎1 ⋅ 𝑦[𝑛 − 1] − 𝑎2 ⋅ 𝑦[𝑛 − 2] − ⋯ − 𝑎5 ⋅ 𝑦[𝑛 − 5] 
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where 𝑏𝑖  and 𝑎𝑖  represent the filter coefficients, which are derived from the digital transfer function. 

2.2.5. Frequency Response 

The frequency response of the Butterworth bandpass filter is characterized by its magnitude response |𝐻(𝑗ω)| which 
is given by: 

|𝐻(𝑗ω)| =
1

√1 + (
ω
ω0

)
2𝑛

 

Where ω0 = √ω1 ⋅ ω2 is the centre frequency of the passband. 

Normalization: standardizes data to a common range, ensuring comparable magnitudes and distributions for reliable 
analysis. For phonocardiogram signals, the process involves peak normalization to scale the signal to a maximum 
absolute value of 1.0, followed by amplification with a gain factor of 3.0. This methodology standardizes signal 
amplitudes across recordings and optimizes feature extraction. The approach enhances signal quality for both visual 
and auditory analysis [8]. 

2.2.6. Signal Normalization 

Post-filtering, the signal is normalized to ensure that the maximum amplitude of the output signal does not exceed 1. 
This normalization is defined as: 

𝑦normalized[𝑛] =
|𝑦[𝑛]|

max(|𝑦[𝑛]|)
 

2.2.7. Amplification 

Finally, the normalized signal is amplified by a constant gain factor gain. The amplified signal 𝑦amplified[𝑛] is computed 

as: 

𝑦amplified[𝑛] = gain ⋅ 𝑦normalized[𝑛] 

where the gain factor is set to 3.0 in this study. 

2.3. Feature extraction  

Feature extraction in phonocardiogram (PCG) analysis transforms raw heart sound recordings into meaningful 
representations for machine learning tasks, focusing on Mel-Frequency Cepstral Coefficients (MFCCs) and their 
derivatives. These features effectively capture spectral and dynamic characteristics of audio signals, distinguishing 
between normal and abnormal heart sounds. The extraction process involves optimized parameters like 13 MFCCs, a 
25ms frame size, and a 10ms hop length, balancing dimensionality and information retention. Features are averaged 
across frames to produce fixed-length vectors suitable for classification tasks. Fig. 2 visualizes the acoustic 
characteristics of normal and abnormal heart sounds across different feature representations, illustrating differences 
in spectro-temporal patterns.  

2.3.1. MFCC Computation 

Given a PCG signal 𝑥[𝑛] the MFCC computation involves the following steps: 

 Short-Time Fourier Transform (STFT): 

𝑋[𝑘, 𝑚] = ∑ 𝑥[𝑛 + 𝑚𝐻]𝑤[𝑛]𝑒−𝑗
2π𝑘𝑛

𝑁

𝑁−1

𝑛=0

  

Where 𝑤[𝑛] is a Hamming window of length 𝑁, 𝐻 is the hop length, and 𝑚 is the frame index. 

 Mel-filterbank Energy 
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𝐸[𝑙, 𝑚] = ∑\𝑙𝑣𝑒𝑟𝑡

𝑁/2

𝑘=0

𝑋[𝑘, 𝑚]\𝑟𝑣𝑒𝑟𝑡2𝐻𝑙[𝑘]  

Where 𝐻𝑙[𝑘] represents the 𝑙 − th triangular mel-filter. 

 Logarithmic Compression: 

𝑆[𝑙, 𝑚] = log(𝐸[𝑙, 𝑚])  

 

 Discrete Cosine Transform (DCT): 

𝑐[𝑖, 𝑚] = ∑ 𝑆[𝑙, 𝑚]

𝐿−1

𝑙=0

cos (
𝐿π𝑖(𝑙 + 0.5)

𝐿
)  

where 𝐿 is the number of mel-filters and 𝑖 =  0, … , 𝐶 − 1, with 𝐶 being the number of cepstral coefficients. 

2.3.2. Delta and Delta-Delta Computation 

The first and second-order temporal derivatives of the MFCCs are computed as: 

 Delta coefficients 

Δ𝑐[𝑖, 𝑚] =
2 ∑ θ2 ∑ θ(𝑐[𝑖, 𝑚 + θ] − 𝑐[𝑖, 𝑚 − θ])Θ

θ=1
Θ
θ=1

∑ θ2Θ
θ=1

  

 Delta-Delta coefficients 

Δ2𝑐[𝑖, 𝑚] =
2 ∑ θ2 ∑ θ(Δ𝑐[𝑖, 𝑚 + θ] − Δ𝑐[𝑖, 𝑚 − θ])Θ

θ=1
Θ
θ=1

∑ θ2Θ
θ=1

  

2.3.3. Feature Aggregation 

The final feature vector for each PCG signal is obtained by computing the mean of each MFCC and its derivatives across 
all frames: 

μ𝑐[𝑖] =
1

𝑀
∑ 𝑐[𝑖, 𝑚]

𝑀−1

𝑚=0

  

μΔ𝑐[𝑖] =
1

𝑀
∑ Δ𝑐[𝑖, 𝑚]

𝑀−1

𝑚=0

  

μΔ2𝑐[𝑖] =
1

𝑀
∑ Δ2𝑐[𝑖, 𝑚]

𝑀−1

𝑚=0

  

where 𝑀 is the total number of frames. 

The complete feature vector 𝑓 for a PCG signal is then formed by concatenating these mean values: 

𝑓 = [μ𝑐[0], … , μ𝑐[𝐶 − 1], μΔ𝑐[0], … , μΔ𝑐[𝐶 − 1], μΔ2𝑐[0], … , μΔ2𝑐[𝐶 − 1]]  
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2.3.4. Frequency Warping 

The mel-scale warping used in the MFCC computation is defined as: 

mel(𝑓) = 2595 log10 (1 +
𝑓

700
)  

This warping approximates the frequency perception of the human auditory system, which is especially useful for 
assessing heart sounds that are normally auscultated by medical practitioners. 

 

Figure 3 Acoustic Features for Normal and Abnormal Heart Sounds 

2.4. Data Augmentation  

Class imbalance in phonocardiogram (PCG) classification was addressed using the Synthetic Minority Over-sampling 
Technique (SMOTE) to enhance model robustness. As shown in Table 1, the original dataset of 3,163 samples exhibited 
a slight imbalance with an abnormal to normal ratio of 1.066. SMOTE was applied to the training data using the 
imbalanced-learn library, generating synthetic samples to balance classes across all valve types. This approach is 
theoretically justified for its ability to enhance model performance, improve generalization, and preserve essential 
signal characteristics in PCG analysis [15]. Post-SMOTE application, the dataset expanded to 50,000 samples with a 
near-perfect balance ratio of 0.994, ensuring equal representation of normal and abnormal heart sounds for unbiased 
model training. 

2.4.1. Data Preparation 

Let 𝑋 ∈ 𝑅𝑛×𝑑  be the feature matrix of 𝑛 samples and 𝑑 features, 𝑦 ∈ {0,1}𝑛 and be the corresponding binary labels. The 
dataset is defined as: 

𝐷 = {(𝑥𝑖 , 𝑦𝑖) ∣ 𝑥𝑖 ∈ 𝑋, 𝑦𝑖 ∈ 𝑦, 𝑖 = 1, … , 𝑛}  

2.4.2. Feature Standardization 

Each feature is standardized using: 
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𝑧𝑖𝑗 = σ𝑗(𝑥𝑖𝑗 − μ𝑗) 

Where 𝑥𝑖𝑗  is the 𝑗 − th feature of the 𝑖 − th sample, and μ𝑗  and σ𝑗  are the mean and standard deviation of the feature, 

j − th respectively. 

2.4.3. SMOTE Algorithm 

Let 𝑆min = {(𝑥𝑖 , 𝑦𝑖) ∈ 𝐷 ∣ 𝑦𝑖 = 1} be the set of minority class samples. For each 𝑥𝑖 ∈ 𝑆min 

 Find the 𝑘-nearest neighbours of 𝑥𝑖  in 𝑆min, denoted as 𝑁𝑁𝑘(𝑥𝑖) 
 Randomly select a neighbour 𝑥𝑗  from 𝑁𝑁𝑘(𝑥𝑖) 

 Generate a synthetic sample 𝑥new  

𝑥new = 𝑥𝑖 + λ(𝑥𝑗 − 𝑥𝑖)  

Where λ ∈ [0,1] is a random number 

2.4.4. Iterative SMOTE Application 

Let 𝑛target be the desired total number of samples. The iterative SMOTE process is defined as: 

while |𝐷| < 𝑛target: 

𝑆combined = 𝐷 

𝑆augmented = SMOTE(𝑆combined) 

𝑛additional = min(𝑛target − |𝐷|, |𝑆augmented| − |𝑆combined|) 

𝐷 = 𝐷 ∪ {first 𝑛additional samples from 𝑆augmented}  

2.4.5. Nearest Neighbour Computation 

The 𝑘-nearest neighbors are determined using Euclidean distance: 

𝑑(𝑥𝑖 , 𝑥𝑗) = √∑(𝑥𝑖𝑙 − 𝑥𝑗𝑙)
2

𝑑

𝑙=1

  

2.4.6. Sampling Strategy 

The number of synthetic samples to generate for the minority class is determined by: 

𝑛synthetic = ⌈α × (𝑛majority − 𝑛minority)⌉  

where 𝑛majority and 𝑛minority are the number of samples in the majority and minority classes, respectively, and α is the 

sampling ratio (default α =  1 for balanced classes). 

2.4.7. Dataset Expansion 

The final augmented dataset 𝐷aug is constructed as: 

𝐷aug = 𝐷 ∪ 𝑆synthetic (7) 

Where 𝑆synthetic is the set of all generated synthetic samples. 
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2.5. Feature Selection  

Principal Component Analysis (PCA) is employed in phonocardiogram (PCG) analysis to address challenges posed by 
high-dimensional features, reducing the feature set from 39 to 12 components. Table 2 presents a comprehensive 
statistical analysis of the 12 most important features obtained through PCA, including mean, standard deviation, 
skewness, and kurtosis for each principal component. The features are ranked by standard deviation, indicating their 
relative importance in explaining dataset variance, while correlation coefficients and p-values for normal and abnormal 
cases provide insights into each component's relationship with the classification outcome. This analysis aids in 
understanding which principal components contribute most significantly to distinguishing between normal and 
abnormal heart sounds, potentially enhancing early heart disease detection capabilities. 

2.5.1. Data Representation 

Let 𝑋 ∈ 𝑅𝑛×𝑑  be the feature matrix of 𝑛 samples and 𝑑 features. Each row 𝑥𝑖 ∈ 𝑅𝑑  represents a single PCG sample in the 
feature space. 

𝑋 = (

𝑥1
𝑥2

⋮
𝑥𝑛

) 

2.5.2. Centering the Data 

The data is centered by subtracting the mean of each feature: 

𝑋𝑐 = 𝑋 − μ  

Where μ ∈ 𝑅𝑑  is the mean vector of with 𝑋 

μ𝑗 =
1

𝑛
∑ 𝑥𝑖𝑗

𝑛

𝑖=1

. 

2.5.3. Covariance Matrix Computation 

The covariance matrix Σ is computed as: 

Σ =
1

𝑛 − 1
𝑋𝑐

𝑇𝑋𝑐   

Where Σ ∈ 𝑅𝑑×𝑑  is a symmetric positive semi-definite matrix. 

2.5.4. Eigendecomposition 

PCA involves the eigendecomposition of the covariance matrix: 

Σ = 𝑉Λ𝑉𝑇  

Where 𝑉 ∈ 𝑅𝑑×𝑑  is the matrix of eigenvectors, and Λ ∈ 𝑅𝑑×𝑑  is a diagonal matrix of corresponding eigenvalues λ1 ≥
λ2 ≥ ⋯ ≥ λ𝑑 ≥ 0 

2.5.5. Principal Component Selection 

The first 𝑘 eigenvectors corresponding to the 𝑘 largest eigenvalues are selected to form the transformation matrix 𝑊 ∈
𝑅𝑑×𝑘: 

𝑊 = [ 𝑣1 ∣∣ 𝑣2 ∣∣ … ∣∣ 𝑣𝑘 ]  

Where 𝑣𝑖  is the 𝑖 −th column of 𝑉 

2.5.6. Dimensionality Reduction 

The original data 𝑋 is projected onto the 𝑘 −dimensional subspace: 
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𝑌 = 𝑋𝑐𝑊  

Where 𝑌 ∈ 𝑅𝑛×𝑘  is the reduced-dimensional representation of 𝑋 

2.5.7. Variance Explained 

The proportion of variance explained by the first 𝑘 principal components is given by: 

ρ𝑘 =
∑ λ𝑖

𝑘
𝑖=1

∑ λ𝑖
𝑑
𝑖=1

  

2.5.8. Reconstruction 

An approximation of the original data �̂� can be obtained by: 

�̂� = 𝑌𝑊𝑇 + μ  

Table 2 Statistical Analysis of Principal Components after Feature Extraction 

Important 
Feature 

Mean Standard 
Deviation 

Skewness Kurtosis Normal 
Correlation 

Abnormal 
Correlation 

p-value 

Feature_1 1.73E-08 3.07457 1.00779 48.4592 0.029148 0.028991 0.479 

Feature_2 1.94E-08 2.705915 -2.2176 13.3407 0.116442 0.158887 <0.001 

Feature_3 -1.9E-08 2.386499 2.042394 32.60357 -0.20404 -0.23548 <0.001 

Feature_4 -9.8E-09 1.979426 2.778216 31.5085 -0.02198 -0.05588 <0.001 

Feature_5 -9.4E-09 1.903309 0.017382 13.44376 0.101153 0.071927 <0.001 

Feature_6 -8.5E-09 1.621159 1.515172 92.10209 0.096498 0.058554 <0.001 

Feature_7 -1.1E-08 1.359701 0.108716 0.734679 -0.062 -0.0764 <0.001 

Feature_8 3.77E-09 0.968578 2.713994 83.99344 0.008183 -0.04407 <0.001 

Feature_9 -2.4E-09 0.885049 -1.54659 52.10939 0.044081 0.067078 0.001 

Feature_10 -9.5E-11 0.861617 -6.05595 134.0834 -0.05401 0.020494 <0.001 

Feature_11 3.3E-09 0.642755 -1.59392 14.79416 -0.03234 0.038926 <0.001 

Feature_12 -2.2E-09 0.544546 -0.41278 25.29352 -0.01363 -0.00071 <0.001 

 

2.6. Support Vector Machine (SVM) 

The Support Vector Machine (SVM) classification model for heart disease detection functions by identifying an optimal 
hyperplane that maximizes the margin between classes, utilizing kernel functions such as Radial Basis Function (RBF) 
and polynomial to handle non-linear decision boundaries[19]. Hyperparameter optimization, including parameters like 
the regularization parameter C, kernel coefficient γ, and kernel type, is performed using a grid search strategy with 
cross-validation to ensure robust performance across various data split. 

2.6.1. SVM Formulation 

Given a training dataset {(𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝑛 , where 𝑥𝑖 ∈ 𝑅𝑑  are the input features and 𝑦𝑖 ∈ {−1,1} are the corresponding labels, 

the SVM aims to find the optimal hyperplane that maximizes the margin between classes. 

The primal form of the SVM optimization problem is: 

minimize𝑤,𝑏,ξ (
1

2
|𝑤|2 + 𝐶 ∑ ξ𝑖

𝑛

𝑖=1

) 
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subject to  𝑦𝑖(𝑤𝑇ϕ(𝑥𝑖) + 𝑏) ≥ 1 − ξ𝑖,  ξ𝑖 ≥ 0,  ∀𝑖 (1) 

where 𝑤 is the weight vector, 𝑏 is the bias term, ξ𝑖  are slack variables, 𝐶 >  0 is the regularization parameter, and ϕ(⋅) 
is a feature mapping function. 

2.6.2. Kernel Functions 

The kernel trick allows for implicit feature mapping through the kernel function 𝐾(𝑥𝑖 , 𝑥𝑗) = ϕ(𝑥𝑖)
𝑇ϕ(𝑥𝑗) 

We consider two kernel functions: 

 Radial Basis Function (RBF) Kernel 

𝐾(𝑥𝑖 , 𝑥𝑗) = exp(−γ|𝑥𝑖 − 𝑥𝑗|2)  (2) 

 Polynomial Kernel 

𝐾(𝑥𝑖 , 𝑥𝑗) = (γ⟨𝑥𝑖 , 𝑥𝑗⟩ + 𝑟)
𝑑

 (3) 

where γ >  0 is the kernel coefficient, 𝑟 ≥ 0 is the intercept term, 𝑑 ∈ 𝑁 and is the polynomial degree 

2.6.3. Dual Formulation 

The dual form of the SVM optimization problem is: 

maximize α (∑ α𝑖

𝑛

𝑖=1

−
1

2
∑ α𝑖α𝑗𝑦𝑖𝑦𝑗𝐾(𝑥𝑖 , 𝑥𝑗)

𝑛

𝑖,𝑗=1

) 

subject to 0 ≤ α𝑖 ≤ 𝐶, ∀𝑖 and ∑ α𝑖𝑦𝑖

𝑛

𝑖=1

= 0  

where α𝑖  are the Lagrange multipliers. 

2.6.4. Decision Function 

The decision function for classification is given by: 

𝑓(𝑥) = sign (∑ α𝑖𝑦𝑖𝐾(𝑥𝑖 , 𝑥)

𝑛

𝑖=1

+ 𝑏)  

2.6.5. Class Weighting 

To address potential class imbalance, we introduce class weights ω+ and ω− for the positive and negative classes, 
respectively. The weighted SVM formulation becomes: 

minimize𝑤,𝑏,ξ (
1

2
|𝑤|2 + 𝐶 ( ∑ ξ𝑖

𝑖:𝑦𝑖=1

+ ∑ ξ𝑖

𝑖:𝑦𝑖=−1

)) 

subject to 𝑦𝑖(𝑤𝑇ϕ(𝑥𝑖) + 𝑏) ≥ 1 − ξ𝑖,  ξ𝑖 ≥ 0,  ∀𝑖  

2.6.6. Hyperparameter Optimization 

We define a hyperparameter space Θ = {𝐶, γ, kernel, class_weight} and seek the optimal configuration that maximizes 
the cross-validation accuracy: 
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θ∗ = arg max
θ∈Θ

(∑ 𝐴𝑐𝑐𝑘(θ)

𝐾

𝑘=1

)  

Where 𝐾 is the number of cross-validation folds and 𝐴𝑐𝑐𝑘(θ) is the accuracy on the 𝑘 − 𝑡ℎ fold using hyperparameters 
θ 

2.7. XGBoost 

XGBoost, an advanced implementation of gradient boosting machines, combines multiple weak learners to create a 
robust predictive model for heart disease detection using audio signal processing [5]. The implementation leverages 
advanced computational techniques and carefully tuned parameters to optimize performance and efficiency. XGBoost 
optimizes a regularized objective function, employing a level-wise tree growth strategy for parallelization and improved 
accuracy in heart disease detection. 

2.7.1. Ensemble Model 

The XGBoost model predicts the output 𝑦�̂� for the 𝑖 − 𝑡ℎ instance as an ensemble of 𝐾 trees: 

𝑦�̂� = ϕ(𝑥𝑖) = ∑ 𝑓𝑘(𝑥𝑖)

𝐾

𝑘=1

  

Where 𝑓𝑘 ∈ ℱ and ℱ is the space of all possible regression trees. 

2.7.2. Objective Function 

The model is trained by minimizing the regularized objective: 

ℒ(ϕ) = ∑ 𝑙(𝑦𝑖 , 𝑦�̂�)

𝑛

𝑖=1

+ ∑ Ω(𝑓𝑘)

𝐾

𝑘=1

  

where 𝑙 is the loss function, 𝑦𝑖  is the true label, and Ω is the regularization term 

2.7.3. Additive Training 

The model is trained additively. At step 𝑡 we optimize: 

ℒ (𝓉) = ∑ 𝑙 (𝑦𝑖 , 𝑦𝑖
(𝑡−1)̂

+ 𝑓𝑡(𝑥𝑖))

𝑛

𝑖=1

+ Ω(𝑓𝑡)  

Where (𝑦𝑖
(𝑡−1)̂

 is the prediction at step 𝑡 − 1. 

2.7.4. Taylor Expansion of Loss Function 

Applying the second-order Taylor expansion to the loss function: 

ℒ (𝓉) ≈ ∑ [𝑙 (𝑦𝑖 , 𝑦𝑖
(𝑡−1)̂

) + 𝑔𝑖𝑓𝑡(𝑥𝑖) +
1

2
ℎ𝑖𝑓𝑡

2(𝑥𝑖)]

𝑛

𝑖=1

+ Ω(𝑓𝑡)  

Where 𝑔𝑖  and ℎ𝑖  are the first and second-order gradients of the loss function with respect to 𝑦𝑖
(𝑡−1)̂

 

2.7.5. Tree Structure Score 

For a tree structure (𝑥) , the quality score is defined as 

𝐿𝑆𝑝𝑖𝑙𝑡 =
1

2
[

(∑ 𝑔𝑖𝑖∈𝐼𝐿
)

2

∑ ℎ𝑖𝑖∈𝐼𝐿
+ λ

+
(∑ 𝑔𝑖𝑖∈𝐼𝑅

)
2

∑ ℎ𝑖𝑖∈𝐼𝑅
+ λ

] − γ  
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Where 𝐼𝐿  and 𝐼𝑅  are the instance sets of left and right nodes after the split, λ is the L2 regularization term, and γ is the 
minimum loss reduction required for a split. 

2.7.6. Regularization Term 

The regularization term Ω is defined as: 

Ω(𝑓) = γ𝑇 +
1

2
λ ∑ 𝑤𝑗

2

𝑇

𝑗=1

  

Where 𝑇 is the number of leaves in the tree, 𝑤𝑗  is the score on the 𝑗 −th leaf, γ is the complexity control parameter, and 

λ is the L2 regularization term. 

2.7.7. Multiclass Classification 

For multiclass classification with 𝑀 classes, we use the softmax objective: 

𝑙(𝑦𝑖 , 𝑦�̂�) = − ∑ 𝑦𝑖𝑚

𝑀

𝑚=1

log(𝑝𝑖𝑚)  

Where 𝑦𝑖𝑚  is 1 if the 𝑖 −th instance belongs to the 𝑚 −th class and 0 otherwise, and 𝑝im 

is the predicted probability of the 𝑖 −th instance belonging to the 𝑚 −th class. 

2.7.8. Feature Importance 

The importance score for a feature is calculated as: 

Score(𝐹) = ∑ ∑ 𝐼𝑗
2

𝑗∈𝐽

𝐾

𝑘=1

  

where 𝐽 is the set of nodes in 𝑘 tree that split on feature 𝐹𝑖  and 𝐼𝑗  is the improvement in the loss function resulting from 

this split. 

2.8. Ensemble classification model 

The ensemble classification model presented in this study combines Support Vector Machine (SVM) and Extreme 
Gradient Boosting (XGBoost) classifiers, with their weights optimized using the Moth Flame Optimization (MFO) 
algorithm. The ensemble employs a weighted average method, where the final prediction is a weighted sum of the 
individual model predictions, with the objective function incorporating both accuracy and a regularization penalty to 
promote balanced weighting. 

2.8.1. Ensemble Classification Model 

Let 𝑀1 and 𝑀2 be two base classifiers, in this case, Support Vector Machine (SVM) and Extreme Gradient Boosting 
(XGBoost), respectively. The ensemble model 𝐸 is defined as a weighted combination of these classifiers: 

𝐸(𝑥) = 𝑤1 ⋅ 𝑀1(𝑥) + 𝑤2 ⋅ 𝑀2(𝑥)  

Where 𝑥 is the input feature vector, 𝑤1 and 𝑤2 are the weights assigned to each classifier such that 𝑤1 + 𝑤2 = 1, and 
𝐸(𝑥) is the ensemble prediction. 

2.8.2. Objective Function 

The objective function 𝑓(𝑤) to be minimized is defined as: 

𝑓(𝑤) = −𝐴(𝐸(𝑋)) + λ𝑅(𝑤)  
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2.8.3. Moth Flame Optimization (MFO) 

Let 𝑆 be the search space defined by the bounds of the weight parameters. The MFO algorithm can be formalized as 
follows: 

Initialization 

Generate a population of 𝑛 moths 𝑀 = {𝑚1, 𝑚2, … , 𝑚𝑛} where each 𝑚𝑖 ∈ 𝑆. Initialize a set of 𝑛 flames 𝐹 = {𝑓1, 𝑓2, … , 𝑓𝑛} 
where initially 𝑓𝑖 = 𝑚𝑖  

2.8.3.2 Iteration Process 

For each iteration 𝑡 =  1, 2, … , 𝑇 

For each moth 𝑚𝑖  

𝑚𝑖
(𝑡+1)

= 𝑚𝑖
(𝑡)

+ α𝑡 ⋅
(𝑓best − 𝑚𝑖

(𝑡)
)

𝑑
+ β𝑡 ⋅ 𝑟 (3) 

Evaluate 𝑓(𝑚𝑖
(𝑡+1)

) for each updated moth position. Update 𝐹 by selecting the 𝑛 best positions among 𝑀 ∪ 𝐹 

Update exploration factor:  

α(𝑡+1) = γ ⋅ α𝑡   

where γ is a decay factor. The algorithm terminates after 𝑇 iterations, returning the best solution found. 

3. Experimental result 

The experiments were conducted using a high-performance computing environment provided by Kaggle, featuring dual 
NVIDIA Tesla T4 GPUs with 16 GB GDDR6 memory and 2,560 CUDA cores each. This configuration enabled efficient 
parallel processing for data augmentation, feature extraction, and model training tasks, utilizing Python 3.8 with scikit-
learn 0.24.2 and XGBoost 1.4.2 libraries. GPU acceleration was employed for both Support Vector Machine (SVM) and 
XGBoost implementations, facilitating rapid prototyping and iteration of models, particularly beneficial for 
computationally intensive processes such as SMOTE and SVM hyperparameter optimization. 

We assign feature vector sequences for all the normal and abnormal heart sound signals in the PhysioNet/CinC 
Challenge 2022 heart sound database. According to the method described in Sect. 2.3 and 2.4, we extract features and 
applied feature selection (PCA), which means the input feature vector 𝑥𝑖 = [𝑀𝐹𝐶𝐶𝑖

𝑇 , 𝐷𝑒𝑙𝑡𝑎𝑖
𝑇 , 𝐷𝑒𝑙𝑡𝑎𝐷𝑒𝑙𝑡𝑎𝑖

𝑇]𝑇. Model 
performance was rigorously evaluated using 5-fold stratified cross-validation to ensure robust and generalizable 
results. The primary evaluation metrics included accuracy, precision, recall, and F1-score. Additionally, we monitored 
training and inference times to assess the computational efficiency of our proposed method. The performance metrics 
of our individual classifiers (SVM and XGBoost) and the ensemble model optimized with Moth Flame Optimization 
(MFO) on the test set are presented in Table 3. 

Table 3 Performance Comparison of Classifiers 

Model Accuracy Precision Recall F1-Score 

SVM 0.9893 0.9926 0.9864 0.9895 

Xgboost 0.9597 0.9607 0.9601 0.9604 

Ensemble 0.9913 0.9894 0.9505 0.9746 

 

The SVM model demonstrated excellent performance, achieving an accuracy of 98.93% on the test set. This high 
accuracy is further substantiated by impressive precision (99.26%), recall (98.64%), and F1-score (98.95%). The 
optimal hyperparameters for the SVM model were found to be C=100, class_weight='balanced', gamma=0.1, and 
kernel='rbf'. The XGBoost model achieved a solid accuracy of 95.97% on the test set, with balanced precision (96.07%), 
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recall (96.01%), and F1-score (96.04%). The ensemble model, combining SVM and XGBoost, showed superior results 
with the highest overall accuracy of 99.13% on the test set. This ensemble approach demonstrated high precision 
(98.94%), recall (95.05%), and F1-score (97.46%). 

Table 4 Effect of Data Augmentation on Ensemble Model Performance 

Metric Without SMOTE With SMOTE 

Accuracy 0.5753 0.9913 

Precision 0.5628 0.9894 

Recall 0.5468 0.9505 

F1-Score 0.5547 0.9746 

 

The application of SMOTE led to a dramatic transformation in the model's performance. Accuracy increased by 41.6 
percentage points to 99.13%, while precision improved to 98.94%, indicating a significant reduction in false positives. 
The recall rose to 95.05%, demonstrating a substantial enhancement in the model's capacity to identify positive cases. 

4. Discussion 

The ensemble model's superior performance can be attributed to its ability to combine the strengths of both SVM and 
XGBoost. The SVM's capability to find complex decision boundaries in high-dimensional space complements XGBoost's 
strength in handling non-linear relationships and feature interactions. 

 

Figure 4 Confusion Matrix for Ensemble Model 

The confusion matrix in Fig. 4 provides a detailed breakdown of the ensemble model's performance. With 7300 true 
negatives and 7540 true positives, the model demonstrates high accuracy in classifying both negative and positive cases. 
The relatively low number of false positives (56) and false negatives (104) further underscores the model's reliability. 
This visual representation reinforces the high precision and recall values reported in Table 4. The high precision of the 
ensemble model (98.94%) is particularly valuable in clinical settings where minimizing false positives is crucial to avoid 
unnecessary stress and further testing for patients. The confusion matrix visually confirms this, showing only 56 false 
positives out of 7356 predicted positive cases. However, the slightly lower recall compared to the SVM model alone 
suggests that it might miss some positive cases, a trade-off that needs careful consideration in a medical context.  
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Figure 5 Receiver Operating Characteristic (ROC) Curve 

The Receiver Operating Characteristic (ROC) curve (Fig. 5) further validates the ensemble model's exceptional 
performance. The curve hugs the top-left corner of the plot, indicating a near-perfect classification ability. The reported 
Area Under the Curve (AUC) of 0.99 quantifies this outstanding performance, where 1.0 represents a perfect classifier. 
This high AUC value suggests that the model maintains its high performance across various classification thresholds, 
demonstrating its robustness and reliability. The stark contrast in performance metrics before and after applying 
SMOTE underscores the critical importance of appropriate data preprocessing in machine learning, particularly for 
medical applications. Even with a relatively mild class imbalance, the right preprocessing technique can have a profound 
impact on model performance. The dramatic improvement in accuracy from 57.53% to 99.13% after applying SMOTE 
(as shown in Table 4) is likely reflected in the highly favourable confusion matrix and ROC curve we observe. 

Future research will focus on validating the ensemble model's performance across diverse datasets and clinical settings 
to ensure generalizability. Exploration of additional ensemble techniques or incorporation of deep learning models 
could potentially enhance recall while maintaining high precision. In-depth analysis of misclassified cases may provide 
insights for refining the feature engineering process and improving overall model performance. Furthermore, 
optimizing the model for specific clinical needs, such as minimizing false negatives in certain medical contexts, could be 
achieved through threshold adjustment or cost-sensitive learning techniques.  

5. Conclusion 

This research demonstrates the potential of machine learning, particularly through the combination of SVM and 
XGBoost classifiers, for the accurate and early detection of heart disease using audio signals. By employing MFCC-based 
features and leveraging data augmentation through SMOTE, the study effectively addressed class imbalance issues, 
improving model accuracy and generalizability. The ensemble model, optimized using MFO, achieved superior results 
in terms of accuracy and precision, proving its efficacy in distinguishing between normal and abnormal heart sounds. 
This approach offers a non-invasive, cost-effective alternative to traditional diagnostic methods, particularly in 
resource-constrained environments. Future work should focus on external validation, refining feature extraction 
methods, and exploring other ensemble techniques to enhance model robustness and further reduce false positives in 
clinical settings.  
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