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Abstract 

The study of time-varying brain connectivity is essential for understanding the dynamic interactions between different 
brain regions, especially in the context of cognitive processes, neurological disorders, and brain network functioning. In 
this paper, we present a novel approach for analyzing effective brain connectivity using a nonparametric Bayesian 
model. Specifically, we apply a Hierarchical Dirichlet Process Auto-regressive Hidden Markov Model (HDP-AR-HMM) to 
capture the temporal evolution and structural patterns of connectivity between brain regions. The proposed model 
allows for flexible, data-driven clustering of brain states while incorporating both temporal dependencies and hidden 
states. We demonstrate the utility of this method in revealing the dynamic structure of brain networks and uncovering 
time-varying patterns of effective connectivity. Our approach is validated using Alzheimer fMRI data, showing that it 
the dynamic interaction among brain regions during a simple sensory-motor task experiment, providing new insights 
into the dynamic processes governing brain activity.  
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1. Introduction

Examining the causal relation among brain regions, also known as effective connectivity, during a cognitive task is a 
challenging work in the field of neuroscience [1]. Methods from previous studies have focused on estimating the causal 
relation based on neuroimaging data such as functional Magnetic Resonance Image (fMRI) [1, 3], and 
ElectroEncephaloGraphy (EEG) [5]. Dynamic Causal Model (DCM) [6] is based on a nonlinear input-state-output system 
and comprises a bi-linear approximation in order to model the interaction at a neural level. Another study, Structure 
Equation Modeling (SEM) [7], decomposes interregional covariances of fMRI time-series to find interactions among 
brain regions.Besides, several methods have been proposed using Vector AutoRegressive (VAR) [2, 3] and the Granger 
causality to identify the directed influence among activated brain areas. The VAR models temporal effects across 
different regions and characterizes the dependencies in terms of the historical influence one variable has on another. In 
general, the gap these approaches reveal is that they tend to assume the data are stationary, while most neuroimaging 
data are non-stationary. Actually, the connectivity changes over time and the rule of these changes is unknown. To 
overcome this limitation, a common approach is to use a sliding time window method [8] which assumes stationarity 
within a window, thus makes it possible for the time-varying connectivity estimation. But how to select the window 
length is a nontrivial task. Dynamic Bayesian Network (DBN) has been used to learn the time-dependent interactions 
among brain areas [9]. By averaging all the data from a group, these methods assume that every subject within the group 
has the same connectivity structure. Adaptive AutoRegressive (AAR) model has been applied to estimate the time-
varying connectivity in EEG [4]. However, in this method, finding optimal parameter values such as model order and 
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updating coefficients is nontrivial and the method also assumes that all the subjects have the same connectivity 
structure. 

In neuroimaging applications, it is commonly required to estimate the connectivity shared by a group of subjects or to 
find the different connectivity between groups. At the same time, group analysis also needs to find specific features of 
individual subjects [10]. In [9], they took the average of the fMRI time series of all the subjects and assumed that the 
estimated connectivity represented for all the population. But in some cases, this approach could enhance the signal-to-
noise ratio [10]. Another study estimates a connectivity network for each individual subject and then performs group 
analysis on these individual estimated connectivity networks [11]. However, this method may not help to draw 
comprehensive group data for correct inferences about statistically significant disparities among groups [10]. 

To address this issue, we propose the use of a nonparametric Bayesian method, specially employing multiple 
Hierarchical Dirichlet Process-Autoregressive-Hidden Markov Models (HDP-AR-HMM) [12] for time-varying 
connectivity analysis that applies to group fMRI data. HDP-AR-HMM is an extension of switching VAR process with an 
infinite dynamical mode. The AR model parameters which capture the relationship among brain regions can be changed 
and modulated by a hidden Markov chain, in which the number of states can be learned from the data. The HDP-AR-
HMM has been used in econometric [12] and target tracking [13], but to our best knowledge, has not been applied to 
fMRI data. 

HDP-AR-HMM can be used to estimate the time-varying connectivity from multiple subjects by combining all subjects 
using the same set of transition and dynamic parameters. But this approach assumes that all subjects share the same 
set of features and switch among them in the same way. Thus it does not represent the variability across subjects in 
terms of individual selection of subset of features or their different ways of switching. This problem has been dealt with 
in [14], where dynamic behaviors are shared across objects using Beta processes. Hence the variability was captured 
by using subsets of low-lever features precisely sampled to a specific object. The method focuses on capturing separate 
variations considered as unique features for a specific object. Compared to this method, ours goes further by trying to 
discover the global connectivity shared across subjects while allowing for subject specific variability. We integrate 
multiple HDP-AR-HMMs, each HDP-AR-HMM corresponding to one subject. The base distributions of each HDP-AR-
HMM are shared via HDP to encourage the common connectivity patterns shared among subjects. This allows us to 
simultaneously learn the common time-varying connectivity of a group of individuals without ignoring individual 
specificness. 

The rest of the paper is organized as follows. In section 2, we review the background of Hierarchical Dirichlet Process, 
the Hierarchical Dirichlet Process Autoregressive-Hidden Markov model and describe the developed HDP-AR-HMM for 
group analysis. In section 3, we present and discuss the experimental results. Finally, session 4 is conclusive.  

2. Proposed Method  

2.1. Hierarchical Dirichlet Process 

Dirichlet process (DP) denoted by 𝐷𝑃(𝛾, 𝐻), provides a distribution on discrete measure. 𝛾 is a concentration parameter 
and 𝐻 is the base measure on a measure space 𝜃. Sethuraman [15] shows that 𝐺0~𝐷𝑃(𝛾, 𝐻), a sample drawn from the 
𝐷𝑃, is a discrete distribution by the following stick-breaking construction. 

𝐺0 ~ ∑ 𝛽𝑘𝛿𝜃𝑘

∞

𝑘=1

,     𝛽𝑘 =  𝛽′𝑙 ∏(1 − 𝛽′
𝑙
)

𝑘−1

𝑙=1

,     𝛽′𝑘~𝐵𝑒𝑡𝑎(1, 𝛾),      𝜃𝑘 ~ 𝐻 (1) 

The set of atoms 𝜃𝑘 drawn from base measure 𝐻 and 𝛽 represent a set of weights satisfied ∑ 𝛽𝑘 = 1 ∞
𝑘=1 and denoted by 

𝛽 ~ 𝐺𝐸𝑀(𝛾). 𝛿𝜃𝑘
 is a probability measure concentrated at 𝜃𝑘. 

𝐷𝑃 is often used as a prior distribution for a mixture model with unbounded number of components, resulting in a 𝐷𝑃 
mixture model. To generate the observations, let 𝑧𝑖  ~ 𝛽 and draw 𝑦𝑖  ~ 𝐹(𝜃𝑧𝑖

). Data points sharing the same parameter 

𝜃𝑘 are clustered together under the mixture model. 

Hierarchical Dirichlet process (HDP) [16] extends the DP to model groups of data, some of which are related, such that 
data from one group may be shared with data from another. In HDP, a global measure 𝐺0 is drawn from 𝐷𝑃(𝛾, 𝐻), and 
then a set of specific measures 𝐺𝑗  is drawn from 𝐷𝑃(𝛼, 𝐺0) with base measure 𝐺0 for each group: 
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𝐺0~𝐷𝑃(𝛾, 𝐻) 
𝐺𝑗~𝐷𝑃(𝛼, 𝐺0) 

(2) 
(3) 

The common base measure 𝐺0varies around the prior 𝐻 where the amount of variability is determined by 𝛾. Moreover, 
the discreteness of 𝐺0 guarantees that the 𝐺𝑗  will reuse the same set of shared mixture components defined in 𝐺0but 

with different proportions [16]: 

𝐺0 ~ ∑ 𝛽𝑘𝛿𝜃𝑘

∞

𝑘=1

,   𝛽 ~ 𝐺𝐸𝑀(𝛾),   𝜃𝑘 ~ 𝐻 

𝐺𝑗  ~ ∑ 𝜋𝑘𝛿𝜃𝑘

∞

𝑘=1

,   𝜋𝑗  ~ 𝐷𝑃(𝛼, 𝛽) 

 
(4) 
 
(5) 

Given 𝐺𝑗 , the data samples 𝑦𝑗𝑖 , in each group 𝑗 are drawn from 𝑦𝑗𝑖 ∼  𝐹 (𝜃𝑧𝑗𝑖
), where 𝑧𝑗𝑖  ∼  𝜋𝑗  

2.2. Time-varying connectivity analysis with HDP-AR-HMM 

HDP-AR-HMM is an extension of switching VAR process with an infinite dynamical mode. VAR models quantify the linear 
interdependence among regions in the system [2]. The weights in the coefficient matrix measure the influence that each 
region exerts on others. A pair of independent regions leads to a weight of zero whereas a pair of dependent ones results 
in a nonzero magnitude. The advantage of this model is that the parameters of VAR process, including coefficients and 
noise covariance, are modulated by hidden Markov chain. Thus this model can switch between states or modes, each of 
which has its own set of parameters. Hence the overall parameters are time-variant. 

In HDP-AR-HMM, to model the transition to an unknown number of states, an infinite mixture is required. Here, 𝛽 is the 
prior on the transition matrix, formulated as a stick-breaking construction (4). We consider the rows of the state 
transition matrix as multiple groups and each state as the index of components. Therefore, the transition vector 
associated with state 𝑗 is represented by 𝜋𝑗  (5), each HDP group distribution 𝜋𝑗  is a state specific transition distribution. 

Let 𝑦1…𝑇  be the observation sequence corresponding to hidden states 𝑧1…𝑇 . Given that the previous state 𝑧𝑡−1, 𝑧𝑡 is 
generated from 𝑀𝑢𝑙𝑡(𝜋𝑧𝑡−1

), then the observation 𝑦𝑡  will be generated from the distribution 𝐹(𝜃𝑧𝑡
) . In this model, the 

observations are modeled as conditionally VAR. 

𝑧𝑡  ~ 𝜋𝑧𝑡−1
, 𝑦𝑡 =  ∑ 𝐴𝑙

𝜋𝑧𝑡 𝑦𝑡−1 + 𝑒𝑡(

𝑝

𝑙=1

𝑧𝑡) (6) 

where 𝐴𝑖  is a coefficients matrix and 𝑒𝑡∼ 𝑁(0, 𝛴) is Gaussian noise 

By sampling 𝜋𝑗  as in (5) each row of the transition matrix is drawn from the same DP and thus the HDP does not 

differentiate between self-transitions and transitions to other states. However, when modeling fMRI time series exhibit 
state persistence and we would like to incorporate this feature into the prior in order to rule out unrealistic high 
dynamics in the state sequence. To address this problem, [17] has considered the sticky HDP-HMM where 𝜋𝑗  is 

distributed as follows: 

𝜋𝑗  ~ 𝐷𝑃(𝛼 + 𝑘,
𝛼𝛽+𝑘𝛿𝑗

𝛼+𝑘
) (7) 

An amount 𝑘 is added to 𝑗𝑡ℎ component of 𝛽 , which leads to an increased probability of self-transitions. 

Given the transition matrix 𝜋𝑘 , dynamic parameters (𝐴𝑖
𝑘 , ∑  

𝑘
), and the observation 𝑦1…𝑇 , sample the state sequence by 

using a variant of the forward-backward procedure. 

Sample the dynamic parameters (𝐴𝑖
𝑘, ∑  

𝑘
) , from the posterior given conjugate prior of the matrix-normal inverse-

Wishart and sample the transition matrix 𝜋𝑘  given the state sequences 𝑧1…𝑇 and observations 𝑦1…𝑇 

Since the VAR coefficients and covariance matrix of HDP-AR-HMM characterize the influence each region has upon them, 
they are exploited to the study of time-varying brain connectivity (locally invariant). Specially, we employ the ideas 
from the Partial Directed Coherence (PDC) [18] to represent the effective connectivity among brain regions in the 



Global Journal of Engineering and Technology Advances, 2024, 21(03), 069–076 

72 

concept of Granger causality. In order to define the PDC, we need to take the Fourier transformation of the VAR 
coefficients: 

𝐴(𝑓) = 𝐼 − ∑ 𝐴(𝑟)𝑒𝑥𝑝 − 𝑖𝑓𝑟

𝑝

𝑟=1

 (8) 

Then the PDC from ROI j to ROI i is defined as 

𝑃𝐷𝐶𝑖←𝑗 =  
|𝐴𝑖𝑗(𝑓)|

√∑ |𝐴𝑙𝑗(𝑓)|2𝐾
𝑙=1

 
(9) 

If there are multiple subjects and we would like to estimate the common connectivity patterns which are shared among 
subjects. HDP-AR-HMM can be used in which all subjects are combined with the same set of transition and dynamic 
parameters. However this approach assumes that all subjects share the same set of features and switch among them in 
the same way and not consider the variability across subjects. Thus our work focuses on modeling multiple subjects and 
capturing the subject-specific from a shared set of connectivity patterns. 

2.3. Group time-varying connectivity analysis with multi HDP-AR-HMM 

Our method builds on HDP-AR-HMM to learn the common connectivity patterns from a group of subjects while allowing 
for subject specific variability in terms of individual selection from a shared set of features. For this purpose, we 
integrate a multiple HDP-AR-HMM using HDP, such that the connectivity patterns are shared across subjects. The 
graphical model of the multiple HDP-AR-HMM is shown in Fig. 1: 

 

Figure 1 Multiple HDP-AR-HMM 

In our model, a global random measure 𝐺0 is distributed as Dirichlet process 𝐺0   ∼  𝐷𝑃 (𝛾, 𝐻) and is represented in the 
form of stick-breaking according to (4): 𝐺0 ~ ∑ 𝛽𝑘𝛿𝜃𝑘

∞
𝑘=1  , 𝛽 ~ 𝐺𝐸𝑀(𝛾),   𝜃𝑘 ~ 𝐻 . Here, 𝐺0 is used as a prior 

distribution over all models. All the subjects are grouped and each group 𝑠 has a random probability measure 𝐺𝑠 ∼
 𝐷𝑃 (𝛼0, 𝐺0). Similar, the form of Gs is: 𝐺𝑠∼ ∑ 𝛽𝑗𝑘𝛿𝜃𝑘

,   𝛽𝑗 ~
∞
𝑘=1 𝐷𝑃 (𝛼0, 𝛽0). For each subject 𝑖, a label 𝑠𝑖 is indicated that 

𝐺0
(𝑖)

=  𝐺𝑠𝑖
 . A subject 𝑖 choose 𝐺𝑠𝑖

 as the base probability measure and draws its own transition probability 𝐺𝑗
(𝑖)

from 

Dirichlet process 𝐺𝑗
(𝑖)

∼ 𝐷𝑃 (𝛼, 𝐺𝑠𝑖
). 

The generative model is: 

𝜑 = 𝐺𝐸𝑀(𝜌) 
𝑐𝑖 = 𝑀𝑢𝑙𝑡(𝜑) 
𝛽 = 𝐺𝐸𝑀(𝛾) 

𝜋𝑘𝑐 = 𝐷𝑃(𝛼, 𝛽) 

𝜋𝑗
(𝑖)

= 𝐷𝑃(𝛼0, 𝜋𝑐𝑖
) 

𝑧𝑡
(𝑖)

= 𝑀𝑢𝑙𝑡(𝜋𝑐𝑖 𝑡−1

(𝑖) ) 

(10) 
(11) 
(12) 
(13) 
(14) 
(15) 
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𝑦𝑡
(𝑖)

=  ∑ 𝐴𝑙,𝑧𝑡

(𝑖)
𝑦𝑡−𝑙

(𝑖)
+ 𝑒𝑡

(𝑖)
(𝑧𝑡

(𝑖)
) 

𝑝

𝑙=1

 
(16) 

3. Experimental Results 

3.1. FMRI data 

The data used in this method is from Washington University [21]: thirteen subjects with very mild to AD condition were 
scanned during a simple Sensory-motor experiment. During the task, subjects are required to respond with a button 
press with their right index fingers to a stimulus onset. The visual stimulus was a flash186 ing checkerboard which was 
presented for 1.5 sec in single or in pairs with a 5.36 sec gap between presentations. The raw data were received from 
the fMRI Data Center at Dartmouth College and were preprocessed using SPM5 [20]. Images were motion corrected and 
normalized to coordinates of Talairach and Tournoux [19]. They are also smoothed with a 4mm Gaussian kernel to 
decrease spatial noise. 

We apply group independent component analysis (ICA) (Calhoun and Adali, 2006) on the group of subjects from 
Washington University (Buckner et al., 2000) to extract the activation areas. Recent studies showed that ICA can be used 
to separate fMRI data into meaningful components, classified as task-related, transiently task-related and motion-
related (Calhoun et al., 2003). The sensory-motor experiment suggests that the regions of interest (ROIs) are those 
associated with visual processing and motor response. In this analysis, the number of components is selected using the 
minimum description length (MDL) criteria (Rissanen, 1978). The number of components extracted from the data is 24. 
From this configuration, we use two PCA reduction steps and the Infomax algorithm (Bell and Sejnowski, 1995) to 
decompose data into temporal and spatial components. We created a brain mask consisting of these regions using the 
Brodmann template. After applying ICA, an activation map consisting of voxels whose spatial map shows the highest 
correlation with the mask was selected. The ROIs identified were the primary motor cortex (PMC, BA4, 1267 voxels), 
the supplementary motor area (SMA, BA6, 3601 voxels), the primary visual cortex (PVC, BA17, 1137 voxels), and the 
extrastriate visual cortical cortex (EVC, BA18 and BA19, 5949 voxels) as shown in Figure 2. 

 

Figure 2 Activated voxels obtained by ICA on the group of 13 subjects 

Time series was extracted from each ROI and the intensity of voxels appears in wide ranges because not every voxel in 
the ROI are strongly activated. Figure 3 shows the average of time series extracted from each ROI. 
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Figure 3 The averaged time series from 4 ROIs 

The fMRI time series of each ROI of each subject was applied to the multiple HDP-AR-HMMs. The optimal model order 
was selected by using Akaike Information Criterion (AIC) and the model order was 4 for all subjects. Fig. 4 shows the 
feature matrix which indicates the underlined states of each subject and the state shared across the subjects. In this 
figure, each subject has a different sub AR model modulated by the states and there is only one sub AR model shared 
among the subjects. Therefore, it is very important to employ a flexible framework like multiple HDP-AR-HMMs in 
modeling. This is advantageous over mAR-HMM [24] which requires a prior number of the states. The common AR 
coefficient was used as input to the PDC to calculate the connectivity among ROIs. In Fig. 5, results of the partial directed 
coherence analysis for four ROIs are shown. The spectra of the processes are given on the diagonal. Partial directed 
coherence detects the causal influences in PVC→PMC, PVC→SMA, PVC→V5, V5→PVC and PMC→PVC is significant at the 
corresponding oscillation frequencies. The corresponding 5%−significance levels are indicated by dot lines. 

 

Figure 4 Feature matrix. 
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Figure 5 Partial Directed Coherence, which measure the influence of ROI 𝒋 on to ROI 𝒊.  

4. Conclusion 

In this paper, we proposed non-parametric framework for group time-varying connectivity analysis and demonstrated 
how the shared dynamic parameter can be used to identify the time-varying connectivity among brain regions. In this 
approach, each subject is modeled by an HDP-AR-HMM, which solves the problem of non-stationary fMRI. By adding an 
additional level making use the master DP to link the multiple HDP-AR-HMMs, we allow all models to share the common 
states and the transition characteristic of multiple subjects to be combined. This approach is able to identify the common 
connectivity among subjects based on shared dynamic parameter, which is firmly supported by the results on synthetic 
data and real fMRI data. Thus this approach can serve as a useful tool for exploring the time-varying connectivity among 
brain regions from multiple subjects.  
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